1
|
Pissas KP, Schilling M, Korkmaz A, Tian Y, Gründer S. Melatonin alters the excitability of mouse cerebellar granule neurons by inhibiting voltage-gated sodium, potassium, and calcium channels. J Pineal Res 2024; 76:e12919. [PMID: 37794846 DOI: 10.1111/jpi.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Besides its role in the circadian rhythm, the pineal gland hormone melatonin (MLT) also possesses antiepileptogenic, antineoplastic, and cardioprotective properties, among others. The dosages necessary to elicit beneficial effects in these diseases often far surpass physiological concentrations. Although even high doses of MLT are considered to be largely harmless to humans, the possible side effects of pharmacological concentrations are so far not well investigated. In the present study, we report that pharmacological doses of MLT (3 mM) strongly altered the electrophysiological characteristics of cultured primary mouse cerebellar granule cells (CGCs). Using whole-cell patch clamp and ratiometric Ca2+ imaging, we observed that pharmacological concentrations of MLT inhibited several types of voltage-gated Na+ , K+ , and Ca2+ channels in CGCs independently of known MLT-receptors, altering the character and pattern of elicited action potentials (APs) significantly, quickly and reversibly. Specifically, MLT reduced AP frequency, afterhyperpolarization, and rheobase, whereas AP amplitude and threshold potential remained unchanged. The altered biophysical profile of the cells could constitute a possible mechanism underlying the proposed beneficial effects of MLT in brain-related disorders, such as epilepsy. On the other hand, it suggests potential adverse effects of pharmacological MLT concentrations on neurons, which should be considered when using MLT as a pharmacological compound.
Collapse
Affiliation(s)
| | - Maria Schilling
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Ahmet Korkmaz
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Yuemin Tian
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Stefan Gründer
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Gao Y, Wang L, Niu Z, Feng H, Liu J, Sun J, Gao Y, Pan L. miR-340-5p inhibits pancreatic acinar cell inflammation and apoptosis via targeted inhibition of HMGB1. Exp Ther Med 2022; 23:140. [PMID: 35069821 PMCID: PMC8756431 DOI: 10.3892/etm.2021.11063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disease that affects 1 million individuals worldwide. Inflammation and apoptosis are considered to be important pathogenic mechanisms of AP, and high mobility group box 1 (HMGB1) has been shown to play a particularly important role in the etiology of this disease. MicroRNAs (miRs) are emerging as critical regulators of gene expression and, as such, they represent a promising area of therapeutic target identification and development for a variety of diseases, including AP. Using the online database query (microRNA.org), the current study identified a site in the 3' untranslated region of HMGB1 mRNA that was a viable target for miR-340-5p. The present study aimed to investigate the association between miR-340-5p and HMGB1 expression in pancreatic acinar cells following lipopolysaccharide (LPS) treatment by performing luciferase, western blotting and reverse transcription-quantitative PCR assays. The results suggest that miR-340-5p attenuates the induction of HMGB1 by LPS, thereby inhibiting inflammation and apoptosis via blunted activation of Toll-like receptor 4 and enhanced AKT signaling. Thus, the therapeutic application of miR-340-5p may be a useful strategy in AP via upregulation of HMGB1 and subsequent promotion of inflammation and apoptosis.
Collapse
Affiliation(s)
- Yazhou Gao
- Department of Emergency Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zequn Niu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jie Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiangli Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
3
|
Estaras M, Marchena AM, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. J Appl Toxicol 2020; 40:1554-1565. [PMID: 32567733 DOI: 10.1002/jat.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 μm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 μm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Ana M Marchena
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
4
|
Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol 2020; 145:111594. [PMID: 32738373 DOI: 10.1016/j.fct.2020.111594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1 Ahmed BenBella, Algeria
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Silvia Díaz-Velasco
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
5
|
Estaras M, Martinez-Morcillo S, García A, Martinez R, Estevez M, Perez-Lopez M, Miguez MP, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco G, Lopez D, Roncero V, Salido GM, Gonzalez A. Pancreatic stellate cells exhibit adaptation to oxidative stress evoked by hypoxia. Biol Cell 2020; 112:280-299. [PMID: 32632968 DOI: 10.1111/boc.202000020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND INFORMATION Pancreatic stellate cells play a key role in the fibrosis that develops in diseases such as pancreatic cancer. In the growing tumour, a hypoxia condition develops under which cancer cells are able to proliferate. The growth of fibrotic tissue contributes to hypoxia. In this study, the effect of hypoxia (1% O2 ) on pancreatic stellate cells physiology was investigated. Changes in intracellular free-Ca2+ concentration, mitochondrial free-Ca2+ concentration and mitochondrial membrane potential were studied by fluorescence techniques. The status of enzymes responsible for the cellular oxidative state was analyzed by quantitative reverse transcription-polymerase chain reaction, high-performance liquid chromatography, spectrophotometric and fluorimetric methods and by Western blotting analysis. Cell viability and proliferation were studied by crystal violet test, 5-bromo-2-deoxyuridine cell proliferation test and Western blotting analysis. Finally, cell migration was studied employing the wound healing assay. RESULTS Hypoxia induced an increase in intracellular and mitochondrial free-Ca2+ concentration, whereas mitochondrial membrane potential was decreased. An increase in mitochondrial reactive oxygen species production was observed. Additionally, an increase in the oxidation of proteins and lipids was detected. Moreover, cellular total antioxidant capacity was decreased. Increases in the expression of superoxide dismutase 1 and 2 were observed and superoxide dismutase activity was augmented. Hypoxia evoked a decrease in the oxidized/reduced glutathione ratio. An increase in the phosphorylation of nuclear factor erythroid 2-related factor and in expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 were detected. The expression of cyclin A was decreased, whereas expression of cyclin D and the content of 5-bromo-2-deoxyuridine were increased. This was accompanied by an increase in cell viability. The phosphorylation state of c-Jun NH2 -terminal kinase was increased, whereas that of p44/42 and p38 was decreased. Finally, cells subjected to hypoxia maintained migration ability. CONCLUSIONS AND SIGNIFICANCE Hypoxia creates pro-oxidant conditions in pancreatic stellate cells to which cells adapt and leads to increased viability and proliferation.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Alfredo García
- Department of Animal Production, Cicytex-La Orden, Badajoz, Spain
| | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Mario Estevez
- IPROCAR Research Institute, Food Technology, University of Extremadura, Caceres, 10003, Spain
| | - Marcos Perez-Lopez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Maria P Miguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
6
|
Ali T, Hao Q, Ullah N, Rahman SU, Shah FA, He K, Zheng C, Li W, Murtaza I, Li Y, Jiang Y, Tan Z, Li S. Melatonin Act as an Antidepressant via Attenuation of Neuroinflammation by Targeting Sirt1/Nrf2/HO-1 Signaling. Front Mol Neurosci 2020; 13:96. [PMID: 32595452 PMCID: PMC7304371 DOI: 10.3389/fnmol.2020.00096] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Physical or psychological stress can cause an immunologic imbalance that disturbs the central nervous system followed by neuroinflammation. The association between inflammation and depression has been widely studied in recent years, though the molecular mechanism is still largely unknown. Thus, targeting the signaling pathways that link stress to neuroinflammation might be a useful strategy against depression. The current study investigated the protective effect of melatonin against lipopolysaccharide (LPS)-induced neuroinflammation and depression. Our results showed that LPS treatment significantly induced depressive-like behavior in mice. Moreover, LPS-treatment enhanced oxidative stress, pro-inflammatory cytokines including TNFα, IL-6, and IL-1β, NF-κB phosphorylation, and glial cell activation markers including GFAP and Iba-1 in the brain of mice. Melatonin treatment significantly abolished the effect of LPS, as indicated by improved depressive-like behaviors, reduced cytokines level, reduced oxidative stress, and normalized LPS-altered Sirt1, Nrf2, and HO-1 expression. However, the melatonin protective effects were reduced after luzindole administration. Collectively, it is concluded that melatonin receptor-dependently protects against LPS-induced depressive-like behaviors via counteracting LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Hao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Najeeb Ullah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shafiq Ur Rahman
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Iram Murtaza
- Signal Transduction Lab, Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Yang Li
- Laboratory of Receptor Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, China
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Gurunathan S, Jeyaraj M, Kang MH, Kim JH. Melatonin Enhances Palladium-Nanoparticle-Induced Cytotoxicity and Apoptosis in Human Lung Epithelial Adenocarcinoma Cells A549 and H1229. Antioxidants (Basel) 2020; 9:E357. [PMID: 32344592 PMCID: PMC7222421 DOI: 10.3390/antiox9040357] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Palladium nanoparticles (PdNPs) are increasingly being used in medical and biological applications due to their unique physical and chemical properties. Recent evidence suggests that these nanoparticles can act as both a pro-oxidant and as an antioxidant. Melatonin (MLT), which also shows pro- and antioxidant properties, can enhance the efficacy of chemotherapeutic agents when combined with anticancer drugs. Nevertheless, studies regarding the molecular mechanisms underlying the anticancer effects of PdNPs and MLT in cancer cells are still lacking. Therefore, we aimed to investigate the potential toxicological and molecular mechanisms of PdNPs, MLT, and the combination of PdNPs with MLT in A549 lung epithelial adenocarcinoma cells. We evaluated cell viability, cell proliferation, cytotoxicity, oxidative stress, mitochondrial dysfunction, and apoptosis in cells treated with different concentrations of PdNPs and MLT. PdNPs and MLT induced cytotoxicity, which was confirmed by leakage of lactate dehydrogenase, increased intracellular protease, and reduced membrane integrity. Oxidative stress increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), protein carbonyl content (PCC), lipid hydroperoxide (LHP), and 8-isoprostane. Combining PdNPs with MLT elevated the levels of mitochondrial dysfunction by decreasing mitochondrial membrane potential (MMP), ATP content, mitochondrial number, and expression levels of the main regulators of mitochondrial biogenesis. Additionally, PdNPs and MLT induced apoptosis and oxidative DNA damage due to accumulation of 4-hydroxynonenal (HNE), 8-oxo-2'-deoxyguanosine (8-OhdG), and 8-hydroxyguanosine (8-OHG). Finally, PdNPs and MLT increased mitochondrially mediated stress and apoptosis, which was confirmed by the increased expression levels of apoptotic genes. To our knowledge, this is the first study demonstrating the effects of combining PdNPs and MLT in human lung cancer cells. These findings provide valuable insights into the molecular mechanisms involved in PdNP- and MLT-induced toxicity, and it may be that this combination therapy could be a potential effective therapeutic approach. This combination effect provides information to support the clinical evaluation of PdNPs and MLT as a suitable agents for lung cancer treatment, and the combined effect provides therapeutic value, as non-toxic concentrations of PdNPs and MLT are more effective, better tolerated, and show less adverse effects. Finally, this study suggests that MLT could be used as a supplement in nano-mediated combination therapies used to treat lung cancer.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.J.); (M.-H.K.)
| | | | | | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.J.); (M.-H.K.)
| |
Collapse
|