1
|
Alexiev U, Rühl E. Visualization of Nanocarriers and Drugs in Cells and Tissue. Handb Exp Pharmacol 2024; 284:153-189. [PMID: 37566121 DOI: 10.1007/164_2023_684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In this chapter, the visualization of nanocarriers and drugs in cells and tissue is reviewed. This topic is tightly connected to modern drug delivery, which relies on nanoscopic drug formulation approaches and the ability to probe nanoparticulate systems selectively in cells and tissue using advanced spectroscopic and microscopic techniques. We first give an overview of the breadth of this research field. Then, we mainly focus on topical drug delivery to the skin and discuss selected visualization techniques from spectromicroscopy, such as scanning transmission X-ray microscopy and fluorescence lifetime imaging. These techniques rely on the sensitive and quantitative detection of the topically applied drug delivery systems and active substances, either by exploiting their molecular properties or by introducing environmentally sensitive probes that facilitate their detection.
Collapse
Affiliation(s)
- Ulrike Alexiev
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| | - Eckart Rühl
- Physikalische Chemie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Darvin ME. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023; 15:2272. [PMID: 37765241 PMCID: PMC10538180 DOI: 10.3390/pharmaceutics15092272] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment-a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Collapse
|
3
|
Jain S, Tripathi S, Tripathi PK. Invasomes: Potential vesicular systems for transdermal delivery of drug molecules. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Nangare S, Dugam S. Smart invasome synthesis, characterizations, pharmaceutical applications, and pharmacokinetic perspective: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00145-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Scientists are constantly looking for the introduction of unique drug delivery systems for the existing drug molecule. Since the skin is one of the primary and essential organs of the human body, it needs successful research development for the delivery of the drug. While the skin is assumed a human body’s multifunctional organ, it has minimal permeability across the stratum corneum (SC). Since this is an influential barrier for the active agent, several carrier platforms to surmount this obstacle have been created. Invasomes are the liposomal vesicles, which incorporate small quantities of ethanol and terpenes or a mixture of terpenes, as potentials for improved penetration of the skin. The rate of penetration of invasomes through the skin is significantly greater than that of liposomes and ethosomes. Invasomes focus on providing a series of benefits namely enhanced drug effectiveness, increased conformity, and ease for patients.
Main body
The present article portrays insights of invasomes which include composition and preparation methods of invasomes. The article gives a brief review of the penetration mechanism, synthesis process, and characterizations of invasomes. The article gives a point by point audit about pharmaceutical applications, viz. anticancer, antihypertensive, anti-acne, vitamin analog, anticholinergic, antioxidant, etc. The pharmacokinetic properties of invasomes have also been described.
Conclusion
The key goal of an invasome-based delivery system is not only to strengthen the efficacy and safety of the drug but also to dramatically increase patient conformity and the therapeutic value to a significant extent. The delivery of drugs via the skin membrane in advanced drug delivery systems is a fascinating fact. Many pharmaceutical studies have shown that plentiful drug molecules are less soluble, have less bioavailability and stability, have less penetration, etc. Therefore, a new form of dosage with exceptional characteristics like invasomes can be created.
Graphical abstract
Collapse
|
5
|
Invasome: A Novel Nanocarrier for Transdermal Drug Delivery. NANOMATERIALS 2020; 10:nano10020341. [PMID: 32079276 PMCID: PMC7075144 DOI: 10.3390/nano10020341] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/28/2023]
Abstract
Invasomes are novel vesicular systems that exhibit improved transdermal penetration compared to conventional liposomes. These vesicles contain phospholipids, ethanol, and terpene in their structures; these components confer suitable transdermal penetration properties to the soft vesicles. The main advantages of these nanovesicles lie in their ability to increase the permeability of the drug into the skin and decrease absorption into the systemic circulation, thus, limiting the activity of various drugs within the skin layer. In this paper, several features of invasomes, including their structure, mechanism of penetration, applications, characterization, and potential advantages in dermal drug delivery, are highlighted. Overall, this review suggests that enhanced transdermal penetration of drugs using invasomes provides an appropriate opportunity for the development of lipid vesicular carriers.
Collapse
|
6
|
Damiani G, Pacifico A, Linder DM, Pigatto PDM, Conic R, Grada A, Bragazzi NL. Nanodermatology-based solutions for psoriasis: State-of-the art and future prospects. Dermatol Ther 2019; 32:e13113. [PMID: 31600849 DOI: 10.1111/dth.13113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022]
Abstract
Nanodermatology is an emerging, multidisciplinary science, arising from the convergence of nanotechnology, pharmacology, physics/biophysics, chemistry/biochemistry, chemical engineering, material science, and clinical medicine. Nanodermatology deals with (a) skin biology, anatomy, and physiology at the nanoscale ("skin nanobiology"), (b) diagnosis performed by means of novel diagnostic devices, assisted by nanobiotechnologies ("nanodiagnosis"), and (c) treatment through innovative therapeutic agents, including phototherapy ("photonanotherapy"/"photonanodermatology") and systemic/topical drug administration ("nanotherapy") at the nanoscale, and drug delivery-such as transdermal or dermal drug delivery (TDDD/DDD)-enhanced and improved by nanostructures and nanodrugs ("nanodrug delivery"). Nanodermatology, as a super-specialized branch of dermatology, is a quite recent specialty: the "Nanodermatology Society" founded by the eminent dermatologist Dr. Adnan Nasir, was established in 2010, with the aim of bringing together different stakeholders, including dermatologists, nanotechnology scientists, policy-makers and regulators, as well as students and medical residents. Psoriasis has a prevalence of 2-3% worldwide and imposes a severe clinical and societal burden. Nanodermatology-based solutions appear promising for the proper treatment and management of psoriasis, assisting and enhancing different steps of the process of health-care delivery: from the diagnosis to the therapeutics, paving the way for a personalized approach, based on the specific dysregulated biomarkers.
Collapse
Affiliation(s)
- Giovanni Damiani
- Young Dermatologists Italian Network (YDIN), Centro Studi GISED, Bergamo, Italy.,Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| | | | | | - Paolo D M Pigatto
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Rosalynn Conic
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| | - Ayman Grada
- Department of Dermatology, Laboratory of Cutaneous Wound Healing, Boston University School of Medicine, Boston, Massachusetts
| | - Nicola L Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Bruzas I, Lum W, Gorunmez Z, Sagle L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst 2019; 143:3990-4008. [PMID: 30059080 DOI: 10.1039/c8an00606g] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become an essential ultrasensitive analytical tool for biomolecular analysis of small molecules, macromolecular proteins, and even cells. SERS enables label-free, direct detection of molecules through their intrinsic Raman fingerprint. In particular, protein and lipid bilayers are dynamic three-dimensional structures that necessitate label-free methods of characterization. Beyond direct detection and quantitation, the structural information contained in SERS spectra also enables deeper biophysical characterization of biomolecules near metallic surfaces. Therefore, SERS offers enormous potential for such systems, although making measurements in a nonperturbative manner that captures the full range of interactions and activity remains a challenge. Many of these challenges have been overcome through advances in SERS substrate development, which have expanded the applications and targets of SERS for direct biomolecular quantitation and biophysical characterization. In this review, we will first discuss different categories of SERS substrates including solution-phase, solid-supported, tip-enhanced Raman spectroscopy (TERS), and single-molecule substrates for biomolecular analysis. We then discuss detection of protein and biological lipid membranes. Lastly, biophysical insights into proteins, lipids and live cells gained through SERS measurements of these systems are reviewed.
Collapse
Affiliation(s)
- Ian Bruzas
- Department of Chemistry, University of Cincinnati, 301 Clifton Court, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
8
|
Umakoshi T, Fukuda S, Iino R, Uchihashi T, Ando T. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies. Biochim Biophys Acta Gen Subj 2019; 1864:129325. [PMID: 30890438 DOI: 10.1016/j.bbagen.2019.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy. METHODS Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever. RESULTS In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated. CONCLUSIONS This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research. GENERAL SIGNIFICANCE We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.
Collapse
Affiliation(s)
- Takayuki Umakoshi
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
9
|
Abstract
Skin hydration is a complex process that influences the physical and mechanical properties of skin. Various technologies have emerged over the years to assess this parameter, with the current standard being electrical probe-based instruments. Nevertheless, their inability to provide detailed information has prompted the use of sophisticated spectroscopic and imaging methodologies, which are capable of in-depth skin analysis that includes structural and composition details. Modern imaging and spectroscopic techniques have transformed skin research in the dermatological and cosmetics disciplines, and are now commonly employed in conjunction with traditional methods for comprehensive assessment of both healthy and pathological skin. This article reviews current techniques employed in measuring skin hydration, and gives an account on their principle of operation and applications in skin-related research.
Collapse
|
10
|
Affiliation(s)
- Lifu Xiao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|