1
|
Yang Q, Zheng W, Zhao Y, Shi Y, Wang Y, Sun H, Xu X. Advancing dentin remineralization: Exploring amorphous calcium phosphate and its stabilizers in biomimetic approaches. Dent Mater 2024; 40:1282-1295. [PMID: 38871525 DOI: 10.1016/j.dental.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This review elucidates the mechanisms underpinning intrafibrillar mineralization, examines various amorphous calcium phosphate (ACP) stabilizers employed in dentin's intrafibrillar mineralization, and addresses the challenges encountered in clinical applications of ACP-based bioactive materials. METHODS The literature search for this review was conducted using three electronic databases: PubMed, Web of Science, and Google Scholar, with specific keywords. Articles were selected based on inclusion and exclusion criteria, allowing for a detailed examination and summary of current research on dentin remineralization facilitated by ACP under the influence of various types of stabilizers. RESULTS This review underscores the latest advancements in the role of ACP in promoting dentin remineralization, particularly intrafibrillar mineralization, under the regulation of various stabilizers. These stabilizers predominantly comprise non-collagenous proteins, their analogs, and polymers. Despite the diversity of stabilizers, the mechanisms they employ to enhance intrafibrillar remineralization are found to be interrelated, indicating multiple driving forces behind this process. However, challenges remain in effectively designing clinically viable products using stabilized ACP and maximizing intrafibrillar mineralization with limited materials in practical applications. SIGNIFICANCE The role of ACP in remineralization has gained significant attention in dental research, with substantial progress made in the study of dentin biomimetic mineralization. Given ACP's instability without additives, the presence of ACP stabilizers is crucial for achieving in vitro intrafibrillar mineralization. However, there is a lack of comprehensive and exhaustive reviews on ACP bioactive materials under the regulation of stabilizers. A detailed summary of these stabilizers is also instrumental in better understanding the complex process of intrafibrillar mineralization. Compared to traditional remineralization methods, bioactive materials capable of regulating ACP stability and controlling release demonstrate immense potential in enhancing clinical treatment standards.
Collapse
Affiliation(s)
- Qingyi Yang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Wenqian Zheng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yuping Zhao
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yaru Shi
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Xiaowei Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Chaiin P, Yostaworakul J, Rungnim C, Khemthong P, Yata T, Boonrungsiman S. Self-calcifying lipid nanocarrier for bone tissue engineering. Biochim Biophys Acta Gen Subj 2022; 1866:130047. [PMID: 34757163 DOI: 10.1016/j.bbagen.2021.130047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed. METHODS We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20. RESULTS The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability.
Collapse
Affiliation(s)
- Poowadon Chaiin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Jakarwan Yostaworakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Chompoonut Rungnim
- NSTDA Supercomputer Center (ThaiSC), National Electronics and Computer Technology Center (NECTEC), Pathumthani 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
3
|
Ye X, Shao C, Fan Q, Shang L, Ye F. Porous carbon nanotube microspheres with tailorable surface wettability areas for oil adsorption. J Colloid Interface Sci 2021; 604:737-745. [PMID: 34293531 DOI: 10.1016/j.jcis.2021.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Oil adsorption is significant for water purification and environmental protection. However, the conventional bulk sorbents face the predicament of uncontrollable motion as well as hydrophobic nature the whole body, which largely restricts their uptake capacity underwater. Hence, novel adsorbent material for high-efficient oil uptake both at the surface and under the water is urgently required. EXPERIMENTS We presented a phase-transition lysozyme coating approach to fabricate porous carbon nanotube microspheres with tailorable surface wettability areas for versatile oil adsorption. Because of the existence of magnetic nanoparticle in one hemisphere, the multi-sites coating was easily achieved by constantly changing orientations of the magnetic field. Owing to the integration of various hydrophilic functional groups in lysozyme as well as remarkable adhesion to virtually arbitrary materials, the intrinsically hydrophobic surface of the microspheres was partially modified hydrophilic on multiple sites. FINDINGS It was demonstrated that the unique surface wettability feature and the porous structure enabled the microspheres to adsorb multiple contaminants both floating on the water and underwater. Besides, the magnetic-responsive ability allowed for controllable collection of oil contaminants. These features, along with the reusability, make the porous carbon nanotube microspheres excellent adsorbents for water purification.
Collapse
Affiliation(s)
- Xiaomin Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No.8 South 3rd Street Zhongguancun, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Road, Huairou District, Beijing 100049, China
| | - Changmin Shao
- Wenzhou Institute, University of Chinese Academy of Sciences, No.1 Jianlian Road, Longwan District, Wenzhou, Zhejiang 325001, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No.8 South 3rd Street Zhongguancun, Beijing 100190, China.
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, No.131 Dongan Road, Xuhui District, Shanghai 200032, China.
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No.8 South 3rd Street Zhongguancun, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Road, Huairou District, Beijing 100049, China; Wenzhou Institute, University of Chinese Academy of Sciences, No.1 Jianlian Road, Longwan District, Wenzhou, Zhejiang 325001, China; Songshan Lake Materials Laboratory, Songshan Lake Scenic Area, Dongguan, Guangdong 523808, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), No.1 Jianlian Road, Longwan District, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
4
|
Oosterlaken BM, Vena MP, de With G. In Vitro Mineralization of Collagen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004418. [PMID: 33711177 PMCID: PMC11469168 DOI: 10.1002/adma.202004418] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Collagen mineralization is a biological process in many skeletal elements in the animal kingdom. Examples of these collagen-based skeletons are the siliceous spicules of glass sponges or the intrafibrillar hydroxyapatite platelets in vertebrates. The mineralization of collagen in vitro has gained interest for two reasons: understanding the processes behind bone formation and the synthesis of scaffolds for tissue engineering. In this paper, the efforts toward collagen mineralization in vitro are reviewed. First, general introduction toward collagen type I, the main component of the extracellular matrix in animals, is provided, followed by a brief overview of collagenous skeletons. Then, the in vitro mineralization of collagen is critically reviewed. Due to their biological abundance, hydroxyapatite and silica are the focus of this review. To a much lesser extent, also some efforts with other minerals are outlined. Combining all minerals and the suggested mechanisms for each mineral, a general mechanism for the intrafibrillar mineralization of collagen is proposed. This review concludes with an outlook for further improvement of collagen-based tissue engineering scaffolds.
Collapse
Affiliation(s)
- Bernette Maria Oosterlaken
- Laboratory of Physical ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 513EindhovenMB5600The Netherlands
| | - Maria Paula Vena
- Laboratory of Physical ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 513EindhovenMB5600The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyPO Box 513EindhovenMB5600The Netherlands
| |
Collapse
|
5
|
Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14040289. [PMID: 33805145 PMCID: PMC8064082 DOI: 10.3390/ph14040289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bone is a complex organ maintained by three main cell types: osteoblasts, osteoclasts, and osteocytes. During bone formation, osteoblasts deposit a mineralized organic matrix. Evidence shows that bone cells release extracellular vesicles (EVs): nano-sized bilayer vesicles, which are involved in intercellular communication by delivering their cargoes through protein–ligand interactions or fusion to the plasma membrane of the recipient cell. Osteoblasts shed a subset of EVs known as matrix vesicles (MtVs), which contain phosphatases, calcium, and inorganic phosphate. These vesicles are believed to have a major role in matrix mineralization, and they feature bone-targeting and osteo-inductive properties. Understanding their contribution in bone formation and mineralization could help to target bone pathologies or bone regeneration using novel approaches such as stimulating MtV secretion in vivo, or the administration of in vitro or biomimetically produced MtVs. This review attempts to discuss the role of MtVs in biomineralization and their potential application for bone pathologies and bone regeneration.
Collapse
|
6
|
Li C, Lu D, Deng J, Zhang X, Yang P. Amyloid-Like Rapid Surface Modification for Antifouling and In-Depth Remineralization of Dentine Tubules to Treat Dental Hypersensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903973. [PMID: 31559667 DOI: 10.1002/adma.201903973] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Exposure of dentinal tubules (DTs) leads to the transmission of external stimuli within the DTs, causing dental hypersensitivity (DH). To treat DH, various desensitizers have been developed for occluding DTs. However, most desensitizers commercially available or in development are only able to seal the orifices, rather than the deep regions of the DTs, thus lacking long-term stability. Herein, it is shown that the fast amyloid-like aggregation of lysozyme (lyso) conjugated with poly(ethylene glycol) (PEG) (lyso-PEG) can afford a robust ultrathin nanofilm on the deep walls of DTs through a rapid one-step aqueous coating process (in 2 min). The resultant nanofilm provides a highly effective antifouling platform for resisting the attachment of oral bacteria such as Streptococcus mutans and induces remineralization in the DTs to seal both the orifices and depths of the DTs by forming hydroxyapatite (HAp) minerals in situ. Both in vitro and in vivo animal experiments prove that the nanofilm-coated DTs are occluded with a depth of over 60 ± 5 µ m, which is at least 6 times deeper than that reported in the literature. This approach thus demonstrates the concept that an amyloid-like proteinaceous nanofilm can offer an inexpensive, rapid, and efficient therapy for treating DH with long-term effect.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Danyang Lu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 30070, China
| | - Jingjing Deng
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 30070, China
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 30070, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|