1
|
Jegede OO, Fajana HO, Adedokun A, Najafian K, Lingling J, Stavness I, Siciliano SD. Integument colour change: Tracking delayed growth of Oppia nitens as a sub-lethal indicator of soil toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122772. [PMID: 37858700 DOI: 10.1016/j.envpol.2023.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Growth is an important toxicity end-point in ecotoxicology but is rarely used in soil ecotoxicological studies. Here, we assessed the growth change of Oppia nitens when exposed to reference and heavy metal toxicants. To assess mite growth, we developed an image analysis methodology to measure colour spectrum changes of the mite integument at the final developmental stage, as a proxy for growth change. We linked the values of red, green, blue, key-black, and light colour of mites to different growth stages. Based on this concept, we assessed the growth change of mites exposed to cadmium, copper, zinc, lead, boric acid, or phenanthrene at sublethal concentrations in LUFA 2.2 soil for 14 days. Sublethal effects were detected after 7 days of exposure. The growth of O. nitens was more sensitive than survival and reproduction when exposed to copper (EC50growth = 1360 mg/kg compared to EC50reproduction = 2896 mg/kg). Mite growth sensitivity was within the same order of magnitude to mite reproduction when exposed to zinc (EC50growth = 1785; EC50reproduction = 1562 mg/kg). At least 25% of sublethal effects of boric acid and phenanthrene were detected in the mites but growth was not impacted when O. nitens were exposed to lead. Consistent with previous studies, cadmium was the most toxic metal to O. nitens. The mite growth pattern was comparable to mite survival and reproduction from previous studies. Mite growth is a sensitive toxicity endpoint, ecologically relevant, fast, easy to detect, and can be assessed in a non-invasive fashion, thereby complimenting existing O. nitens testing protocols.
Collapse
Affiliation(s)
- Olukayode O Jegede
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada; Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708, PB Wageningen, the Netherlands.
| | - Hamzat O Fajana
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Adedamola Adedokun
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Keyhan Najafian
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Jin Lingling
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Ian Stavness
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| |
Collapse
|
2
|
Abstract
Iron is an essential micronutrient for all types of organisms; however, iron has chemical properties that can be harmful to cells. Because iron is both necessary and potentially damaging, insects have homeostatic processes that control the redox state, quantity, and location of iron in the body. These processes include uptake of iron from the diet, intracellular and extracellular iron transport, and iron storage. Early studies of iron-binding proteins in insects suggested that insects and mammals have surprisingly different mechanisms of iron homeostasis, including different primary mechanisms for exporting iron from cells and for transporting iron from one cell to another, and subsequent studies have continued to support this view. This review summarizes current knowledge about iron homeostasis in insects, compares insect and mammalian iron homeostasis mechanisms, and calls attention to key remaining knowledge gaps.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA;
| |
Collapse
|
3
|
Brun A, Smokvarska M, Wei L, Chay S, Curie C, Mari S. MCO1 and MCO3, two putative ascorbate oxidases with ferroxidase activity, new candidates for the regulation of apoplastic iron excess in Arabidopsis. PLANT DIRECT 2022; 6:e463. [PMID: 36405511 PMCID: PMC9669615 DOI: 10.1002/pld3.463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/02/2023]
Abstract
Iron (Fe) is an essential metal ion that plays a major role as a cofactor in many biological processes. The balance between the Fe2+ and Fe3+ forms is central for cellular Fe homeostasis because it regulates its transport, utilization, and storage. Contrary to Fe3+ reduction that is crucial for Fe uptake by roots in deficiency conditions, ferroxidation has been much less studied. In this work, we have focused on the molecular characterization of two members of the MultiCopper Oxidase family (MCO1 and MCO3) that share high identity with the Saccharomyces cerevisiae ferroxidase Fet3. The heterologous expression of MCO1 and MCO3 restored the growth of the yeast fet3fet4 mutant, impaired in high and low affinity Fe uptake and otherwise unable to grow in Fe deficient media, suggesting that MCO1 and MCO3 were functional ferroxidases. The ferroxidase enzymatic activity of MCO3 was further confirmed by the measurement of Fe2+-dependent oxygen consumption, because ferroxidases use oxygen as electron acceptor to generate water molecules. In planta, the expression of MCO1 and MCO3 was induced by increasing Fe concentrations in the medium. Promoter-GUS reporter lines showed that MCO1 and MCO3 were mostly expressed in shoots and histochemical analyses further showed that both promoters were highly active in mesophyll cells. Transient expression of MCO1-RFP and MCO3-RFP in tobacco leaves revealed that both proteins were localized in the apoplast. Moreover, cell plasmolysis experiments showed that MCO1 remained closely associated to the plasma membrane whereas MCO3 filled the entire apoplast compartment. Although the four knock out mutant lines isolated (mco1-1, mco1-2, mco3-1, and mco3-2) did not display any macroscopic phenotype, histochemical staining of Fe with the Perls/DAB procedure revealed that mesophyll cells of all four mutants overaccumulated Fe inside the cells in Fe-rich structures in the chloroplasts, compared with wild-type. These results suggested that the regulation of Fe transport in mesophyll cells had been disturbed in the mutants, in both standard condition and Fe excess. Taken together, our findings strongly suggest that MCO1 and MCO3 participate in the control of Fe transport in the mesophyll cells, most likely by displacing the Fe2+/Fe3+ balance toward Fe3+ in the apoplast and therefore limiting the accumulation of Fe2+, which is more mobile and prone to be transported across the plasma membrane.
Collapse
Affiliation(s)
- Alexis Brun
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Marija Smokvarska
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Lili Wei
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Sandrine Chay
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Catherine Curie
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| | - Stéphane Mari
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut AgroMontpellierFrance
| |
Collapse
|
4
|
Wu S, Yin S, Zhou B. Molecular physiology of iron trafficking in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100888. [PMID: 35158107 DOI: 10.1016/j.cois.2022.100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Iron homeostasis in insects is less-well understood comparatively to mammals. The classic model organism Drosophila melanogaster has been recently employed to explore how iron is trafficked between and within cells. An outline for iron absorption, systemic delivery, and efflux is thus beginning to emerge. The proteins Malvolio, ZIP13, mitoferrin, ferritin, transferrin, and IRP-1A are key players in these processes. While many features are shared with those in mammals, some physiological differences may also exist. Notable remaining questions include the existence and identification of functional transferrin and ferritin receptors, and of an iron exporter like ferroportin, how systemic iron homeostasis is controlled, and the roles of different tissues in regulating iron physiology. By focusing on aspects of iron trafficking, this review updates on presently known complexities of iron homeostasis in Drosophila.
Collapse
Affiliation(s)
- Shitao Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Yin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Geiser DL, Li W, Pham DQD, Wysocki VH, Winzerling JJ. Shotgun and TMT-Labeled Proteomic Analysis of the Ovarian Proteins of an Insect Vector, Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 35303100 PMCID: PMC8932505 DOI: 10.1093/jisesa/ieac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 06/14/2023]
Abstract
Aedes aegypti [Linnaeus in Hasselquist; yellow fever mosquito] transmits several viruses that infect millions of people each year, including Zika, dengue, yellow fever, chikungunya, and West Nile. Pathogen transmission occurs during blood feeding. Only the females blood feed as they require a bloodmeal for oogenesis; in the bloodmeal, holo-transferrin and hemoglobin provide the females with a high iron load. We are interested in the effects of the bloodmeal on the expression of iron-associated proteins in oogenesis. Previous data showed that following digestion of a bloodmeal, ovarian iron concentrations doubles by 72 hr. We have used shotgun proteomics to identify proteins expressed in Ae. aegypti ovaries at two oogenesis developmental stages following blood feeding, and tandem mass tag-labeling proteomics to quantify proteins expressed at one stage following feeding of a controlled iron diet. Our findings provide the first report of mosquito ovarian protein expression in early and late oogenesis. We identify proteins differentially expressed in the two oogenesis development stages. We establish that metal-associated proteins play an important role in Ae. aegypti oogenesis and we identify new candidate proteins that might be involved in mosquito iron metabolism. Finally, this work identified a unique second ferritin light chain subunit, the first reported in any species. The shotgun proteomic data are available via ProteomeXchange with identifier PXD005893, while the tandem mass tag-labeled proteomic data are available with identifier PXD028242.
Collapse
Affiliation(s)
- Dawn L Geiser
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Wenzhou Li
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Amgen Incorporation, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Daphne Q-D Pham
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53141, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Joy J Winzerling
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Slobodian MR, Petahtegoose JD, Wallis AL, Levesque DC, Merritt TJS. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. TOXICS 2021; 9:269. [PMID: 34678965 PMCID: PMC8540122 DOI: 10.3390/toxics9100269] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals if they are not. While essential metal ions have been well studied in many eukaryotic species, less is known about the effects of non-essential metals, even though essential and non-essential metals are often chemically similar and can bind to the same biological ligands. Insects are often exposed to a variety of contaminated environments and associated essential and non-essential metal toxicity, but many questions regarding their response to toxicity remain unanswered. Drosophila melanogaster is an excellent insect model species in which to study the effects of toxic metal due to the extensive experimental and genetic resources available for this species. Here, we review the current understanding of the impact of a suite of essential and non-essential metals (Cu, Fe, Zn, Hg, Pb, Cd, and Ni) on the D. melanogaster metal response system, highlighting the knowledge gaps between essential and non-essential metals in D. melanogaster. This review emphasizes the need to use multiple metals, multiple genetic backgrounds, and both sexes in future studies to help guide future research towards better understanding the effects of metal contamination in general.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. S. Merritt
- Faculty of Science and Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada; (M.R.S.); (J.D.P.); (A.L.W.); (D.C.L.)
| |
Collapse
|
7
|
Missirlis F. Regulation and biological function of metal ions in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2021; 47:18-24. [PMID: 33581350 DOI: 10.1016/j.cois.2021.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
A conceptual framework is offered for critically approaching the formidable ability of insects to segregate metal ions to their multiple destinations in proteins and subcellular compartments. New research in Drosophila melanogaster suggests that nuclear iron regulatory proteins and oxidative stress transcription factors mediate metal-responsive gene expression. Identification of a zinc-regulated chaperone in the endoplasmic reticulum potentially explains membrane protein trafficking defects observed in zinc transporter mutants. Compartmentalized zinc is utilized in fertilization, embryogenesis and for the activation of zinc-finger transcription factors - the latter function demonstrated during muscle development, while dietary zinc is sensed through gating of a chloride channel. Another emerging theme in cellular metal homeostasis is that transporters and related proteins meet at endoplasmic reticulum-mitochondria associated membranes with physiologically relevant consequences during aging.
Collapse
Affiliation(s)
- Fanis Missirlis
- Department of Physiology, Biophysics & Neuroscience, Cinvestav, Mexico.
| |
Collapse
|
8
|
Maya-Maldonado K, Cardoso-Jaime V, González-Olvera G, Osorio B, Recio-Tótoro B, Manrique-Saide P, Rodríguez-Sánchez IP, Lanz-Mendoza H, Missirlis F, Hernández-Hernández FDLC. Mosquito metallomics reveal copper and iron as critical factors for Plasmodium infection. PLoS Negl Trop Dis 2021; 15:e0009509. [PMID: 34161336 PMCID: PMC8221525 DOI: 10.1371/journal.pntd.0009509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Iron and copper chelation restricts Plasmodium growth in vitro and in mammalian hosts. The parasite alters metal homeostasis in red blood cells to its favor, for example metabolizing hemoglobin to hemozoin. Metal interactions with the mosquito have not, however, been studied. Here, we describe the metallomes of Anopheles albimanus and Aedes aegypti throughout their life cycle and following a blood meal. Consistent with previous reports, we found evidence of maternal iron deposition in embryos of Ae. aegypti, but less so in An. albimanus. Sodium, potassium, iron, and copper are present at higher concentrations during larval developmental stages. Two An. albimanus phenotypes that differ in their susceptibility to Plasmodium berghei infection were studied. The susceptible white stripe (ws) phenotype was named after a dorsal white stripe apparent during larval stages 3, 4, and pupae. During larval stage 3, ws larvae accumulate more iron and copper than the resistant brown stripe (bs) phenotype counterparts. A similar increase in copper and iron accumulation was also observed in the susceptible ws, but not in the resistant bs phenotype following P. berghei infection. Feeding ws mosquitoes with extracellular iron and copper chelators before and after receiving Plasmodium-infected blood protected from infection and simultaneously affected follicular development in the case of iron chelation. Unexpectedly, the application of the iron chelator to the bs strain reverted resistance to infection. Besides a drop in iron, iron-chelated bs mosquitoes experienced a concomitant loss of copper. Thus, the effect of metal chelation on P. berghei infectivity was strain-specific.
Collapse
Affiliation(s)
- Krystal Maya-Maldonado
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Ciudad de México, México
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Victor Cardoso-Jaime
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav, Ciudad de México, México
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Gabriela González-Olvera
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Beatriz Osorio
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Ciudad de México, México
| | - Benito Recio-Tótoro
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Iram Pablo Rodríguez-Sánchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Ciudad de México, México
| | | |
Collapse
|
9
|
Hu Y, Xiao T, Wang Q, Liang B, Zhang A. Effects of Essential Trace Elements and Oxidative Stress on Endemic Arsenism Caused by Coal Burning in PR China. Biol Trace Elem Res 2020; 198:25-36. [PMID: 31960276 DOI: 10.1007/s12011-020-02047-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Few studies have investigated the association between essential trace elements and oxidative stress in environmental media and populations with endemic arsenism caused by coal burning. Element contents and oxidative stress indicators were measured. Moreover, the expression of genes related to the nuclear factor E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)-antioxidant response element (ARE) signaling pathway and Nrf2-ARE binding ability is detected. The results show that the contents of arsenic, copper, iron, and chromium were increased in environmental media from the arsenism area compared with the control area; however, the selenium content decreased. The arsenic, iron, chromium, and copper contents and the copper/zinc ratio were also increased in the arsenic-exposed population; however, the selenium content decreased. The results also show that the concentrations of arsenic, iron, and chromium and the copper/zinc ratio increased gradually with the severity of arsenism. However, selenium concentrations decreased gradually with the severity of arsenism. The contents of malondialdehyde, 8-hydroxyldeoxyguanosine, and protein carbonyl in plasma increased, while the levels of sulfhydryl, thioredoxin reductase (TrxR), glutathione peroxidase (Gpx), and superoxide dismutase 1 (SOD1) decreased. The mRNA expression of Keap1 and TrxR1 decreased in the blood, while the mRNA expression of Nrf2, GPx1, and SOD1 increased. Moreover, the Nrf2 protein content and Nrf2-ARE binding ability increased, and the Keap1 protein content decreased. In conclusion, our data suggest that the increased arsenic content in environmental media and populations was accompanied by abnormal levels of essential trace elements. Insufficient selenium intake, copper, and chromium overload and a high copper/zinc ratio might be some of the causes of arsenism, which might be related to the Nrf2/Keap1-ARE signaling pathway.
Collapse
Affiliation(s)
- Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Tingting Xiao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qi Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Bing Liang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
10
|
Vásquez-Procopio J, Rajpurohit S, Missirlis F. Cuticle darkening correlates with increased body copper content in Drosophila melanogaster. Biometals 2020; 33:293-303. [PMID: 33026606 PMCID: PMC7538679 DOI: 10.1007/s10534-020-00245-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Insect epidermal cells secrete a cuticle that serves as an exoskeleton providing mechanical rigidity to each individual, but also insulation, camouflage or communication within their environment. Cuticle deposition and hardening (sclerotization) and pigment synthesis are parallel processes requiring tyrosinase activity, which depends on an unidentified copper-dependent enzyme component in Drosophila melanogaster. We determined the metallomes of fly strains selected for lighter or darker cuticles in a laboratory evolution experiment, asking whether any specific element changed in abundance in concert with pigment deposition. The results showed a correlation between total iron content and strength of pigmentation, which was further corroborated by ferritin iron quantification. To ask if the observed increase in iron body content along with increased pigment deposition could be generalizable, we crossed yellow and ebony alleles causing light and dark pigmentation, respectively, into similar genetic backgrounds and measured their metallomes. Iron remained unaffected in the various mutants providing no support for a causative link between pigmentation and iron content. In contrast, the combined analysis of both experiments suggested instead a correlation between pigment deposition and total copper body content, possibly due to increased demand for epidermal tyrosinase activity.
Collapse
Affiliation(s)
- Johana Vásquez-Procopio
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico
| | - Subhash Rajpurohit
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, India
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico.
| |
Collapse
|
11
|
Xiao G, Liu ZH, Zhao M, Wang HL, Zhou B. Transferrin 1 Functions in Iron Trafficking and Genetically Interacts with Ferritin in Drosophila melanogaster. Cell Rep 2020; 26:748-758.e5. [PMID: 30650364 DOI: 10.1016/j.celrep.2018.12.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
Iron metabolism is an essential process that when dysregulated causes disease. Mammalian serum transferrin (TF) plays a primary role in delivering iron to cells. To improve our understanding of the conservation of iron metabolism between species, we investigate here the function of the TF homolog in Drosophila melanogaster, transferrin 1 (Tsf1). Tsf1 knockdown results in iron accumulation in the gut and iron deficiency in the fat body (which is analogous to the mammalian liver). Fat body-derived Tsf1 localizes to the gut surface, suggesting that Tsf1 functions in trafficking iron between the gut and the fat body, similar to TF in mammals. Moreover, Tsf1 knockdown strongly suppresses the phenotypic effects of ferritin (Fer1HCH) RNAi, an established iron trafficker in Drosophila. We propose that Tsf1 and ferritin compete for iron in the Drosophila intestine and demonstrate the value of using Drosophila for investigating iron trafficking and the evolution of systemic iron regulation.
Collapse
Affiliation(s)
- Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Mengran Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Liu ZH, Shang J, Yan L, Wei T, Xiang L, Wang HL, Cheng J, Xiao G. Oxidative stress caused by lead (Pb) induces iron deficiency in Drosophila melanogaster. CHEMOSPHERE 2020; 243:125428. [PMID: 31995880 DOI: 10.1016/j.chemosphere.2019.125428] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Toxic elements exposure disturbs the homeostasis of essential elements in organisms, but the mechanism remains elusive. In this study, we demonstrated that Drosophila melanogaster exposed to Lead (Pb, a pervasive environmental threat to human health) exhibited various health defects, including retarded development, decreased survival rate, impaired mobility and reduced egg production. These phenotypes could be significantly modulated by either intervention of dietary iron levels or altering expression of genes involved in iron metabolism. Further study revealed that Pb exposure leads to systemic iron deficiency. Strikingly, reactive oxygen species (ROS) clearance significantly increased iron uptake by restoring the expression of iron metabolism genes in the midgut and subsequently attenuated Pb toxicity. This study highlights the role of ROS in Pb induced iron dyshomeostasis and provides unique insights into understanding the mechanism of Pb toxicity and suggests ideal ways to attenuate Pb toxicity by iron supplementation therapy or ROS clearance.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jin Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Beijing, 100191, China.
| | - Tian Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Ling Xiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jigui Cheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
13
|
Zhao M, Zhou B. A distinctive sequence motif in the fourth transmembrane domain confers ZIP13 iron function in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118607. [PMID: 31733261 DOI: 10.1016/j.bbamcr.2019.118607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/17/2023]
Abstract
The zinc/iron permease (ZIP/SLC39A) family plays an important role in metal ion transport and is essential for diverse physiological processes. Members of the ZIP family function primarily in the influx of transition metal ions zinc and iron, into cytoplasm from extracellular space or intracellular organelles. The molecular determinants defining metal ion selectivity among ZIP family members remain unclear. Specifically, we reported before that the Drosophila ZIP family member ZIP13 (dZIP13), functions as an iron exporter and was responsible for pumping iron into the secretory pathway. ZIP13 protein is unique in that it differs from the other LIV-1 subfamily members at transmembrane domain IV (TM4), wherein relative positions of the conserved H and D residues in the HNXXD sequence motif are switched, generating a DNXXH motif. In this study, we undertook an in vivo approach to explore the significance of this D/H exchange. Comparative functional analysis of mutants revealed that the relative positions of D and H are critical for the physiological roles of dZIP13 and its close homologue dZIP7. Swapping D/H position of this DNXXH sequence in dZIP13 resulted in loss of iron activity; normal dZIP13 could not complement dZIP7 loss, but swapping the two relative amino acid positions D and H in dZIP13 was sufficient to make it functionally analogous to its close homologue dZIP7. This work provides the first in vivo functional analysis of a structural motif required to differentiate different transporting functions of ZIPs.
Collapse
Affiliation(s)
- Mengran Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Matsumoto Y, Hattori M. Characterization of multicopper oxidase genes in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), with focus on salivary gland-specific genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21602. [PMID: 31328822 DOI: 10.1002/arch.21602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multicopper oxidase (MCO) enzymes are present ubiquitously and act on diverse substrates. Recently, the presence of multiple MCO genes has been described in many insects. Based on sialotranscriptome data, we identified and comprehensively characterized six MCO genes: NcLac1S, 1G, and 2-5 in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). NcLac1S and NcLac1G belong to the MCO1 ortholog of other insects. NcLac2 forms a clade with MCO2s involved in the sclerotization and pigmentation of the cuticle. NcLac3 and NcLac4 form a clade with NlMCO3 -5 of the hemipteran Nilaparvata luges. NcLac5 forms a clade with MCORPs (MCO-related proteins) that lack amino acid residues normally highly conserved in copper-coordinated MCOs. NcLac1S and NcLac3 were specifically expressed in the salivary glands; whereas NcLac5 was primarily expressed in the salivary glands. Only NcLac3 protein is considered to have laccase activity in the salivary glands and salivary sheaths ejected by the insect. NcLac1G expression was relatively high in the testis. NcLac2 and NcLac4 were specifically expressed in the integument and in Malpighian tubules, respectively. Knockdown by RNA interference (RNAi) of either NcLac2 and NcLac5 in nymphs caused high mortality. All NcLac2-knockdown nymphs showed depigmentation and soft cuticle, and eventually died, as did other MCO2-knockdown insects. DsNcLac5-injected nymphs (third, fourth, and fifth-instar) showed high mortality, but injection into adults had no effect on survival or number of eggs deposited, suggesting that NcLac5 is not essential for survival after molting (eclosion). NcLac5 could be a promising target gene for control of N. cincticeps.
Collapse
Affiliation(s)
- Yukiko Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Makoto Hattori
- Ex. Insect-Plant Interaction Research Unit, National Institute Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Drosophila ZIP13 is posttranslationally regulated by iron-mediated stabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1487-1497. [DOI: 10.1016/j.bbamcr.2019.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
|
16
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|