1
|
Javed A, Balhuizen MD, Pannekoek A, Bikker FJ, Heesterbeek DAC, Haagsman HP, Broere F, Weingarth M, Veldhuizen EJA. Effects of Escherichia coli LPS Structure on Antibacterial and Anti-Endotoxin Activities of Host Defense Peptides. Pharmaceuticals (Basel) 2023; 16:1485. [PMID: 37895956 PMCID: PMC10609994 DOI: 10.3390/ph16101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The binding of Host Defense Peptides (HDPs) to the endotoxin of Gram-negative bacteria has important unsolved aspects. For most HDPs, it is unclear if binding is part of the antibacterial mechanism or whether LPS actually provides a protective layer against HDP killing. In addition, HDP binding to LPS can block the subsequent TLR4-mediated activation of the immune system. This dual activity is important, considering that HDPs are thought of as an alternative to conventional antibiotics, which do not provide this dual activity. In this study, we systematically determine, for the first time, the influence of the O-antigen and Lipid A composition on both the antibacterial and anti-endotoxin activity of four HDPs (CATH-2, PR-39, PMAP-23, and PMAP36). The presence of the O-antigen did not affect the antibacterial activity of any of the tested HDPs. Similarly, modification of the lipid A phosphate (MCR-1 phenotype) also did not affect the activity of the HDPs. Furthermore, assessment of inner and outer membrane damage revealed that CATH-2 and PMAP-36 are profoundly membrane-active and disrupt the inner and outer membrane of Escherichia coli simultaneously, suggesting that crossing the outer membrane is the rate-limiting step in the bactericidal activity of these HDPs but is independent of the presence of an O-antigen. In contrast to killing, larger differences were observed for the anti-endotoxin properties of HDPs. CATH-2 and PMAP-36 were much stronger at suppressing LPS-induced activation of macrophages compared to PR-39 and PMAP-23. In addition, the presence of only one phosphate group in the lipid A moiety reduced the immunomodulating activity of these HDPs. Overall, the data strongly suggest that LPS composition has little effect on bacterial killing but that Lipid A modification can affect the immunomodulatory role of HDPs. This dual activity should be considered when HDPs are considered for application purposes in the treatment of infectious diseases.
Collapse
Affiliation(s)
- Ali Javed
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.); (A.P.); (F.B.)
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands;
| | - Melanie D. Balhuizen
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.D.B.); (H.P.H.)
| | - Arianne Pannekoek
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.); (A.P.); (F.B.)
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands;
| | - Dani A. C. Heesterbeek
- Department of Medical Microbiology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Henk P. Haagsman
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (M.D.B.); (H.P.H.)
| | - Femke Broere
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.); (A.P.); (F.B.)
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CS Utrecht, The Netherlands;
| | - Edwin J. A. Veldhuizen
- Section of Immunology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (A.J.); (A.P.); (F.B.)
| |
Collapse
|
2
|
Acharya Y, Taneja KK, Haldar J. Dual functional therapeutics: mitigating bacterial infection and associated inflammation. RSC Med Chem 2023; 14:1410-1428. [PMID: 37593575 PMCID: PMC10429821 DOI: 10.1039/d3md00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/21/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence of antimicrobial resistance, coupled with the occurrence of persistent systemic infections, has already complicated clinical therapy efforts. Moreover, infections are also accompanied by strong inflammatory responses, generated by the host's innate and adaptive immune systems. The closely intertwined relationship between bacterial infection and inflammation has multiple implications on the ability of antibacterial therapeutics to tackle infection and inflammation. Particularly, uncontrolled inflammatory responses to infection can lead to sepsis, a life-threatening physiological condition. In this review, we discuss dual-functional antibacterial therapeutics that have potential to be developed for treating inflammation associated with bacterial infections. Immense research is underway that aims to develop new therapeutic agents that, when administered, regulate the excess inflammatory response, i.e. they have immunomodulatory properties along with the desired antibacterial activity. The classes of antibiotics that have immunomodulatory function in addition to antibacterial activity have been reviewed. Host defense peptides and their synthetic mimics are amongst the most sought-after solutions to develop such dual-functional therapeutics. This review also highlights the important classes of peptidomimetics that exhibit both antibacterial and immunomodulatory properties.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Kashish Kumar Taneja
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The incidence of bacterial respiratory tract infections is growing. In a context of increasing antibiotic resistance and lack of new classes of antibiotics, inhaled antibiotics emerge as a promising therapeutic strategy. Although they are generally used for cystic fibrosis, their use in other conditions is becoming more frequent, including no-cystic fibrosis bronchiectasis, pneumonia and mycobacterial infections. RECENT FINDINGS Inhaled antibiotics exert beneficial microbiological effects in bronchiectasis and chronic bronchial infection. In nosocomial and ventilator-associated pneumonia, aerosolized antibiotics improve cure rates and bacterial eradication. In refractory Mycobacterium avium complex infections, amikacin liposome inhalation suspension is more effective in achieving long-lasting sputum conversion. In relation to biological inhaled antibiotics (antimicrobial peptides, interfering RNA and bacteriophages), currently in development, there is no still enough evidence that support their use in clinical practice. SUMMARY The effective antimicrobiological activity of inhaled antibiotics, added to their potential to overcoming resistances to systemic antibiotics, make inhaled antibiotics a plausible alternative.
Collapse
|
4
|
Pulmonary Delivery of Emerging Antibacterials for Bacterial Lung Infections Treatment. Pharm Res 2022; 40:1057-1072. [PMID: 36123511 PMCID: PMC9484715 DOI: 10.1007/s11095-022-03379-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Bacterial infections in the respiratory tract are considered as one of the major challenges to the public health worldwide. Pulmonary delivery is an attractive approach in the management of bacterial respiratory infections with a few inhaled antibiotics approved. However, with the rapid emergence of antibiotic-resistant bacteria, it is necessary to develop new/alternative inhaled antibacterial agents in the post-antibiotic era. A pipeline of novel biological antibacterial agents, including antimicrobial peptides, RNAi therapeutics, and bacteriophages, has emerged to combat bacterial infections with excellent performance. In this review, the causal effects of bacterial infections on the related pulmonary infectious diseases will be firstly introduced. This is followed by an overview on the development of emerging antibacterial therapeutics for managing lung bacterial infections through nebulization/inhalation of dried powders. The obstacles and underlying proposals regarding their clinical transformation are also discussed to seek insights for further development. Research on inhaled therapy of these emerging antibacterials are still in the infancy, but the promising progress warrants further attention.
Collapse
|
5
|
van Os N, Javed A, Broere F, van Dijk A, Balhuizen MD, van Eijk M, Rooijakkers SHM, Bardoel BW, Heesterbeek DAC, Haagsman HP, Veldhuizen E. Novel insights in antimicrobial and immunomodulatory mechanisms of action of PepBiotics CR-163 and CR-172. J Glob Antimicrob Resist 2022; 30:406-413. [PMID: 35840108 DOI: 10.1016/j.jgar.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Recently our group developed a novel group of antimicrobial peptides termed PepBiotics, of which peptides CR-163 and CR-172 showed optimized antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus without inducing antimicrobial resistance. In this study, the antibacterial mechanism of action and the immunomodulatory activity of these two PepBiotics was explored. METHODS RAW264.7 cells were used to determine the ability of PepBiotics to neutralize LPS-and LTA-induced activation of macrophages. Isothermal titration calorimetry and competition assays with dansyl-labeled polymyxin B determined binding characteristics to LPS and LTA. Combined bacterial killing with subsequent macrophage activation assays was performed to determine so-called silent killing'. Finally, flow cytometry of peptide-treated genetically engineered E. coli,expressing GFP and mCherry in the cytoplasm and periplasm, respectively further established the antimicrobial mechanism of PepBiotics. RESULTS Both CR-163 and CR-172 were shown to have broad-spectrum activity against ESKAPE pathogens and E. coli, using a membranolytic mechanism of action. PepBiotics could exothermically bind LPS/LTA and were able to replace polymyxin B. Finally, it was demonstrated that bacteria killed by PepBiotics were less prone to stimulate immune cells, contrary to gentamicin and heat-killed bacteria that still elicited a strong immune response CONCLUSIONS: These studies highlight the multifunctional nature of the two peptide antibiotics as both broad spectrum antimicrobial and immunomodulator. Their ability to kill bacteria and reduce unwanted subsequent immune activation is a major advantage and highlights their potential for future therapeutic use.
Collapse
Affiliation(s)
- Nico van Os
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Ali Javed
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Immunology, Utrecht University, Utrecht, The Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Immunology, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Melanie D Balhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Martin van Eijk
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Dani A C Heesterbeek
- Department of Medical Microbiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Henk P Haagsman
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, Utrecht, The Netherlands
| | - Edwin Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Section Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|