1
|
Saravanan V, Ahammed I, Bhattacharya A, Bhattacharya S. Uncovering allostery and regulation in SORCIN through molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:1812-1825. [PMID: 37098805 DOI: 10.1080/07391102.2023.2202772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Soluble resistance-related calcium-binding protein or Sorcin is an allosteric, calcium-binding Penta-EF hand (PEF) family protein implicated in multi-drug resistant cancers. Sorcin is known to bind chemotherapeutic molecules such as Doxorubicin. This study uses in-silico molecular dynamics simulations to explore the dynamics and allosteric behavior of Sorcin in the context of Ca2+ uptake and Doxorubicin binding. The results show that Ca2+ binding induces large, but reversible conformational changes in the Sorcin structure which manifest as rigid body reorientations that preserve the local secondary structure. A reciprocal allosteric handshake centered around the EF5 hand is found to be key in Sorcin dimer formation and stabilization. Binding of Doxorubicin results in rearrangement of allosteric communities which disrupts long-range allosteric information transfer from the N-terminal domain to the middle lobe. However, this binding does not result in secondary structure destabilization. Sorcin does not appear to have a distinct Ca2+ activated mode of Doxorubicin binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vinnarasi Saravanan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ijas Ahammed
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akash Bhattacharya
- Visiting Assistant Professor of Physics, St. Mary's University, San Antonio, Texas, USA
| | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Brooks CL, MacKerell AD, Post CB, Nilsson L. Biomolecular dynamics in the 21st century. Biochim Biophys Acta Gen Subj 2024; 1868:130534. [PMID: 38065235 PMCID: PMC10842176 DOI: 10.1016/j.bbagen.2023.130534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The relevance of motions in biological macromolecules has been clear since the early structural analyses of proteins by X-ray crystallography. Computer simulations have been applied to provide a deeper understanding of the dynamics of biological macromolecules since 1976, and are now a standard tool in many labs working on the structure and function of biomolecules. In this mini-review we highlight some areas of current interest and active development for simulations, in particular all-atom molecular dynamics simulations.
Collapse
Affiliation(s)
- Charles L Brooks
- University of Michigan, Department of Chemistry, Ann Arbor, MI 48109, USA.
| | | | - Carol B Post
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN 47907-2091, USA.
| | - Lennart Nilsson
- Karolinska Institutet, Department of Biosciences and Nutrition, SE-14183 Huddinge, Sweden.
| |
Collapse
|
3
|
Launay H, Avilan L, Gérard C, Parsiegla G, Receveur-Brechot V, Gontero B, Carriere F. Location of the photosynthetic carbon metabolism in microcompartments and separated phases in microalgal cells. FEBS Lett 2023; 597:2853-2878. [PMID: 37827572 DOI: 10.1002/1873-3468.14754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Carbon acquisition, assimilation and storage in eukaryotic microalgae and cyanobacteria occur in multiple compartments that have been characterised by the location of the enzymes involved in these functions. These compartments can be delimited by bilayer membranes, such as the chloroplast, the lumen, the peroxisome, the mitochondria or monolayer membranes, such as lipid droplets or plastoglobules. They can also originate from liquid-liquid phase separation such as the pyrenoid. Multiple exchanges exist between the intracellular microcompartments, and these are reviewed for the CO2 concentration mechanism, the Calvin-Benson-Bassham cycle, the lipid metabolism and the cellular energetic balance. Progress in microscopy and spectroscopic methods opens new perspectives to characterise the molecular consequences of the location of the proteins involved, including intrinsically disordered proteins.
Collapse
Affiliation(s)
- Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Cassy Gérard
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | | | | | | | | |
Collapse
|
4
|
Szpotkowski K, Wójcik K, Kurzyńska-Kokorniak A. Structural studies of protein-nucleic acid complexes: A brief overview of the selected techniques. Comput Struct Biotechnol J 2023; 21:2858-2872. [PMID: 37216015 PMCID: PMC10195699 DOI: 10.1016/j.csbj.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Protein-nucleic acid complexes are involved in all vital processes, including replication, transcription, translation, regulation of gene expression and cell metabolism. Knowledge of the biological functions and molecular mechanisms beyond the activity of the macromolecular complexes can be determined from their tertiary structures. Undoubtably, performing structural studies of protein-nucleic acid complexes is challenging, mainly because these types of complexes are often unstable. In addition, their individual components may display extremely different surface charges, causing the complexes to precipitate at higher concentrations used in many structural studies. Due to the variety of protein-nucleic acid complexes and their different biophysical properties, no simple and universal guideline exists that helps scientists chose a method to successfully determine the structure of a specific protein-nucleic acid complex. In this review, we provide a summary of the following experimental methods, which can be applied to study the structures of protein-nucleic acid complexes: X-ray and neutron crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryogenic electron microscopy (cryo-EM), atomic force microscopy (AFM), small angle scattering (SAS) methods, circular dichroism (CD) and infrared (IR) spectroscopy. Each method is discussed regarding its historical context, advancements over the past decades and recent years, and weaknesses and strengths. When a single method does not provide satisfactory data on the selected protein-nucleic acid complex, a combination of several methods should be considered as a hybrid approach; thus, specific structural problems can be solved when studying protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Kamil Szpotkowski
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Klaudia Wójcik
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Anna Kurzyńska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
5
|
Bishop AC, Torres-Montalvo G, Kotaru S, Mimun K, Wand AJ. Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing. Nat Commun 2023; 14:1556. [PMID: 36944645 PMCID: PMC10030768 DOI: 10.1038/s41467-023-37219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Assignment of resonances of nuclear magnetic resonance (NMR) spectra to specific atoms within a protein remains a labor-intensive and challenging task. Automation of the assignment process often remains a bottleneck in the exploitation of solution NMR spectroscopy for the study of protein structure-dynamics-function relationships. We present an approach to the assignment of backbone triple resonance spectra of proteins. A Bayesian statistical analysis of predicted and observed chemical shifts is used in conjunction with inter-spin connectivities provided by triple resonance spectroscopy to calculate a pseudo-energy potential that drives a simulated annealing search for the most optimal set of resonance assignments. Termed Bayesian Assisted Assignments by Simulated Annealing (BARASA), a C++ program implementation is tested against systems ranging in size to over 450 amino acids including examples of intrinsically disordered proteins. BARASA is fast, robust, accommodates incomplete and incorrect information, and outperforms current algorithms - especially in cases of sparse data and is sufficiently fast to allow for real-time evaluation during data acquisition.
Collapse
Affiliation(s)
- Anthony C Bishop
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Glorisé Torres-Montalvo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Sravya Kotaru
- Graduate Group in Biochemistry & Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Kyle Mimun
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Graduate Group in Biochemistry & Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
- Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Yamaguchi Y, Yamaguchi T, Kato K. Structural Analysis of Oligosaccharides and Glycoconjugates Using NMR. ADVANCES IN NEUROBIOLOGY 2023; 29:163-184. [PMID: 36255675 DOI: 10.1007/978-3-031-12390-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbohydrate chains play critical roles in cellular recognition and subsequent signal transduction in the nervous system. Furthermore, gangliosides are targets for various amyloidogenic proteins associated with neurodegenerative disorders. To better understand the molecular mechanisms underlying these biological phenomena, atomic views are essential to delineate dynamic biomolecular interactions. Nuclear magnetic resonance (NMR) spectroscopy provides powerful tools for studying structures, dynamics, and interactions of biomolecules at the atomic level. This chapter describes the basics of solution NMR techniques and their applications to the analysis of 3D structures and interactions of glycoconjugates in the nervous system.
Collapse
Affiliation(s)
- Yoshiki Yamaguchi
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Takumi Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan.
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, Okazaki, Japan.
| |
Collapse
|
7
|
Patarroyo ME, Patarroyo MA, Alba MP, Pabon L, Rugeles MT, Aguilar-Jimenez W, Florez L, Bermudez A, Rout AK, Griesinger C, Suarez CF, Aza-Conde J, Reyes C, Avendaño C, Samacá J, Camargo A, Silva Y, Forero M, Gonzalez E. The First Chemically-Synthesised, Highly Immunogenic Anti-SARS-CoV-2 Peptides in DNA Genotyped Aotus Monkeys for Human Use. Front Immunol 2021; 12:724060. [PMID: 34539660 PMCID: PMC8446425 DOI: 10.3389/fimmu.2021.724060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Thirty-five peptides selected from functionally-relevant SARS-CoV-2 spike (S), membrane (M), and envelope (E) proteins were suitably modified for immunising MHC class II (MHCII) DNA-genotyped Aotus monkeys and matched with HLA-DRβ1* molecules for use in humans. This was aimed at producing the first minimal subunit-based, chemically-synthesised, immunogenic molecules (COLSARSPROT) covering several HLA alleles. They were predicted to cover 48.25% of the world’s population for 6 weeks (short-term) and 33.65% for 15 weeks (long-lasting) as they induced very high immunofluorescent antibody (IFA) and ELISA titres against S, M and E parental native peptides, SARS-CoV-2 neutralising antibodies and host cell infection. The same immunological methods that led to identifying new peptides for inclusion in the COLSARSPROT mixture were used for antigenicity studies. Peptides were analysed with serum samples from patients suffering mild or severe SARS-CoV-2 infection, thereby increasing chemically-synthesised peptides’ potential coverage for the world populations up to 62.9%. These peptides’ 3D structural analysis (by 1H-NMR acquired at 600 to 900 MHz) suggested structural-functional immunological association. This first multi-protein, multi-epitope, minimal subunit-based, chemically-synthesised, highly immunogenic peptide mixture highlights such chemical synthesis methodology’s potential for rapidly obtaining very pure, highly reproducible, stable, cheap, easily-modifiable peptides for inducing immune protection against COVID-19, covering a substantial percentage of the human population.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad Santo Tomás, Bogotá, Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Laura Pabon
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - María T Rugeles
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | | | - Lizdany Florez
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Ashok K Rout
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carlos F Suarez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - César Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Jhoan Samacá
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Anny Camargo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Yolanda Silva
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha Forero
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Edgardo Gonzalez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| |
Collapse
|
8
|
Zuo W, Kwok HF. Development of Marine-Derived Compounds for Cancer Therapy. Mar Drugs 2021; 19:md19060342. [PMID: 34203870 PMCID: PMC8232666 DOI: 10.3390/md19060342] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer has always been a threat to human health with its high morbidity and mortality rates. Traditional therapy, including surgery, chemotherapy and radiotherapy, plays a key role in cancer treatment. However, it is not able to prevent tumor recurrence, drug resistance and treatment side effects, which makes it a very attractive challenge to search for new effective and specific anticancer drugs. Nature is a valuable source of multiple pharmaceuticals, and most of the anticancer drugs are natural products or derived from them. Marine-derived compounds, such as nucleotides, proteins, peptides and amides, have also shed light on cancer therapy, and they are receiving a fast-growing interest due to their bioactive properties. Their mechanisms contain anti-angiogenic, anti-proliferative and anti-metastasis activities; cell cycle arrest; and induction of apoptosis. This review provides an overview on the development of marine-derived compounds with anticancer properties, both their applications and mechanisms, and discovered technologies.
Collapse
Affiliation(s)
- Weimin Zuo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao
- Correspondence:
| |
Collapse
|
9
|
Plant Defensins from a Structural Perspective. Int J Mol Sci 2020; 21:ijms21155307. [PMID: 32722628 PMCID: PMC7432377 DOI: 10.3390/ijms21155307] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023] Open
Abstract
Plant defensins form a family of proteins with a broad spectrum of protective activities against fungi, bacteria, and insects. Furthermore, some plant defensins have revealed anticancer activity. In general, plant defensins are non-toxic to plant and mammalian cells, and interest in using them for biotechnological and medicinal purposes is growing. Recent studies provided significant insights into the mechanisms of action of plant defensins. In this review, we focus on structural and dynamics aspects and discuss structure-dynamics-function relations of plant defensins.
Collapse
|
10
|
Meikle TG, Keizer DW, Babon JJ, Drummond CJ, Separovic F, Conn CE, Yao S. Physiochemical Characterization and Stability of Lipidic Cubic Phases by Solution NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6254-6260. [PMID: 32418433 DOI: 10.1021/acs.langmuir.0c00949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipidic inverse bicontinuous cubic phases (LCPs), formed via the spontaneous self-assembly of lipids such as monoolein, have found increasing applications in the stabilization and crystallization of integral membrane proteins for structural characterization using X-ray crystallography. Their use as effective drug release matrices has also been demonstrated. Nuclear magnetic resonance (NMR) spectroscopy, both solution and solid state, has previously been employed for the characterization of LCPs and related systems. Herein, we report a number of novel features of solution NMR for probing the fundamental composition and structural properties of monoolein-based LCPs. These include (1) more complete assignments of both 1H and 13C chemical shifts, (2) direct quantification of hydration level in LCPs using one-dimensional (1D) 1H NMR, and (3) monitoring longer-term stability of LCPs and evaluating alterations introduced into standard LCPs at the submolecular level.
Collapse
Affiliation(s)
- Thomas G Meikle
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - David W Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, VIC 3010, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
- School of Chemistry, The University of Melbourne, VIC 3010, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
11
|
Delhommel F, Gabel F, Sattler M. Current approaches for integrating solution NMR spectroscopy and small-angle scattering to study the structure and dynamics of biomolecular complexes. J Mol Biol 2020; 432:2890-2912. [DOI: 10.1016/j.jmb.2020.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
|
12
|
Meyer A, Dechert S, Dey S, Höbartner C, Bennati M. Measurement of Angstrom to Nanometer Molecular Distances with
19
F Nuclear Spins by EPR/ENDOR Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201908584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas Meyer
- Research Group EPR Spectroscopy Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Sebastian Dechert
- Department of Chemistry Georg-August-University Tammannstr 37077 Göttingen Germany
| | - Surjendu Dey
- Institute of Organic Chemistry Julius-Maximilians-University Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry Julius-Maximilians-University Würzburg Am Hubland 97074 Würzburg Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Department of Chemistry Georg-August-University Tammannstr 37077 Göttingen Germany
| |
Collapse
|
13
|
Meyer A, Dechert S, Dey S, Höbartner C, Bennati M. Measurement of Angstrom to Nanometer Molecular Distances with 19 F Nuclear Spins by EPR/ENDOR Spectroscopy. Angew Chem Int Ed Engl 2020; 59:373-379. [PMID: 31539187 PMCID: PMC6973229 DOI: 10.1002/anie.201908584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Indexed: 12/22/2022]
Abstract
Spectroscopic and biophysical methods for structural determination at atomic resolution are fundamental in studies of biological function. Here we introduce an approach to measure molecular distances in bio-macromolecules using 19 F nuclear spins and nitroxide radicals in combination with high-frequency (94 GHz/3.4 T) electron-nuclear double resonance (ENDOR). The small size and large gyromagnetic ratio of the 19 F label enables to access distances up to about 1.5 nm with an accuracy of 0.1-1 Å. The experiment is not limited by the size of the bio-macromolecule. Performance is illustrated on synthesized fluorinated model compounds as well as spin-labelled RNA duplexes. The results demonstrate that our simple but strategic spin-labelling procedure combined with state-of-the-art spectroscopy accesses a distance range crucial to elucidate active sites of nucleic acids or proteins in the solution state.
Collapse
Affiliation(s)
- Andreas Meyer
- Research Group EPR SpectroscopyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Sebastian Dechert
- Department of ChemistryGeorg-August-UniversityTammannstr37077GöttingenGermany
| | - Surjendu Dey
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Marina Bennati
- Research Group EPR SpectroscopyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
- Department of ChemistryGeorg-August-UniversityTammannstr37077GöttingenGermany
| |
Collapse
|
14
|
Yagi-Utsumi M. NMR Characterization of Conformational Dynamics and Molecular Assemblies of Proteins. Biol Pharm Bull 2019; 42:867-872. [PMID: 31155585 DOI: 10.1248/bpb.b19-00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamic conformational transitions and molecular assemblies are essential properties of proteins, and relevant to their biological and pathological functions. Neurodegenerative diseases are known to be caused by abnormal, toxic assemblies of related proteins, e.g., amyloid β (Aβ) in Alzheimer's disease. Growing evidence indicates that the aggregation of various amyloidogenic proteins, including Aβ, can be highly enhanced at glycolipid membranes, suggesting that dynamic glycolipid-dependent conformational changes of proteins constitute crucial steps for their subsequent pathogenic amyloid fibril formation. It has also been proposed that several proteins, including molecular chaperones, can capture amyloidogenic proteins and thereby suppress their fibrillization. NMR spectroscopy provides a powerful tool for characterizing the conformational dynamics and intermolecular interactions of proteins, as well as for exploring transiently formed weak interactions among proteins in solution with various biomolecules, such as glycolipids. Our research group therefore attempted to elucidate the structural basis of protein-glycolipid and protein-protein interactions that either promote or suppress molecular assemblies of amyloidogenic proteins, using both solution and solid-state NMR methods in conjunction with other biophysical techniques. Our findings provide structural views of molecular processes involving amyloidogenic proteins of clinical and pathological interest and offer clues for the development of drugs to prevent and treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Institute for Molecular Science, National Institutes of National Sciences.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of National Sciences.,Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
15
|
Ueda T, Kofuku Y, Okude J, Imai S, Shiraishi Y, Shimada I. Function-related conformational dynamics of G protein-coupled receptors revealed by NMR. Biophys Rev 2019; 11:409-418. [PMID: 31102199 PMCID: PMC6557943 DOI: 10.1007/s12551-019-00539-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/26/2019] [Indexed: 11/26/2022] Open
Abstract
G protein-coupled receptors (GPCRs) function as receptors for various neurotransmitters, hormones, cytokines, and metabolites. GPCR ligands impart differing degrees of signaling in the G protein and arrestin pathways, in phenomena called biased signaling, and each ligand for a given GPCR has a characteristic level of ability to activate or deactivate its target, which is referred to as its efficacy. The ligand efficacies and biased signaling of GPCRs remarkably affect the therapeutic properties of the ligands. However, these features of GPCRs can only be partially understood from the crystallography data, although numerous GPCR structures have been solved. NMR analyses have revealed that GPCRs have multiple interconverting substates, exchanging on various timescales, and that the exchange rates are related to the ligand efficacies and biased signaling. In addition, NMR analyses of GPCRs in the lipid bilayer environment of rHDLs revealed that the exchange rates are modulated by the lipid bilayer environment, highlighting the importance of the function-related dynamics in the lipid bilayer. In this review, we will describe several solution NMR studies that have clarified the conformational dynamics related to the ligand efficacy and biased signaling of GPCRs.
Collapse
Affiliation(s)
- Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Junya Okude
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yutaro Shiraishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
16
|
Tanaka T, Ikeya T, Kamoshida H, Suemoto Y, Mishima M, Shirakawa M, Güntert P, Ito Y. High‐Resolution Protein 3D Structure Determination in Living Eukaryotic Cells. Angew Chem Int Ed Engl 2019; 58:7284-7288. [DOI: 10.1002/anie.201900840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Takashi Tanaka
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Teppei Ikeya
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Hajime Kamoshida
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Yusuke Suemoto
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Masaki Mishima
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Masahiro Shirakawa
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Peter Güntert
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe University Frankfurt 60438 Frankfurt am Main Germany
- Laboratory of Physical ChemistryETH Zürich 8093 Zürich Switzerland
| | - Yutaka Ito
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
17
|
Ikeya T, Güntert P, Ito Y. Protein Structure Determination in Living Cells. Int J Mol Sci 2019; 20:E2442. [PMID: 31108891 PMCID: PMC6567067 DOI: 10.3390/ijms20102442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/16/2022] Open
Abstract
To date, in-cell NMR has elucidated various aspects of protein behaviour by associating structures in physiological conditions. Meanwhile, current studies of this method mostly have deduced protein states in cells exclusively based on 'indirect' structural information from peak patterns and chemical shift changes but not 'direct' data explicitly including interatomic distances and angles. To fully understand the functions and physical properties of proteins inside cells, it is indispensable to obtain explicit structural data or determine three-dimensional (3D) structures of proteins in cells. Whilst the short lifetime of cells in a sample tube, low sample concentrations, and massive background signals make it difficult to observe NMR signals from proteins inside cells, several methodological advances help to overcome the problems. Paramagnetic effects have an outstanding potential for in-cell structural analysis. The combination of a limited amount of experimental in-cell data with software for ab initio protein structure prediction opens an avenue to visualise 3D protein structures inside cells. Conventional nuclear Overhauser effect spectroscopy (NOESY)-based structure determination is advantageous to elucidate the conformations of side-chain atoms of proteins as well as global structures. In this article, we review current progress for the structure analysis of proteins in living systems and discuss the feasibility of its future works.
Collapse
Affiliation(s)
- Teppei Ikeya
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan.
| | - Peter Güntert
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan.
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; .
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
18
|
Tanaka T, Ikeya T, Kamoshida H, Suemoto Y, Mishima M, Shirakawa M, Güntert P, Ito Y. High‐Resolution Protein 3D Structure Determination in Living Eukaryotic Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takashi Tanaka
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Teppei Ikeya
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Hajime Kamoshida
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Yusuke Suemoto
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Masaki Mishima
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Masahiro Shirakawa
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Peter Güntert
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe University Frankfurt 60438 Frankfurt am Main Germany
- Laboratory of Physical ChemistryETH Zürich 8093 Zürich Switzerland
| | - Yutaka Ito
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
19
|
Trnka MJ, Pellarin R, Robinson PJ. Role of integrative structural biology in understanding transcriptional initiation. Methods 2019; 159-160:4-22. [PMID: 30890443 PMCID: PMC6617507 DOI: 10.1016/j.ymeth.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Integrative structural biology combines data from multiple experimental techniques to generate complete structural models for the biological system of interest. Most commonly cross-linking data sets are employed alongside electron microscopy maps, crystallographic structures, and other data by computational methods that integrate all known information and produce structural models at a level of resolution that is appropriate to the input data. The precision of these modelled solutions is limited by the sparseness of cross-links observed, the length of the cross-linking reagent, the ambiguity arisen from the presence of multiple copies of the same protein, and structural and compositional heterogeneity. In recent years integrative structural biology approaches have been successfully applied to a range of RNA polymerase II complexes. Here we will provide a general background to integrative structural biology, a description of how it should be practically implemented and how it has furthered our understanding of the biology of large transcriptional assemblies. Finally, in the context of recent breakthroughs in microscope and direct electron detector technology, where increasingly EM is capable of resolving structural features directly without the aid of other structural techniques, we will discuss the future role of integrative structural techniques.
Collapse
Affiliation(s)
- Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France
| | - Philip J Robinson
- Department of Biological Sciences, Birkbeck University of London, Institute of Structural and Molecular Biology, London, United Kingdom.
| |
Collapse
|
20
|
Carvalho J, Alves S, Castro MMCA, Geraldes CFGC, Queiroz JA, Fonseca CP, Cruz C. Development of a bioreactor system for cytotoxic evaluation of pharmacological compounds in living cells using NMR spectroscopy. J Pharmacol Toxicol Methods 2018; 95:70-78. [PMID: 30502390 DOI: 10.1016/j.vascn.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 11/21/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The evaluation of drug's cytotoxicity is a crucial step in the development of new pharmacological compounds. 31P NMR can be a tool for toxicological screening, as it enables the study of drugs' cytotoxicity and their effect on cell energy metabolism in a real-time, in a non- invasive and non-destructive way. This paper details a step-by-step protocol to implement a bioreactor system able to maintain cell viability during NMR acquisitions, at high cell densities and for several hours, enabling toxicological evaluation of pharmacological compounds in living cells. METHOD HeLa cells were immobilized in agarose gel threads and continuously perfused with oxygenated medium inside a 5 mm NMR tube. Signals corresponding to intracellular high-energy phosphorous compounds were continuously monitored by 31P NMR to assess cell energy levels, intracellular pH and intracellular free Mg2+ concentrations ([Mg2+]f) under control and in the presence of two different cytotoxic drugs, calix-NH2 or 5-fluorouracil (5-FU). RESULTS The bioreactor system was effective in maintaining cell energy levels as well as intracellular pH and [Mg2+]f along time, with a good 31P NMR signal to noise ratio. Calix-NH2 and 5-FU decreased cell energy levels by 35% and 39%, respectively, with a negligible increase in intracellular [Mg2+]f, and without affecting intracellular pH. DISCUSSION The immobilization and perfusion system here detailed, along with 31P NMR, is useful in toxicological evaluation of new pharmacological compounds, enabling the continuous assessment of drugs' effect on energy levels, intracellular pH and [Mg2+]f in intact cells, for several hours without compromising cell viability.
Collapse
Affiliation(s)
- Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Sara Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - M Margarida C A Castro
- Department of Life Sciences, Faculty of Science and Technology, Coimbra Chemistry Center - CQC, University of Coimbra, Coimbra, Portugal
| | - Carlos F G C Geraldes
- Department of Life Sciences, Faculty of Science and Technology, Coimbra Chemistry Center - CQC, University of Coimbra, Coimbra, Portugal
| | - João A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Carla P Fonseca
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| |
Collapse
|
21
|
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov 2018; 18:59-82. [PMID: 30410121 DOI: 10.1038/nrd.2018.180] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 826 G protein-coupled receptors (GPCRs) in the human proteome regulate key physiological processes and thus have long been attractive drug targets. With the crystal structures of more than 50 different human GPCRs determined over the past decade, an initial platform for structure-based rational design has been established for drugs that target GPCRs, which is currently being augmented with cryo-electron microscopy (cryo-EM) structures of higher-order GPCR complexes. Nuclear magnetic resonance (NMR) spectroscopy in solution is one of the key approaches for expanding this platform with dynamic features, which can be accessed at physiological temperature and with minimal modification of the wild-type GPCR covalent structures. Here, we review strategies for the use of advanced biochemistry and NMR techniques with GPCRs, survey projects in which crystal or cryo-EM structures have been complemented with NMR investigations and discuss the impact of this integrative approach on GPCR biology and drug discovery.
Collapse
|
22
|
Analysis of Artifacts Caused by Pulse Imperfections in CPMG Pulse Trains in NMR Relaxation Dispersion Experiments. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4030033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nuclear magnetic resonance relaxation dispersion (rd) experiments provide kinetics and thermodynamics information of molecules undergoing conformational exchange. Rd experiments often use a Carr-Purcell-Meiboom-Gill (CPMG) pulse train equally separated by a spin-state selective inversion element (U-element). Even with measurement parameters carefully set, however, parts of 1H–15N correlations sometimes exhibit large artifacts that may hamper the subsequent analyses. We analyzed such artifacts with a combination of NMR measurements and simulation. We found that particularly the lowest CPMG frequency (νcpmg) can also introduce large artifacts into amide 1H–15N and aromatic 1H–13C correlations whose 15N/13C resonances are very close to the carrier frequencies. The simulation showed that the off-resonance effects and miscalibration of the CPMG π pulses generate artifact maxima at resonance offsets of even and odd multiples of νcpmg, respectively. We demonstrate that a method once introduced into the rd experiments for molecules having residual dipolar coupling significantly reduces artifacts. In the method the 15N/13C π pulse phase in the U-element is chosen between x and y. We show that the correctly adjusted sequence is tolerant to miscalibration of the CPMG π pulse power as large as ±10% for most amide 15N and aromatic 13C resonances of proteins.
Collapse
|
23
|
Strebitzer E, Nußbaumer F, Kremser J, Tollinger M, Kreutz C. Studying sparsely populated conformational states in RNA combining chemical synthesis and solution NMR spectroscopy. Methods 2018; 148:39-47. [PMID: 29753787 DOI: 10.1016/j.ymeth.2018.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Using chemical synthesis and solution NMR spectroscopy, RNA structural ensembles including a major ground state and minor populated excited states can be studied at atomic resolution. In this work, atom-specific 13C labeled RNA building blocks - a 5-13C-uridine and a 2,8-13C2-adenosine building block - are used to introduce isolated 13C-1H-spin topologies into a target RNA to probe such structural ensembles via NMR spectroscopy. First, the 5-13C-uridine 2'-O-TBDMS-phosphoramidite building block was introduced into a 21 nucleotide (nt) tP5c stem construct of the tP5abc subdomain of the Tetrahymena group I ribozyme. Then, the 2,8-13C2-adenosine 2'-O-TBDMS-phosphoramidite building block was incorporated into a 9 kDa and a 15 kD construct derived from the epsilon (ε) RNA element of the duck Hepatitis B virus. The 2,8-13C2-adenosine resonances of the 9 kDa 28 nt sequence could be mapped to the full-length 53 nt construct. The isolated NMR active nuclei pairs were used to probe for low populated excited states (<10%) via 13C-Carr-Purcell-Meiboom-Gill (CPMG)-relaxation dispersion NMR spectroscopy. The 13C-CPMG relaxation dispersion experiment recapitulated a secondary structure switching event in the P5c hairpin of the group I intron construct previously revealed by 15N relaxation dispersion experiments. In the ε-HBV RNA an unfolding event occurring on the millisecond time scale was found in the upper stem in-line with earlier observations. This unpaired conformational state is presumed to be important for the binding of the epsilon reverse transcriptase (RT) enzyme. Thus, a full description of an RNA's folding landscape helps to obtain a deeper understanding of its function, as these high energy conformational states often represent functionally important intermediates involved in (un)folding or ribozyme catalysis.
Collapse
Affiliation(s)
- Elisabeth Strebitzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
24
|
Yagi H, Yanaka S, Kato K. Structure and Dynamics of Immunoglobulin G Glycoproteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:219-235. [PMID: 30484251 DOI: 10.1007/978-981-13-2158-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immunoglobulin G (IgG) is a major serum glycoprotein that exerts the role of antibody in the immune system. This multifunctional glycoprotein couples antigen recognition with a variety of effector functions promoted via interactions with various IgG-binding proteins. Given its versatile functionality, IgG has recently been used for therapeutic interventions. Evidence indicates that the carbohydrate moieties of IgG glycoproteins critically affect their antibody functions, particularly the effector functions mediated by the interactions with Fcγ receptors (FcγRs). N-glycans at specific positions of FcγR also contribute both positively and negatively to the interactions with IgG. The integration of multilateral biophysical approaches, including X-ray crystallography, nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, has provided structural insights into the mechanisms underlying the glycofunctions of this interacting system. The N-glycans of IgG and FcγR mediate their interactions by either strengthening or weakening the affinity on the basis of their glycoforms. Moreover, the N-glycosylation of IgG-Fc is a prerequisite to maintain the integrity of the quaternary structure of the sites interacting with the effector molecules and can also control functionally relevant local conformations. The biopharmaceutical significance of these glycan functions is discussed from a structural point of view.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|