1
|
The Paf1 complex is required for RNA polymerase II removal in response to DNA damage. Proc Natl Acad Sci U S A 2022; 119:e2207332119. [PMID: 36161924 DOI: 10.1073/pnas.2207332119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rpb1, the largest subunit of RNA polymerase II (RNAPII), is rapidly polyubiquitinated and degraded in response to DNA damage; this process is considered to be a "mechanism of last resort'' employed by cells. The underlying mechanism of this process remains elusive. Here, we uncovered a previously uncharacterized multistep pathway in which the polymerase-associated factor 1 (Paf1) complex (PAF1C, composed of the subunits Ctr9, Paf1, Leo1, Cdc73, and Rtf1) is involved in regulating the RNAPII pool by stimulating Elongin-Cullin E3 ligase complex-mediated Rpb1 polyubiquitination and subsequent degradation by the proteasome following DNA damage. Mechanistically, Spt5 is dephosphorylated following DNA damage, thereby weakening the interaction between the Rtf1 subunit and Spt5, which might be a key step in initiating Rpb1 degradation. Next, Rad26 is loaded onto stalled RNAPII to replace the Spt4/Spt5 complex in an RNAPII-dependent manner and, in turn, recruits more PAF1C to DNA lesions via the binding of Rad26 to the Leo1 subunit. Importantly, the PAF1C, assembled in a Ctr9-mediated manner, coordinates with Rad26 to localize the Elongin-Cullin complex on stalled RNAPII, thereby inducing RNAPII removal, in which the heterodimer Paf1/Leo1 and the subunit Cdc73 play important roles. Together, our results clearly revealed a new role of the intact PAF1C in regulating the RNAPII pool in response to DNA damage.
Collapse
|
2
|
Lalonde M, Trauner M, Werner M, Hamperl S. Consequences and Resolution of Transcription-Replication Conflicts. Life (Basel) 2021; 11:life11070637. [PMID: 34209204 PMCID: PMC8303131 DOI: 10.3390/life11070637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription–replication conflicts occur when the two critical cellular machineries responsible for gene expression and genome duplication collide with each other on the same genomic location. Although both prokaryotic and eukaryotic cells have evolved multiple mechanisms to coordinate these processes on individual chromosomes, it is now clear that conflicts can arise due to aberrant transcription regulation and premature proliferation, leading to DNA replication stress and genomic instability. As both are considered hallmarks of aging and human diseases such as cancer, understanding the cellular consequences of conflicts is of paramount importance. In this article, we summarize our current knowledge on where and when collisions occur and how these encounters affect the genome and chromatin landscape of cells. Finally, we conclude with the different cellular pathways and multiple mechanisms that cells have put in place at conflict sites to ensure the resolution of conflicts and accurate genome duplication.
Collapse
|
3
|
Mark KG, Rape M. Ubiquitin-dependent regulation of transcription in development and disease. EMBO Rep 2021; 22:e51078. [PMID: 33779035 DOI: 10.15252/embr.202051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Transcription is an elaborate process that is required to establish and maintain the identity of the more than two hundred cell types of a metazoan organism. Strict regulation of gene expression is therefore vital for tissue formation and homeostasis. An accumulating body of work found that ubiquitylation of histones, transcription factors, or RNA polymerase II is crucial for ensuring that transcription occurs at the right time and place during development. Here, we will review principles of ubiquitin-dependent control of gene expression and discuss how breakdown of these regulatory circuits leads to a wide array of human diseases.
Collapse
Affiliation(s)
- Kevin G Mark
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Rape
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Abstract
Genome replication involves dealing with obstacles that can result from DNA damage but also from chromatin alterations, topological stress, tightly bound proteins or non-B DNA structures such as R loops. Experimental evidence reveals that an engaged transcription machinery at the DNA can either enhance such obstacles or be an obstacle itself. Thus, transcription can become a potentially hazardous process promoting localized replication fork hindrance and stress, which would ultimately cause genome instability, a hallmark of cancer cells. Understanding the causes behind transcription-replication conflicts as well as how the cell resolves them to sustain genome integrity is the aim of this review.
Collapse
|
5
|
Escherichia coli and Neisseria gonorrhoeae UvrD helicase unwinds G4 DNA structures. Biochem J 2017; 474:3579-3597. [PMID: 28916651 DOI: 10.1042/bcj20170587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022]
Abstract
G-quadruplex (G4) secondary structures have been implicated in various biological processes, including gene expression, DNA replication and telomere maintenance. However, unresolved G4 structures impede replication progression which can lead to the generation of DNA double-strand breaks and genome instability. Helicases have been shown to resolve G4 structures to facilitate faithful duplication of the genome. Escherichia coli UvrD (EcUvrD) helicase plays a crucial role in nucleotide excision repair, mismatch repair and in the regulation of homologous recombination. Here, we demonstrate a novel role of E. coli and Neisseria gonorrhoeae UvrD in resolving G4 tetraplexes. EcUvrD and Ngonorrhoeae UvrD were proficient in unwinding previously characterized tetramolecular G4 structures. Notably, EcUvrD was equally efficient in resolving tetramolecular and bimolecular G4 DNA that were derived from the potential G4-forming sequences from the genome of E. coli Interestingly, in addition to resolving intermolecular G4 structures, EcUvrD was robust in unwinding intramolecular G4 structures. These data for the first time provide evidence for the role of UvrD in the resolution of G4 structures, which has implications for the in vivo role of UvrD helicase in G4 DNA resolution and genome maintenance.
Collapse
|
6
|
Kuehner JN, Kaufman JW, Moore C. Stimulation of RNA Polymerase II ubiquitination and degradation by yeast mRNA 3'-end processing factors is a conserved DNA damage response in eukaryotes. DNA Repair (Amst) 2017; 57:151-160. [PMID: 28783563 DOI: 10.1016/j.dnarep.2017.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 02/09/2023]
Abstract
The quality and retrieval of genetic information is imperative to the survival and reproduction of all living cells. Ultraviolet (UV) light induces lesions that obstruct DNA access during transcription, replication, and repair. Failure to remove UV-induced lesions can abrogate gene expression and cell division, resulting in permanent DNA mutations. To defend against UV damage, cells utilize transcription-coupled nucleotide excision repair (TC-NER) to quickly target lesions within active genes. In cases of long-term genotoxic stress, a slower alternative pathway promotes degradation of RNA Polymerase II (Pol II) to allow for global genomic nucleotide excision repair (GG-NER). The crosstalk between TC-NER and GG-NER pathways and the extent of their coordination with other nuclear events has remained elusive. We aimed to identify functional links between the DNA damage response (DDR) and the mRNA 3'-end processing complex. Our labs have previously shown that UV-induced inhibition of mRNA processing is a conserved DDR between yeast and mammalian cells. Here we have identified mutations in the yeast mRNA 3'-end processing cleavage factor IA (CFIA) and cleavage and polyadenylation factor (CPF) that confer sensitivity to UV-type DNA damage. In the absence of TC-NER, CFIA and CPF mutants show reduced UV tolerance and an increased frequency of UV-induced genomic mutations, consistent with a role for RNA processing factors in an alternative DNA repair pathway. CFIA and CPF mutants impaired the ubiquitination and degradation of Pol II following DNA damage, but the co-transcriptional recruitment of Pol II degradation factors Elc1 and Def1 was undiminished. Overall these data are consistent with yeast 3'-end processing factors contributing to the removal of Pol II stalled at UV-type DNA lesions, a functional interaction that is conserved between homologous factors in yeast and human cells.
Collapse
Affiliation(s)
- Jason N Kuehner
- Department of Biology, Emmanuel College, Boston, MA 02115, United States.
| | - James W Kaufman
- Department of Biology, Emmanuel College, Boston, MA 02115, United States
| | - Claire Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
7
|
Merk K, Breinig M, Böttcher R, Krebs S, Blum H, Boutros M, Förstemann K. Splicing stimulates siRNA formation at Drosophila DNA double-strand breaks. PLoS Genet 2017. [PMID: 28628606 PMCID: PMC5495518 DOI: 10.1371/journal.pgen.1006861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA double-strand breaks trigger the production of locus-derived siRNAs in fruit flies, human cells and plants. At least in flies, their biogenesis depends on active transcription running towards the break. Since siRNAs derive from a double-stranded RNA precursor, a major question is how broken DNA ends can generate matching sense and antisense transcripts. We performed a genome-wide RNAi-screen in cultured Drosophila cells, which revealed that in addition to DNA repair factors, many spliceosome components are required for efficient siRNA generation. We validated this observation through site-specific DNA cleavage with CRISPR-cas9 followed by deep sequencing of small RNAs. DNA breaks in intron-less genes or upstream of a gene's first intron did not efficiently trigger siRNA production. When DNA double-strand breaks were induced downstream of an intron, however, this led to robust siRNA generation. Furthermore, a downstream break slowed down splicing of the upstream intron and a detailed analysis of siRNA coverage at the targeted locus revealed that unspliced pre-mRNA contributes the sense strand to the siRNA precursor. Since splicing factors are stimulating the response but unspliced transcripts are entering the siRNA biogenesis, the spliceosome is apparently stalled in a pre-catalytic state and serves as a signaling hub. We conclude that convergent transcription at DNA breaks is stimulated by a splicing dependent control process. The resulting double-stranded RNA is converted into siRNAs that instruct the degradation of cognate mRNAs. In addition to a potential role in DNA repair, the break-induced transcription may thus be a means to cull improper RNAs from the transcriptome of Drosophila melanogaster. Since the splicing factors identified in our screen also stimulated siRNA production from high copy transgenes, it is possible that this surveillance mechanism serves in genome defense beyond DNA double-strand breaks.
Collapse
Affiliation(s)
- Karin Merk
- Gene Center and Dept. of Biochemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Marco Breinig
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Im Neuenheimer Feld 580, Heidelberg, Germany
| | - Romy Böttcher
- Gene Center and Dept. of Biochemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Im Neuenheimer Feld 580, Heidelberg, Germany
| | - Klaus Förstemann
- Gene Center and Dept. of Biochemistry, Ludwig-Maximilians-Universität München, München, Germany
- * E-mail:
| |
Collapse
|
8
|
Owiti N, Lopez C, Singh S, Stephenson A, Kim N. Def1 and Dst1 play distinct roles in repair of AP lesions in highly transcribed genomic regions. DNA Repair (Amst) 2017; 55:31-39. [PMID: 28521214 DOI: 10.1016/j.dnarep.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
Abstract
Abasic or AP sites generated by spontaneous DNA damage accumulate at a higher rate in actively transcribed regions of the genome in S. cerevisiae and are primarily repaired by base excision repair (BER) pathway. We have demonstrated that transcription-coupled nucleotide excision repair (NER) pathway can functionally replace BER to repair those AP sites located on the transcribed strand much like the strand specific repair of UV-induced pyrimidine dimers. Previous reports indicate that Rad26, a yeast homolog of transcription-repair coupling factor CSB, partly mediates strand-specific repair of UV-dimers as well as AP lesions. Here, we report that Def1, known to promote ubiquitination and degradation of stalled RNA polymerase complex, also directs NER to AP lesions on the transcribed strand of an actively transcribed gene but that its function is dependent on metabolic state of the yeast cells. We additionally show that Dst1, a homolog of mammalian transcription elongation factor TFIIS, interferes with NER-dependent repair of AP lesions while suppressing homologous recombination pathway. Overall, Def1 and Dst1 mediate very different outcomes in response to AP-induced transcription arrest.
Collapse
Affiliation(s)
- Norah Owiti
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Christopher Lopez
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shivani Singh
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andrei Stephenson
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Yew YW, Giordano CN, Spivak G, Lim HW. Understanding photodermatoses associated with defective DNA repair: Photosensitive syndromes without associated cancer predisposition. J Am Acad Dermatol 2017; 75:873-882. [PMID: 27745642 DOI: 10.1016/j.jaad.2016.03.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 11/17/2022]
Abstract
Photodermatoses associated with defective DNA repair are a group of photosensitive hereditary skin disorders. In this review, we focus on diseases and syndromes with defective nucleotide excision repair that are not accompanied by an increased risk of cutaneous malignancies despite having photosensitivity. Specifically, the gene mutations and transcription defects, epidemiology, and clinical features of Cockayne syndrome, cerebro-oculo-facial-skeletal syndrome, ultraviolet-sensitive syndrome, and trichothiodystrophy will be discussed. These conditions may also have other extracutaneous involvement affecting the neurologic system and growth and development. Rigorous photoprotection remains an important component of the management of these inherited DNA repair-deficiency photodermatoses.
Collapse
Affiliation(s)
- Yik Weng Yew
- Department of Dermatology, National Skin Centre, Singapore
| | | | - Graciela Spivak
- Department of Biology, Stanford University, Stanford, California
| | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan.
| |
Collapse
|
10
|
Williamson L, Saponaro M, Boeing S, East P, Mitter R, Kantidakis T, Kelly GP, Lobley A, Walker J, Spencer-Dene B, Howell M, Stewart A, Svejstrup JQ. UV Irradiation Induces a Non-coding RNA that Functionally Opposes the Protein Encoded by the Same Gene. Cell 2017; 168:843-855.e13. [PMID: 28215706 PMCID: PMC5332558 DOI: 10.1016/j.cell.2017.01.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 10/27/2016] [Accepted: 01/18/2017] [Indexed: 11/28/2022]
Abstract
The transcription-related DNA damage response was analyzed on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a slowdown of transcript elongation and restriction of gene activity to the promoter-proximal ∼25 kb is observed. This is associated with a shift from expression of long mRNAs to shorter isoforms, incorporating alternative last exons (ALEs) that are more proximal to the transcription start site. Notably, this includes a shift from a protein-coding ASCC3 mRNA to a shorter ALE isoform of which the RNA, rather than an encoded protein, is critical for the eventual recovery of transcription. The non-coding ASCC3 isoform counteracts the function of the protein-coding isoform, indicating crosstalk between them. Thus, the ASCC3 gene expresses both coding and non-coding transcript isoforms with opposite effects on transcription recovery after UV-induced DNA damage.
Collapse
Affiliation(s)
- Laura Williamson
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Marco Saponaro
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| | - Stefan Boeing
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK; Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Philip East
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Theodoros Kantidakis
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Gavin P Kelly
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna Lobley
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Bradley Spencer-Dene
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aengus Stewart
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK.
| |
Collapse
|
11
|
Abstract
Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA, 94305-5020, USA.
| |
Collapse
|
12
|
Ranes M, Boeing S, Wang Y, Wienholz F, Menoni H, Walker J, Encheva V, Chakravarty P, Mari PO, Stewart A, Giglia-Mari G, Snijders AP, Vermeulen W, Svejstrup JQ. A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair. Nucleic Acids Res 2016; 44:5246-55. [PMID: 27060134 PMCID: PMC4914099 DOI: 10.1093/nar/gkw216] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 12/23/2022] Open
Abstract
Cockayne syndrome B (CSB), best known for its role in transcription-coupled nucleotide excision repair (TC-NER), contains a ubiquitin-binding domain (UBD), but the functional connection between protein ubiquitylation and this UBD remains unclear. Here, we show that CSB is regulated via site-specific ubiquitylation. Mass spectrometry analysis of CSB identified lysine (K) 991 as a ubiquitylation site. Intriguingly, mutation of this residue (K991R) does not affect CSB's catalytic activity or protein stability, but greatly affects genome stability, even in the absence of induced DNA damage. Moreover, cells expressing CSB K991R are sensitive to oxidative DNA damage, but proficient for TC-NER. K991 becomes ubiquitylated upon oxidative DNA damage, and while CSB K991R is recruited normally to such damage, it fails to dissociate in a timely manner, suggesting a requirement for K991 ubiquitylation in CSB activation. Interestingly, deletion of CSB's UBD gives rise to oxidative damage sensitivity as well, while CSB ΔUBD and CSB K991R affects expression of overlapping groups of genes, further indicating a functional connection. Together, these results shed new light on the regulation of CSB, with K991R representing an important separation-of-function-mutation in this multi-functional protein.
Collapse
Affiliation(s)
- Michael Ranes
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Stefan Boeing
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Yuming Wang
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Franziska Wienholz
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Hervé Menoni
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Vesela Encheva
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Probir Chakravarty
- Bioinformatics & Biostatistics Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Pierre-Olivier Mari
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F-31077 Toulouse, France
| | - Aengus Stewart
- Bioinformatics & Biostatistics Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Giuseppina Giglia-Mari
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F-31077 Toulouse, France
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Wim Vermeulen
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| |
Collapse
|
13
|
Boeing S, Williamson L, Encheva V, Gori I, Saunders RE, Instrell R, Aygün O, Rodriguez-Martinez M, Weems JC, Kelly GP, Conaway JW, Conaway RC, Stewart A, Howell M, Snijders AP, Svejstrup JQ. Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 2016; 15:1597-1610. [PMID: 27184836 PMCID: PMC4893159 DOI: 10.1016/j.celrep.2016.04.047] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/25/2016] [Accepted: 04/10/2016] [Indexed: 12/21/2022] Open
Abstract
In order to facilitate the identification of factors and pathways in the cellular response to UV-induced DNA damage, several descriptive proteomic screens and a functional genomics screen were performed in parallel. Numerous factors could be identified with high confidence when the screen results were superimposed and interpreted together, incorporating biological knowledge. A searchable database, bioLOGIC, which provides access to relevant information about a protein or process of interest, was established to host the results and facilitate data mining. Besides uncovering roles in the DNA damage response for numerous proteins and complexes, including Integrator, Cohesin, PHF3, ASC-1, SCAF4, SCAF8, and SCAF11, we uncovered a role for the poorly studied, melanoma-associated serine/threonine kinase 19 (STK19). Besides effectively uncovering relevant factors, the multiomic approach also provides a systems-wide overview of the diverse cellular processes connected to the transcription-related DNA damage response.
Collapse
Affiliation(s)
- Stefan Boeing
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK; Bioinformatics and Biostatistics Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Laura Williamson
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Vesela Encheva
- Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Ilaria Gori
- High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Rebecca E Saunders
- High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Rachael Instrell
- High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ozan Aygün
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Marta Rodriguez-Martinez
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Juston C Weems
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gavin P Kelly
- Bioinformatics and Biostatistics Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Aengus Stewart
- Bioinformatics and Biostatistics Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Michael Howell
- High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK.
| |
Collapse
|
14
|
Jackson RA, Wu JS, Chen ES. C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response. Cell Div 2016; 11:2. [PMID: 27030795 PMCID: PMC4812661 DOI: 10.1186/s13008-016-0014-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 12/02/2022] Open
Abstract
Research on the involvement of C1D and its yeast homologues Rrp47 (S. cerevisiae) and Cti1 (S. pombe) in DNA damage repair and RNA processing has remained mutually exclusive, with most studies predominantly concentrating on Rrp47. This review will look to reconcile the functions of these proteins in their involvement with the RNA exosome, in the regulation of chromatin architecture, and in the repair of DNA double-strand breaks, focusing on non-homologous end joining and homologous recombination. We propose that C1D is situated in a central position to maintain genomic stability at highly transcribed gene loci by coordinating these processes through the timely recruitment of relevant regulatory factors. In the event that the damage is beyond repair, C1D induces apoptosis in a p53-dependent manner.
Collapse
Affiliation(s)
- Rebecca A Jackson
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Jocelyn Shumei Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore ; National University Health System (NUHS), Singapore, 119228 Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
15
|
Poli J, Gerhold CB, Tosi A, Hustedt N, Seeber A, Sack R, Herzog F, Pasero P, Shimada K, Hopfner KP, Gasser SM. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev 2016; 30:337-54. [PMID: 26798134 PMCID: PMC4743062 DOI: 10.1101/gad.273813.115] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Abstract
Poli et al. present genetic and proteomic analyses from budding yeast that uncover links between the DNA replication checkpoint sensor Mec1–Ddc2 (ATR–ATRIP), the chromatin remodeling complex INO80C, and the transcription complex PAF1C. A subset of chromatin-bound RNAPII is degraded in a manner dependent on Mec1, INO80, and PAF1 complexes in cells exposed to hydroxyurea. Little is known about how cells ensure DNA replication in the face of RNA polymerase II (RNAPII)-mediated transcription, especially under conditions of replicative stress. Here we present genetic and proteomic analyses from budding yeast that uncover links between the DNA replication checkpoint sensor Mec1–Ddc2 (ATR–ATRIP), the chromatin remodeling complex INO80C (INO80 complex), and the transcription complex PAF1C (PAF1 complex). We found that a subset of chromatin-bound RNAPII is degraded in a manner dependent on Mec1, INO80, and PAF1 complexes in cells exposed to hydroxyurea (HU). On HU, Mec1 triggers the efficient removal of PAF1C and RNAPII from transcribed genes near early firing origins. Failure to evict RNAPII correlates inversely with recovery from replication stress: paf1Δ cells, like ino80 and mec1 mutants, fail to restart forks efficiently after stalling. Our data reveal unexpected synergies between INO80C, Mec1, and PAF1C in the maintenance of genome integrity and suggest a mechanism of RNAPII degradation that reduces transcription–replication fork collision.
Collapse
Affiliation(s)
- Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | | | - Alessandro Tosi
- Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Nicole Hustedt
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Franz Herzog
- Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Philippe Pasero
- UPR 1142, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, 30396 Montpellier, France
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Karl-Peter Hopfner
- Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
16
|
Abstract
The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biology, Stanford University, Stanford, CA 94305-5020,USA.
| |
Collapse
|
17
|
Zhou H, Liu Q, Shi T, Yu Y, Lu H. Genome-wide screen of fission yeast mutants for sensitivity to 6-azauracil, an inhibitor of transcriptional elongation. Yeast 2015; 32:643-55. [DOI: 10.1002/yea.3085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Qi Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Tianfang Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai People's Republic of China
- Shanghai Engineering Research Centre of Industrial Microorganisms; Shanghai 200438 People's Republic of China
- Shanghai Collaborative Innovation Centre for Biomanufacturing Technology; Shanghai 200237 People's Republic of China
| |
Collapse
|
18
|
Large expansion of CTG•CAG repeats is exacerbated by MutSβ in human cells. Sci Rep 2015; 5:11020. [PMID: 26047474 PMCID: PMC4457148 DOI: 10.1038/srep11020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/12/2015] [Indexed: 11/08/2022] Open
Abstract
Trinucleotide repeat expansion disorders (TRED) are caused by genomic expansions of trinucleotide repeats, such as CTG and CAG. These expanded repeats are unstable in germline and somatic cells, with potential consequences for disease severity. Previous studies have demonstrated the involvement of DNA repair proteins in repeat instability, although the key factors affecting large repeat expansion and contraction are unclear. Here we investigated these factors in a human cell model harboring 800 CTG•CAG repeats by individually knocking down various DNA repair proteins using short interfering RNA. Knockdown of MSH2 and MSH3, which form the MutSβ heterodimer and function in mismatch repair, suppressed large repeat expansions, whereas knockdown of MSH6, which forms the MutSα heterodimer with MSH2, promoted large expansions exceeding 200 repeats by compensatory increases in MSH3 and the MutSβ complex. Knockdown of topoisomerase 1 (TOP1) and TDP1, which are involved in single-strand break repair, enhanced large repeat contractions. Furthermore, knockdown of senataxin, an RNA/DNA helicase which affects DNA:RNA hybrid formation and transcription-coupled nucleotide excision repair, exacerbated repeat instability in both directions. These results indicate that DNA repair factors, such as MutSβ play important roles in large repeat expansion and contraction, and can be an excellent therapeutic target for TRED.
Collapse
|
19
|
Million-Weaver S, Samadpour AN, Moreno-Habel DA, Nugent P, Brittnacher MJ, Weiss E, Hayden HS, Miller SI, Liachko I, Merrikh H. An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proc Natl Acad Sci U S A 2015; 112:E1096-105. [PMID: 25713353 PMCID: PMC4364195 DOI: 10.1073/pnas.1416651112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported that lagging-strand genes accumulate mutations faster than those encoded on the leading strand in Bacillus subtilis. Although we proposed that orientation-specific encounters between replication and transcription underlie this phenomenon, the mechanism leading to the increased mutagenesis of lagging-strand genes remained unknown. Here, we report that the transcription-dependent and orientation-specific differences in mutation rates of genes require the B. subtilis Y-family polymerase, PolY1 (yqjH). We find that without PolY1, association of the replicative helicase, DnaC, and the recombination protein, RecA, with lagging-strand genes increases in a transcription-dependent manner. These data suggest that PolY1 promotes efficient replisome progression through lagging-strand genes, thereby reducing potentially detrimental breaks and single-stranded DNA at these loci. Y-family polymerases can alleviate potential obstacles to replisome progression by facilitating DNA lesion bypass, extension of D-loops, or excision repair. We find that the nucleotide excision repair (NER) proteins UvrA, UvrB, and UvrC, but not RecA, are required for transcription-dependent asymmetry in mutation rates of genes in the two orientations. Furthermore, we find that the transcription-coupling repair factor Mfd functions in the same pathway as PolY1 and is also required for increased mutagenesis of lagging-strand genes. Experimental and SNP analyses of B. subtilis genomes show mutational footprints consistent with these findings. We propose that the interplay between replication and transcription increases lesion susceptibility of, specifically, lagging-strand genes, activating an Mfd-dependent error-prone NER mechanism. We propose that this process, at least partially, underlies the accelerated evolution of lagging-strand genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ivan Liachko
- Genome Sciences, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
20
|
Gaillard H, Wellinger RE, Aguilera A. Methods to study transcription-coupled repair in chromatin. Methods Mol Biol 2015; 1288:273-88. [PMID: 25827885 DOI: 10.1007/978-1-4939-2474-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of endogenous and exogenous DNA damage on the cellular metabolism can be studied at the genetic and molecular level. A paradigmatic case is the repair of UV-induced pyrimidine dimers (PDs) by nucleotide excision repair (NER) in Saccharomyces cerevisiae. To follow the formation and repair of PDs at specific chromosome loci, cells are irradiated with UV-light and incubated in the dark to allow repair by NER. Upon DNA isolation, cyclobutane pyrimidine dimers, which account for about 90 % of PDs, can be cleaved in vitro by the DNA nicking activity of the T4 endonuclease V repair enzyme. Subsequently, strand-specific repair in a suitable restriction fragment is determined by denaturing gel electrophoresis followed by Southern blot and indirect end-labeling using a single-stranded DNA probe. Noteworthy, this protocol could potentially be adapted to other kind of DNA lesions, as long as a DNA nick is formed or a lesion-specific endonuclease is available.Transcription-coupled repair (TC-NER) is a sub-pathway of NER that catalyzes the repair of the transcribed strand of active genes. RNA polymerase II is essential for TC-NER, and its occupancy on a damaged template can be analyzed by chromatin immunoprecipitation (ChIP). In this chapter, we provide an up-dated protocol for both the DNA repair analysis and ChIP approaches to study TC-NER in yeast chromatin.
Collapse
Affiliation(s)
- Hélène Gaillard
- Genetics, CABIMER, Universidad de Sevilla-CSIC, Avenida Américo Vespucio s/n, 41092, Seville, Spain
| | | | | |
Collapse
|
21
|
Felipe-Abrio I, Lafuente-Barquero J, García-Rubio ML, Aguilera A. RNA polymerase II contributes to preventing transcription-mediated replication fork stalls. EMBO J 2014; 34:236-50. [PMID: 25452497 DOI: 10.15252/embj.201488544] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcription is a major contributor to genome instability. A main cause of transcription-associated instability relies on the capacity of transcription to stall replication. However, we know little of the possible role, if any, of the RNA polymerase (RNAP) in this process. Here, we analyzed 4 specific yeast RNAPII mutants that show different phenotypes of genetic instability including hyper-recombination, DNA damage sensitivity and/or a strong dependency on double-strand break repair functions for viability. Three specific alleles of the RNAPII core, rpb1-1, rpb1-S751F and rpb9∆, cause a defect in replication fork progression, compensated for by additional origin firing, as the main action responsible for instability. The transcription elongation defects of rpb1-S751F and rpb9∆ plus our observation that rpb1-1 causes RNAPII retention on chromatin suggest that RNAPII could participate in facilitating fork progression upon a transcription-replication encounter. Our results imply that the RNAPII or ancillary factors actively help prevent transcription-associated genome instability.
Collapse
Affiliation(s)
- Irene Felipe-Abrio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lafuente-Barquero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
22
|
Mechanisms of genome instability induced by RNA-processing defects. Trends Genet 2014; 30:245-53. [PMID: 24794811 DOI: 10.1016/j.tig.2014.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/20/2022]
Abstract
The role of normal transcription and RNA processing in maintaining genome integrity is becoming increasingly appreciated in organisms ranging from bacteria to humans. Several mutations in RNA biogenesis factors have been implicated in human cancers, but the mechanisms and potential connections to tumor genome instability are not clear. Here, we discuss how RNA-processing defects could destabilize genomes through mutagenic R-loop structures and by altering expression of genes required for genome stability. A compelling body of evidence now suggests that researchers should be directly testing these mechanisms in models of human cancer.
Collapse
|
23
|
Abstract
A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| | - Ann K Ganesan
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| |
Collapse
|
24
|
Adam S, Polo SE, Almouzni G. How to restore chromatin structure and function in response to DNA damage--let the chaperones play: delivered on 9 July 2013 at the 38th FEBS Congress in St Petersburg, Russia. FEBS J 2014; 281:2315-23. [PMID: 24673849 DOI: 10.1111/febs.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/25/2014] [Indexed: 01/07/2023]
Abstract
Histone deposition onto DNA assisted by specific chaperones forms the chromatin basic unit and serves to package the genome within the cell nucleus. The resulting chromatin organization, often referred to as the epigenome, contributes to a unique transcriptional program that defines cell identity. Importantly, during cellular life, substantial alterations in chromatin structure may arise due to cell stress, including DNA damage, which not only challenges the integrity of the genome but also threatens the epigenome. Considerable efforts have been made to decipher chromatin dynamics in response to genotoxic stress, and to assess how it affects both genome and epigenome stability. Here, we review recent advances in understanding the mechanisms of DNA damage-induced chromatin plasticity in mammalian cells. We focus specifically on the dynamics of histone H3 variants in response to UV irradiation, and highlight the role of their dedicated chaperones in restoring both chromatin structure and function. Finally, we discuss how, in addition to restoring chromatin integrity, the cellular networks that signal and repair DNA damage may also provide a window of opportunity for modulating the information conveyed by chromatin.
Collapse
Affiliation(s)
- Salomé Adam
- Institut Curie, Centre de Recherche, Paris, France; Centre National de la Recherche Scientifique, UMR3664, Paris, France; Equipe Labellisée Ligue Contre le Cancer, Paris, France; Institut de Formation Doctorale, University Pierre & Marie Curie, Paris, France; Sorbonne University, PSL*, Paris, France; Epigenetics and Cell Fate Centre, UMR7216, Centre National de la Recherche Scientifique/Paris Diderot University, Paris, France
| | | | | |
Collapse
|
25
|
Gaillard H, Aguilera A. Cleavage factor I links transcription termination to DNA damage response and genome integrity maintenance in Saccharomyces cerevisiae. PLoS Genet 2014; 10:e1004203. [PMID: 24603480 PMCID: PMC3945788 DOI: 10.1371/journal.pgen.1004203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/10/2014] [Indexed: 12/18/2022] Open
Abstract
During transcription, the nascent pre-mRNA undergoes a series of processing steps before being exported to the cytoplasm. The 3'-end processing machinery involves different proteins, this function being crucial to cell growth and viability in eukaryotes. Here, we found that the rna14-1, rna15-1, and hrp1-5 alleles of the cleavage factor I (CFI) cause sensitivity to UV-light in the absence of global genome repair in Saccharomyces cerevisiae. Unexpectedly, CFI mutants were proficient in UV-lesion repair in a transcribed gene. DNA damage checkpoint activation and RNA polymerase II (RNAPII) degradation in response to UV were delayed in CFI-deficient cells, indicating that CFI participates in the DNA damage response (DDR). This is further sustained by the synthetic growth defects observed between rna14-1 and mutants of different repair pathways. Additionally, we found that rna14-1 suffers severe replication progression defects and that a functional G1/S checkpoint becomes essential in avoiding genetic instability in those cells. Thus, CFI function is required to maintain genome integrity and to prevent replication hindrance. These findings reveal a new function for CFI in the DDR and underscore the importance of coordinating transcription termination with replication in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Sevilla, Spain
- * E-mail:
| |
Collapse
|
26
|
Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B, Proshkin S, Mironov A, Nudler E. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 2014; 505:372-7. [PMID: 24402227 DOI: 10.1038/nature12928] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022]
Abstract
UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD as a bona fide transcription elongation factor that contributes to genomic integrity by resolving conflicts between transcription and DNA repair complexes. Furthermore, we show that the elongation factor NusA cooperates with UvrD in coupling transcription to DNA repair by promoting backtracking and recruiting nucleotide excision repair enzymes to exposed lesions. Because backtracking is a shared feature of all cellular RNA polymerases, we propose that this mechanism enables RNA polymerases to function as global DNA damage scanners in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Vitaly Epshtein
- 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2]
| | - Venu Kamarthapu
- 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA [3]
| | - Katelyn McGary
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Sergey Proshkin
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia
| | - Alexander Mironov
- 1] State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia [2] Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia
| | - Evgeny Nudler
- 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
27
|
Adam S, Polo SE, Almouzni G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 2013; 155:94-106. [PMID: 24074863 DOI: 10.1016/j.cell.2013.08.029] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/17/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Understanding how to recover fully functional and transcriptionally active chromatin when its integrity has been challenged by genotoxic stress is a critical issue. Here, by investigating how chromatin dynamics regulate transcriptional activity in response to DNA damage in human cells, we identify a pathway involving the histone chaperone histone regulator A (HIRA) to promote transcription restart after UVC damage. Our mechanistic studies reveal that HIRA accumulates at sites of UVC irradiation upon detection of DNA damage prior to repair and deposits newly synthesized H3.3 histones. This local action of HIRA depends on ubiquitylation events associated with damage recognition. Furthermore, we demonstrate that the early and transient function of HIRA in response to DNA damage primes chromatin for later reactivation of transcription. We propose that HIRA-dependent histone deposition serves as a chromatin bookmarking system to facilitate transcription recovery after genotoxic stress.
Collapse
Affiliation(s)
- Salomé Adam
- Chromatin Dynamics, Institut Curie Research Centre, 75248 Paris Cedex 5, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 218, 75248 Paris Cedex 5, France
| | | | | |
Collapse
|
28
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
29
|
Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 2013; 20:1199-205. [DOI: 10.1038/nsmb.2662] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/06/2013] [Indexed: 12/27/2022]
|
30
|
Wilson MD, Harreman M, Taschner M, Reid J, Walker J, Erdjument-Bromage H, Tempst P, Svejstrup JQ. Proteasome-mediated processing of Def1, a critical step in the cellular response to transcription stress. Cell 2013; 154:983-995. [PMID: 23993092 PMCID: PMC3778974 DOI: 10.1016/j.cell.2013.07.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/30/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
Abstract
DNA damage triggers polyubiquitylation and degradation of the largest subunit of RNA polymerase II (RNAPII), a "mechanism of last resort" employed during transcription stress. In yeast, this process is dependent on Def1 through a previously unresolved mechanism. Here, we report that Def1 becomes activated through ubiquitylation- and proteasome-dependent processing. Def1 processing results in the removal of a domain promoting cytoplasmic localization, resulting in nuclear accumulation of the clipped protein. Nuclear Def1 then binds RNAPII, utilizing a ubiquitin-binding domain to recruit the Elongin-Cullin E3 ligase complex via a ubiquitin-homology domain in the Ela1 protein. This facilitates polyubiquitylation of Rpb1, triggering its proteasome-mediated degradation. Together, these results outline the multistep mechanism of Rpb1 polyubiquitylation triggered by transcription stress and uncover the key role played by Def1 as a facilitator of Elongin-Cullin ubiquitin ligase function.
Collapse
Affiliation(s)
- Marcus D Wilson
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Michelle Harreman
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Michael Taschner
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - James Reid
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Jane Walker
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | - Hediye Erdjument-Bromage
- Molecular Biology Programme, Memorial Sloan-Kettering Cancer Center, York Avenue 1275, New York, NY 10021, USA
| | - Paul Tempst
- Molecular Biology Programme, Memorial Sloan-Kettering Cancer Center, York Avenue 1275, New York, NY 10021, USA
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK.
| |
Collapse
|
31
|
Belotserkovskii BP, Mirkin SM, Hanawalt PC. DNA sequences that interfere with transcription: implications for genome function and stability. Chem Rev 2013; 113:8620-37. [PMID: 23972098 DOI: 10.1021/cr400078y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Gaillard H, Herrera-Moyano E, Aguilera A. Transcription-associated genome instability. Chem Rev 2013; 113:8638-61. [PMID: 23597121 DOI: 10.1021/cr400017y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla , Av. Américo Vespucio s/n, 41092 Seville, Spain
| | | | | |
Collapse
|
33
|
Abstract
Ubiquitylation and sumoylation, the covalent attachment of the polypeptides ubiquitin and SUMO, respectively, to target proteins, are pervasive mechanisms for controlling cellular functions. Here, we summarize the key steps and enzymes involved in ubiquitin and SUMO conjugation and provide an overview of how they are crucial for maintaining genome stability. Specifically, we review research that has revealed how ubiquitylation and sumoylation regulate and coordinate various pathways of DNA damage recognition, signaling, and repair at the biochemical, cellular, and whole-organism levels. In addition to providing key insights into the control and importance of DNA repair and associated processes, such work has established paradigms for regulatory control that are likely to extend to other cellular processes and that may provide opportunities for better understanding and treatment of human disease.
Collapse
Affiliation(s)
- Stephen P Jackson
- The Gurdon Institute and the Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|