1
|
Marosi C. Well-intentioned is not always beneficial: Why we should question prescription habits. Neurooncol Pract 2024; 11:677-678. [PMID: 39554787 PMCID: PMC11567734 DOI: 10.1093/nop/npae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Affiliation(s)
- Christine Marosi
- Department of Medicine I & Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Castro MP, Quinn J, Wasserman A, Awawda A, Cole ZD, Shapiro MA, Stuhlmiller TJ, Kesari S. Proton pump inhibitors are detrimental to overall survival of patients with glioblastoma: Results from a nationwide real-world evidence database. Neurooncol Pract 2024; 11:713-722. [PMID: 39554793 PMCID: PMC11567743 DOI: 10.1093/nop/npae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background Proton pump inhibitors (PPIs) are often prescribed to manage corticosteroid-induced gastrointestinal toxicity during glioblastoma (GBM) treatment, but were recently identified as strong inducers of aldehyde dehydrogenase-1A1 (ALDH1A1). ALDH1A1 is a primary metabolic enzyme impacting the outcome of chemotherapy, including temozolomide. High expression of ALDH1A1 is associated with poor prognosis in multiple cancers, suggesting PPIs may have a negative impact on survival. Methods Real-world data on GBM patients was annotated from electronic medical records (EMR) according to the prospective observational study, XCELSIOR (NCT03793088). Patients with known IDH1/2 mutations were excluded. Causal effects on survival were analyzed using a multivariate, time-varying Cox Proportional Hazard (CPH) model with stratifications including MGMT methylation status, age, sex, duration of corticosteroid use, extent of resection, starting standard-of-care, and PPI use. Results EMR data from 554 GBM patients across 225 cancer centers was collected, with 72% of patients receiving care from academic medical centers. Patients treated with PPIs (51%) had numerically lower median overall survival (mOS) and 2-year OS rates in the total population and across most strata, with the greatest difference for MGMT-methylated patients (mOS 29.2 vs. 40.1 months). In a time-varying multivariate CPH analysis of the above strata, PPIs caused an adverse effect on survival (HR 1.67 [95% CI: 1.15-2.44], P = .007). Conclusions Evidence from a nationwide cancer registry has suggested PPIs have a negative impact on OS for GBM patients, particularly those with MGMT promoter methylation. This suggests PPIs should be avoided for prophylactic management of gastrointestinal toxicity in patients with GBM receiving chemoradiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Santosh Kesari
- xCures Inc., Oakland, California, USA
- Pacific Neuroscience Institute, Providence Saint John’s Health Center, Santa Monica, California, USA
| |
Collapse
|
3
|
Sołtysiak M, Paplińska-Goryca M, Misiukiewicz-Stępień P, Wójtowicz P, Dutkiewicz M, Zegrocka-Stendel O, Sikorska M, Dymkowska D, Turos-Korgul L, Krenke R, Koziak K. β-escin activates ALDH and prevents cigarette smoke-induced cell death. Biomed Pharmacother 2024; 170:115924. [PMID: 38016364 DOI: 10.1016/j.biopha.2023.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The tobacco use is one of the biggest public health threats worldwide. Cigarette smoke contains over 7000 chemicals among other aldehydes, regarded as priority toxicants. β-escin (a mixture of triterpenoid saponins extracted from the Aesculus hippocastanum. L) is a potent activator of aldehyde dehydrogenase (ALDH) - an enzyme catalyzing oxidation of aldehydes to non-toxic carboxylic acids. PURPOSE The aim of this study was to evaluate the effect of β-escin on ALDH activity, ALDH isoforms mRNA expression and cytotoxicity in nasal epithelial cells exposed to cigarette smoke extract (CSE). METHODS Nasal epithelial cells from healthy non-smokers were treated with β-escin (1 µM) and exposed to 5% CSE. After 6- or 24-hours of stimulation cell viability, DNA damage, ALDH activity and mRNA expression of ALDH isoforms were examined. RESULTS 24 h β-escin stimulation revised CSE induced cytotoxicity and DNA damage. Cells cultured with β-escin or exposed to CSE responded with strong increase in ALDH activity. This effect was more pronounced in cultures treated with combination of β-escin and CSE. The strongest stimulatory effect on ALDH isoform mRNA expression was observed in cells cultured simultaneously with β-escin and CSE: at 6 h for ALDH1A1 and ALDH3A1, and at 24 h for ALDH1A3, ALDH3A2, ALDH3B1, and ALDH18A1. Combined β-escin and CSE treatment prevented the CSE-induced inhibition of ALDH2 expression at 24 h. CONCLUSIONS β-escin is an effective ALDH stimulatory and cytoprotective agent and might be useful in the prevention or supportive treatment of tobacco smoke-related diseases.
Collapse
Affiliation(s)
- Malwina Sołtysiak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Paulina Misiukiewicz-Stępień
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Paulina Wójtowicz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Małgorzata Dutkiewicz
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Oliwia Zegrocka-Stendel
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Maria Sikorska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteura 3, 02-093 Warsaw, Poland
| | - Laura Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteura 3, 02-093 Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Katarzyna Koziak
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland.
| |
Collapse
|
4
|
Karan BM, Little K, Augustine J, Stitt AW, Curtis TM. Aldehyde Dehydrogenase and Aldo-Keto Reductase Enzymes: Basic Concepts and Emerging Roles in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1466. [PMID: 37508004 PMCID: PMC10376360 DOI: 10.3390/antiox12071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes mellitus that can lead to vision loss and blindness. It is driven by various biochemical processes and molecular mechanisms, including lipid peroxidation and disrupted aldehyde metabolism, which contributes to retinal tissue damage and the progression of the disease. The elimination and processing of aldehydes in the retina rely on the crucial role played by aldehyde dehydrogenase (ALDH) and aldo-keto reductase (AKR) enzymes. This review article investigates the impact of oxidative stress, lipid-derived aldehydes, and advanced lipoxidation end products (ALEs) on the advancement of DR. It also provides an overview of the ALDH and AKR enzymes expressed in the retina, emphasizing their growing importance in DR. Understanding the relationship between aldehyde metabolism and DR could guide innovative therapeutic strategies to protect the retina and preserve vision in diabetic patients. This review, therefore, also explores various approaches, such as gene therapy and pharmacological compounds that have the potential to augment the expression and activity of ALDH and AKR enzymes, underscoring their potential as effective treatment options for DR.
Collapse
Affiliation(s)
- Burak Mugdat Karan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Karis Little
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
5
|
Immunoproteomics of cow's milk allergy in Mexican pediatric patients. J Proteomics 2023; 273:104809. [PMID: 36587729 DOI: 10.1016/j.jprot.2022.104809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Immunological mechanisms of non-IgE-mediated cow's milk protein allergy (CMPA) are not well understood. Such a circumstance requires attention with the aim of discovering new biomarkers that could lead to better diagnostic assays for early treatment. Here, we sought both to investigate the mechanism that underlies non-IgE-mediated CMPA and to identify cow's milk immunoreactive proteins in a Mexican pediatric patient group (n = 34). Hence, we determined the IgE and IgG1-4 subclass antibody levels against cow's milk proteins (CMP) by ELISA. Then, we performed 2D-Immunoblots using as first antibody immunoglobulins in the patients'serum that bound specifically against CMP together with CMP enrichment by ion-exchange chromatography. Immunoreactive proteins were identified by mass spectrometry-based proteomics. The serological test confirmed absence of specific IgE in the CMPA patients but showed significant increase in antigen-specific IgG1. Additionally, we identified 11 proteins that specifically bound to IgG1. We conclude that the detection of specific IgG1 together with an immunoproteomics approach is highly relevant to the understanding of CMPA's physiopathology and as a possible aid in making a prognosis since current evidence indicates IgG1 occurrence as an early signal of potential risk toward development of IgE-mediated food allergy. SIGNIFICANCE: Allergies are one of the most studied topics in the field of public health and novel protein allergens are found each year. Discovery of new principal and regional allergens has remarkable repercussions in precise molecular diagnostics, prognostics, and more specific immunotherapies. In this context, specific IgE is widely known to mediate physiopathology; however, allergies whose mechanism does not involve this immunoglobulin are poorly understood although their incidence has increased. Therefore, accurate diagnosis and adequate treatment are delayed with significant consequences on the health of pediatric patients. The study of type and subtypes of immunoglobulins associated with the immunoreactivity of cow's milk proteins together with an immunoproteomics approach allows better comprehension of physiopathology, brings the opportunity to discover new potential cow's milk protein allergens and may help in prognosis prediction (IgG1 occurrence as an early signal of possible risk toward development of IgE-mediated food allergy).
Collapse
|
6
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
7
|
Mazzio E, Badisa R, Mack N, Cassim S, Zdralevic M, Pouyssegur J, Soliman KFA. Whole-transcriptome Analysis of Fully Viable Energy Efficient Glycolytic-null Cancer Cells Established by Double Genetic Knockout of Lactate Dehydrogenase A/B or Glucose-6-Phosphate Isomerase. Cancer Genomics Proteomics 2021; 17:469-497. [PMID: 32859627 DOI: 10.21873/cgp.20205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Nearly all mammalian tumors of diverse tissues are believed to be dependent on fermentative glycolysis, marked by elevated production of lactic acid and expression of glycolytic enzymes, most notably lactic acid dehydrogenase (LDH). Therefore, there has been significant interest in developing chemotherapy drugs that selectively target various isoforms of the LDH enzyme. However, considerable questions remain as to the consequences of biological ablation of LDH or upstream targeting of the glycolytic pathway. MATERIALS AND METHODS In this study, we explore the biochemical and whole transcriptomic effects of CRISPR-Cas9 gene knockout (KO) of lactate dehydrogenases A and B [LDHA/B double KO (DKO)] and glucose-6-phosphate isomerase (GPI KO) in the human colon cancer cell line LS174T, using Affymetrix 2.1 ST arrays. RESULTS The metabolic biochemical profiles corroborate that relative to wild type (WT), LDHA/B DKO produced no lactic acid, (GPI KO) produced minimal lactic acid and both KOs displayed higher mitochondrial respiration, and minimal use of glucose with no loss of cell viability. These findings show a high biochemical energy efficiency as measured by ATP in glycolysis-null cells. Next, transcriptomic analysis conducted on 48,226 mRNA transcripts reflect 273 differentially expressed genes (DEGS) in the GPI KO clone set, 193 DEGS in the LDHA/B DKO clone set with 47 DEGs common to both KO clones. Glycolytic-null cells reflect up-regulation in gene transcripts typically associated with nutrient deprivation / fasting and possible use of fats for energy: thioredoxin interacting protein (TXNIP), mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), PPARγ coactivator 1α (PGC-1α), and acetyl-CoA acyltransferase 2 (ACAA2). Other changes in non-ergometric transcripts in both KOs show losses in "stemness", WNT signaling pathway, chemo/radiation resistance, retinoic acid synthesis, drug detoxification, androgen/estrogen activation, and extracellular matrix reprogramming genes. CONCLUSION These findings demonstrate that: 1) The "Warburg effect" is dispensable, 2) loss of the LDHAB gene is not only inconsequential to viability but fosters greater mitochondrial energy, and 3) drugs that target LDHA/B are likely to be ineffective without a plausible combination second drug target.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Nzinga Mack
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Shamir Cassim
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco
| | - Masa Zdralevic
- University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Jacques Pouyssegur
- Department of Medical Biology, Centre Scientifique de Monaco, Monaco, Monaco .,University Côte d'Azur, IRCAN, CNRS, Centre A. Lacassagne, Nice, France
| | - Karam F A Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
8
|
Yoval-Sánchez B, Calleja LF, de la Luz Hernández-Esquivel M, Rodríguez-Zavala JS. Piperlonguminine a new mitochondrial aldehyde dehydrogenase activator protects the heart from ischemia/reperfusion injury. Biochim Biophys Acta Gen Subj 2020; 1864:129684. [PMID: 32679250 DOI: 10.1016/j.bbagen.2020.129684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Detoxification of aldehydes by aldehyde dehydrogenases (ALDHs) is crucial to maintain cell function. In cardiovascular diseases, reactive oxygen species generated during ischemia/reperfusion events trigger lipoperoxidation, promoting cell accumulation of highly toxic lipid aldehydes compromising cardiac function. In this context, activation of ALDH2, may contribute to preservation of cell integrity by diminishing aldehydes content more efficiently. METHODS The theoretic interaction of piperlonguminine (PPLG) with ALDH2 was evaluated by docking analysis. Recombinant human ALDH2 was used to evaluate the effects of PPLG on the kinetics of the enzyme. The effects of PPLG were further investigated in a myocardial infarction model in rats, evaluating ALDHs activity, antioxidant enzymes, oxidative stress markers and mitochondrial function. RESULTS PPLG increased the activity of recombinant human ALDH2 and protected the enzyme from inactivation by lipid aldehydes. Additionally, administration of this drug prevented the damage induced by ischemia/reperfusion in rats, restoring heart rate and blood pressure, which correlated with protection of ALDHs activity in the tissue, a lower content of lipid aldehydes, and the preservation of mitochondrial function. CONCLUSION Activation of ALDH2 by piperlonguminine ameliorates cell damage generated in heart ischemia/reperfusion events, by decreasing lipid aldehydes concentration promoting cardioprotection.
Collapse
Affiliation(s)
- Belem Yoval-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, 14080, México
| | - Luis Francisco Calleja
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, 14080, México
| | | | - José Salud Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, 14080, México.
| |
Collapse
|