1
|
Goto S, Hosojima M, Kabasawa H, Saito A. The endocytosis receptor megalin: From bench to bedside. Int J Biochem Cell Biol 2023; 157:106393. [PMID: 36863658 DOI: 10.1016/j.biocel.2023.106393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
The large (∼600 kDa) endocytosis receptor megalin/low-density lipoprotein receptor-related protein 2 is highly expressed at the apical membrane of proximal tubular epithelial cells (PTECs). Megalin plays an important role in the endocytosis of various ligands via interactions with intracellular adaptor proteins, which mediate the trafficking of megalin in PTECs. Megalin mediates the retrieval of essential substances, including carrier-bound vitamins and elements, and impairment of the endocytic process may result in the loss of those substances. In addition, megalin reabsorbs nephrotoxic substances such as antimicrobial (colistin, vancomycin, and gentamicin) or anticancer (cisplatin) drugs and advanced glycation end product-modified or fatty acid-containing albumin. The megalin-mediated uptake of these nephrotoxic ligands causes metabolic overload in PTECs and leads to kidney injury. Blockade or suppression of the megalin-mediated endocytosis of nephrotoxic substances may represent a novel therapeutic strategy for drug-induced nephrotoxicity or metabolic kidney disease. Megalin reabsorbs urinary biomarker proteins such as albumin, α1-microglobulin, β2-microglobulin, and liver-type fatty acid-binding protein; thus, the above-mentioned megalin-targeted therapy may have an effect on the urinary excretion of these biomarkers. We have previously established a sandwich enzyme-linked immunosorbent assay to measure the ectodomain (A-megalin) and full-length (C-megalin) forms of urinary megalin using monoclonal antibodies against the amino- and carboxyl-terminals of megalin, respectively, and reported their clinical usefulness. In addition, there have been reports of patients with novel pathological anti-brush border autoantibodies targeting megalin in the kidney. Even with these breakthroughs in the characterization of megalin, a large number of issues remain to be addressed in future research.
Collapse
Affiliation(s)
- Sawako Goto
- Departments of Applied Molecular Medicine, Japan
| | - Michihiro Hosojima
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Hideyuki Kabasawa
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | | |
Collapse
|
2
|
Beenken A, Cerutti G, Brasch J, Guo Y, Sheng Z, Erdjument-Bromage H, Aziz Z, Robbins-Juarez SY, Chavez EY, Ahlsen G, Katsamba PS, Neubert TA, Fitzpatrick AWP, Barasch J, Shapiro L. Structures of LRP2 reveal a molecular machine for endocytosis. Cell 2023; 186:821-836.e13. [PMID: 36750096 PMCID: PMC9993842 DOI: 10.1016/j.cell.2023.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.
Collapse
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Julia Brasch
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zainab Aziz
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Estefania Y Chavez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Goran Ahlsen
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony W P Fitzpatrick
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Columbia University George M. O'Brien Urology Center, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
3
|
Yadav SPS, Yu A, Zhao J, Singh J, Kakkar S, Chakraborty S, Mechref Y, Molitoris B, Wagner MC. Glycosylation of a key cubilin Asn residue results in reduced binding to albumin. J Biol Chem 2022; 298:102371. [PMID: 35970386 PMCID: PMC9485058 DOI: 10.1016/j.jbc.2022.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/28/2022] Open
Abstract
Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.
Collapse
Affiliation(s)
- Shiv Pratap Singh Yadav
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Saloni Kakkar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Bruce Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark C Wagner
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
4
|
Elsakka EGE, Mokhtar MM, Hegazy M, Ismail A, Doghish AS. Megalin, a multi-ligand endocytic receptor, and its participation in renal function and diseases: A review. Life Sci 2022; 308:120923. [PMID: 36049529 DOI: 10.1016/j.lfs.2022.120923] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The endocytosis mechanism is a complicated system that is essential for cell signaling and survival. Megalin, a membrane-associated endocytic receptor, and its related proteins such as cubilin, the neonatal Fc receptor for IgG, and NaPi-IIa are important in receptors-mediated endocytosis. Physiologically, megalin uptakes plasma vitamins and proteins from primary urine, preventing their loss. It also facilitates tubular retrieval of solutes and endogenous components that may be involved in modulation and recovery from kidney injuries. Moreover, megalin is responsible for endocytosis of xenobiotics and drugs in renal tubules, increasing their half-life and/or their toxicity. Fluctuations in megalin expression and/or functionality due to changes in its regulatory mechanisms are associated with some sort of kidney injury. Also, it's an important component of several pathological conditions, including diabetic nephropathy and Dent disease. Thus, exploring the fundamental role of megalin in the kidney might help in the protection and/or treatment of multiple kidney-related diseases. Hence, this review aimed to explore the physiological roles of megalin in the kidney and their implications for kidney-related injuries.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
5
|
Kozyraki R, Verroust P, Cases O. Cubilin, the intrinsic factor-vitamin B12 receptor. VITAMINS AND HORMONES 2022; 119:65-119. [PMID: 35337634 DOI: 10.1016/bs.vh.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubilin (CUBN), the intrinsic factor-vitamin B12 receptor is a large endocytic protein involved in various physiological functions: vitamin B12 uptake in the gut; reabsorption of albumin and maturation of vitamin D in the kidney; nutrient delivery during embryonic development. Cubilin is an atypical receptor, peripherally associated to the plasma membrane. The transmembrane proteins amnionless (AMN) and Lrp2/Megalin are the currently known molecular partners contributing to plasma membrane transport and internalization of Cubilin. The role of Cubilin/Amn complex in the handling of vitamin B12 in health and disease has extensively been studied and so is the role of the Cubilin-Lrp2 tandem in renal pathophysiology. Accumulating evidence strongly supports a role of Cubilin in some developmental defects including impaired closure of the neural tube. Are these defects primarily caused by the dysfunction of a specific Cubilin ligand or are they secondary to impaired vitamin B12 or protein uptake? We will present the established Cubilin functions, discuss the developmental data and provide an overview of the emerging implications of Cubilin in the field of cardiovascular disease and cancer pathogenesis.
Collapse
Affiliation(s)
- Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France.
| | - Pierre Verroust
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
6
|
Yu A, Zhao J, Yadav SPS, Molitoris BA, Wagner MC, Mechref Y. Changes in the Expression of Renal Brush Border Membrane N-Glycome in Model Rats with Chronic Kidney Diseases. Biomolecules 2021; 11:1677. [PMID: 34827675 PMCID: PMC8616023 DOI: 10.3390/biom11111677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is defined by a reduced renal function i.e., glomerular filtration rate (GFR), and the presence of kidney damage is determined by measurement of proteinuria or albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush-border membranes (BBMs) on PT cells play an important role in maintaining the stability of PT functions. The PT BBM, a highly dynamic, organized, specialized membrane, contains a variety of glycoproteins required for the functions of PT. Since protein glycosylation regulates many protein functions, the alteration of glycosylation due to the glycan changes has attracted more interests for a variety of disease studies recently. In this work, liquid chromatography-tandem mass spectrometry was utilized to analyze the abundances of permethylated glycans from rats under control to mild CKD, severe CKD, and diabetic conditions. The most significant differences were observed in sialylation level with the highest present in the severe CKD and diabetic groups. Moreover, high mannose N-glycans was enriched in the CKD BBMs. Characterization of all the BBM N-glycan changes supports that these changes are likely to impact the functional properties of the dynamic PT BBM. Further, these changes may lead to the potential discovery of glycan biomarkers for improved CKD diagnosis and new avenues for therapeutic treatments.
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| | - Shiv Pratap S. Yadav
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Bruce A. Molitoris
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Mark C. Wagner
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| |
Collapse
|
7
|
Sun Y, Sun W, Yang N, Liu J, Tang H, Li F, Sun X, Gao L, Pei F, Liu J, Lin H, Taihua W. The effect of core fucosylation-mediated regulation of multiple signaling pathways on lung pericyte activation and fibrosis. Int J Biochem Cell Biol 2019; 117:105639. [PMID: 31669139 DOI: 10.1016/j.biocel.2019.105639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
The main event in the progression of pulmonary fibrosis is the appearance of myofibroblasts. Recent evidence supports pericytes as a major source of myofibroblasts. TGFβ/Smad2/3 and PDGF/Erk signaling pathways are important for regulating pericyte activation. Previous studies have demonstrated that PDGFβR and TGFβR are modified by core fucosylation (CF) catalyzed by α-1,6-fucosyltransferase (FUT8). The aim of this study was to compare the effect of inhibiting CF versus the PDGFβR and TGFβR signaling pathways on pericyte activation and lung fibrosis. FUT8shRNA was used to knock down FUT8-mediated CF both in vivo and in isolated lung pericytes. The small molecule receptor antagonists, ST1571 (imatinib) and LY2109761, were used to block the PDGFβ/pErk and TGFβ/pSmad2/3 signaling pathways, respectively. Pericyte detachment and myofibroblastic transformation were assessed by immunofluorescence and Western blot. Histochemical and immunohistochemical staining were used to evaluate the effect of the intervention on pulmonary fibrosis. Our findings demonstrate that FUT8shRNA significantly blocked pericyte activation and the progression of pulmonary fibrosis, achieving intervention effects superior to the small molecule inhibitors. The PDGFβ and TGFβ pathways were simultaneously affected by the CF blockade. FUT8 expression was upregulated with the transformation of pericytes into myofibroblasts, and silencing FUT8 expression inhibited this transformation. In addition, there is a causal relationship between CF modification catalyzed by FUT8 and pulmonary fibrosis. Our findings suggest that FUT8 may be a novel therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ying Sun
- Departments of Respiratory Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, PR China
| | - Wei Sun
- Post-doctoral research station, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, PR China
| | - Ning Yang
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Jia Liu
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - HaiYing Tang
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Fengzhou Li
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Xiuna Sun
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Lili Gao
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Fuyang Pei
- Departments of Respiratory Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, PR China
| | - Jia Liu
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | - Hongli Lin
- Departments of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China.
| | - Wu Taihua
- Departments of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China.
| |
Collapse
|
8
|
Parhiz H, Ketcham SA, Zou G, Ghosh B, Fratz-Berilla EJ, Ashraf M, Ju T, Madhavarao CN. Differential effects of bioreactor process variables and purification on the human recombinant lysosomal enzyme β-glucuronidase produced from Chinese hamster ovary cells. Appl Microbiol Biotechnol 2019; 103:6081-6095. [DOI: 10.1007/s00253-019-09889-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
|
9
|
Hirano M. An Endocytic Receptor, Megalin-Ligand Interactions: Effects of Glycosylation. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1752.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Hirano M. An Endocytic Receptor, Megalin-Ligand Interactions: Effects of Glycosylation. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1752.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Silva-Aguiar RP, Bezerra NCF, Lucena MC, Sirtoli GM, Sudo RT, Zapata-Sudo G, Takiya CM, Pinheiro AAS, Dias WB, Caruso-Neves C. O-GlcNAcylation reduces proximal tubule protein reabsorption and promotes proteinuria in spontaneously hypertensive rats. J Biol Chem 2018; 293:12749-12758. [PMID: 29954945 DOI: 10.1074/jbc.ra118.001746] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Hypertensive individuals are at greater risk for developing chronic kidney disease (CKD). Reducing proteinuria has been suggested as a possible therapeutic approach to treat CKD. However, the mechanisms underlying the development of proteinuria in hypertensive conditions are incompletely understood. Cardiac and vascular dysfunction is associated with changes in the O-GlcNAcylation pathway in hypertensive models. We hypothesized that O-GlcNAcylation is also involved in renal damage, especially development of proteinuria, associated with hypertension. Using the spontaneously hypertensive rat (SHR) model, we observed higher renal cortex O-GlcNAcylation, glutamine-fructose aminotransferase (GFAT), and O-GlcNAc transferase (OGT) protein expression, which positively correlated with proteinuria. Interestingly, this was observed in hypertensive, but not pre-hypertensive, rats. Pharmacological inhibition of GFAT decreased renal cortex O-GlcNAcylation, proteinuria, and albuminuria in SHR. Using a proximal tubule cell line, we observed that increased O-GlcNAcylation reduced megalin surface expression and albumin endocytosis in vitro, and the effects were correlated in vivo Moreover, megalin is O-GlcNAcylated both in vitro and in vivo In conclusion, our results demonstrate a new mechanism involved in hypertension-associated proteinuria.
Collapse
Affiliation(s)
- Rodrigo Pacheco Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Nathália C F Bezerra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Miguel C Lucena
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Gabriela M Sirtoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Roberto T Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa (INCT-Regenera), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|