1
|
Su J, Yang X, Xu H, Pei Y, Liu QS, Zhou Q, Jiang G. Screening (ant)agonistic activities of xenobiotics on the retinoic acid receptor alpha (RARα) using in vitro and in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174717. [PMID: 38997027 DOI: 10.1016/j.scitotenv.2024.174717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Retinoic acid receptors (RARs) are known as crucial endocrine receptors that could mediate a broad diversity of biological processes. However, the data on endocrine disrupting effects of emerging chemicals by targeting RAR (ant)agonism are far from sufficient. Herein, we investigated the RARα agonistic or antagonistic activities for 75 emerging chemicals of concern, and explored their interactions with this receptor. A recombinant two-hybrid yeast assay was used to examine the RARα activities of the test chemicals, wherein 7 showed effects of RARα agonism and 54 exerted potentials of RARα antagonism. The representative chemicals with RARα agonistic activities, i.e. 4-hydroxylphenol (4-HP) and bisphenol AF (BPAF), significantly increased the mRNA levels of CRABP2 and CYP26A1, while 4 select chemicals with RARα antagonistic potentials, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-t-OP), and 4-n-nonylphenol (4-n-NP), conversely decreased the transcriptional levels of the test genes. The in silico molecular docking analysis using 3 different approaches further confirmed the substantial binding between the chemicals with RARα activities and this nuclear receptor protein. This work highlights the promising strategy for screening endocrine-disrupting effects of emerging chemicals of concern by targeting RARα (ant)agonism.
Collapse
Affiliation(s)
- Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang J, Kong W, Liu M, Wang Y, Zheng Y, Zhou Y. Association between dietary carotenoids intake and chronic constipation in American men and women adults: a cross-sectional study. BMC Public Health 2023; 23:1597. [PMID: 37608273 PMCID: PMC10463530 DOI: 10.1186/s12889-023-16367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Dietary carotenoids have been proven to improve intestinal disorders like inflammatory bowel disease and colon cancer, yet little is known about the link between dietary carotenoids and constipation. This study aims to examine the relationship between dietary carotenoids intake and constipation, using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2010. METHODS A total of 11,722 participants were enrolled. Chronic constipation was defined as type 1 (separate hard lumps, like nuts) and type 2 (sausage-like, but lumpy) in the Bristol stool form scale (BSFS). Carotenoids intake was obtained from the average of two 24-hour dietary recall questionnaires (if only one 24-hour was available, we used it) and divided into quartiles (Q). The prevalence of constipation was calculated across men and women individuals. The relationship between dietary carotenoids intake and constipation in men and women was assessed with weighted logistic regression and smoothed curve fitting after adjusting confounders, with results displayed as weighted odds ratio (OR) with 95% confidence intervals (95% CI). The model was further stratified by age, race, and HEI 2015 scores (with median as cutoff) among men and women. RESULTS The total weighted prevalence of chronic constipation in this study was 8.08%, 11.11% in women and 5.18% in men. After multivariable adjustment, compared with the lowest intake, participants with the highest dietary lycopene intake (ORQ4 vs. Q1= 0.55, 95% CI: 0.36-0.84, p for trend = 0.01) and total lycopene intake (ORQ4 vs. Q1 = 0.52, 95% CI: 0.34-0.80, p for trend = 0.01) were negatively associated with the risk of chronic constipation in men, whereas increased dietary α-carotene intake reduced the risk of chronic constipation in women (ORQ4 vs. Q1 = 0.69, 95% CI: 0.48-0.98, p for trend = 0.04). Smoothing curve fitting further supported these results and provided evidence of dose-response effects. No association was found between other types of carotenoids and chronic constipation in men and women. CONCLUSIONS Increasing lycopene intake may improve bowel function in men while increased α-carotene intake may reduce the risk of chronic constipation in women. Further studies are essential to explore the role that the intake of carotenoids plays in chronic constipation.
Collapse
Affiliation(s)
- Jiangnan Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Wanru Kong
- Department of Infection Management, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Yang FF, Xu XL, Hu T, Liu JQ, Zhou JZ, Ma LY, Liu HM. Lysine-Specific Demethylase 1 Promises to Be a Novel Target in Cancer Drug Resistance: Therapeutic Implications. J Med Chem 2023; 66:4275-4293. [PMID: 37014989 DOI: 10.1021/acs.jmedchem.2c01527] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chemotherapy, targeted therapy, and immunotherapy are effective against most tumors, but drug resistance remains a barrier to successful treatment. Lysine-specific demethylase 1 (LSD1), a member of histone demethylation modifications, can regulate invasion, metastasis, apoptosis, and immune escape of tumor cells, which are associated with tumorigenesis and tumor progression. Recent studies suggest that LSD1 ablation regulates resensitivity of tumor cells to anticarcinogens containing immune checkpoint inhibitors (ICIs) via multiple upstream and downstream pathways. In this review, we describe the recent findings about LSD1 biology and its role in the development and progression of cancer drug resistance. Further, we summarize LSD1 inhibitors that have a reversal or resensitive effect on drug resistance and discuss the possibility of targeting LSD1 in combination with other agents to surmount resistance.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xue-Li Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin-Zhu Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian 463000, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
5
|
Retinoic acid exerts sexually dimorphic effects on muscle energy metabolism and function. J Biol Chem 2021; 297:101101. [PMID: 34419449 PMCID: PMC8441203 DOI: 10.1016/j.jbc.2021.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/- mice. Relative to wild-type (WT) controls, Rdh10+/- males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/- females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/- male GM decrease 38% relative to WT. Rdh10+/- male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/- female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.
Collapse
|
6
|
Benedetti R, Dell’Aversana C, De Marchi T, Rotili D, Liu NQ, Novakovic B, Boccella S, Di Maro S, Cosconati S, Baldi A, Niméus E, Schultz J, Höglund U, Maione S, Papulino C, Chianese U, Iovino F, Federico A, Mai A, Stunnenberg HG, Nebbioso A, Altucci L. Inhibition of Histone Demethylases LSD1 and UTX Regulates ERα Signaling in Breast Cancer. Cancers (Basel) 2019; 11:cancers11122027. [PMID: 31888209 PMCID: PMC6966629 DOI: 10.3390/cancers11122027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
In breast cancer, Lysine-specific demethylase-1 (LSD1) and other lysine demethylases (KDMs), such as Lysine-specific demethylase 6A also known as Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), are co-expressed and co-localize with estrogen receptors (ERs), suggesting the potential use of hybrid (epi)molecules to target histone methylation and therefore regulate/redirect hormone receptor signaling. Here, we report on the biological activity of a dual-KDM inhibitor (MC3324), obtained by coupling the chemical properties of tranylcypromine, a known LSD1 inhibitor, with the 2OG competitive moiety developed for JmjC inhibition. MC3324 displays unique features not exhibited by the single moieties and well-characterized mono-pharmacological inhibitors. Inhibiting LSD1 and UTX, MC3324 induces significant growth arrest and apoptosis in hormone-responsive breast cancer model accompanied by a robust increase in H3K4me2 and H3K27me3. MC3324 down-regulates ERα in breast cancer at both transcriptional and non-transcriptional levels, mimicking the action of a selective endocrine receptor disruptor. MC3324 alters the histone methylation of ERα-regulated promoters, thereby affecting the transcription of genes involved in cell surveillance, hormone response, and death. MC3324 reduces cell proliferation in ex vivo breast cancers, as well as in breast models with acquired resistance to endocrine therapies. Similarly, MC3324 displays tumor-selective potential in vivo, in both xenograft mice and chicken embryo models, with no toxicity and good oral efficacy. This epigenetic multi-target approach is effective and may overcome potential mechanism(s) of resistance in breast cancer.
Collapse
Affiliation(s)
- Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
- Correspondence: (R.B.); (L.A.); Tel.: +39-081-5667564 (R.B.); +39-081-5667569 (L.A.)
| | - Carmela Dell’Aversana
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR) Via Sergio Pansini, 5-80131 Napoli, Italy
| | - Tommaso De Marchi
- Department of Oncology and Pathology, Lund University, SE-221 00 Lund, Sweden; (T.D.M.); (E.N.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Ning Qing Liu
- Department of Molecular Biology, Radboud University, 6500 HB Nijmegen, The Netherlands; (N.Q.L.); (H.G.S.)
| | - Boris Novakovic
- Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Parkville Victoria 3052, Australia;
| | - Serena Boccella
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.B.); (S.M.)
| | - Salvatore Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania ’Luigi Vanvitelli’, 81100 Caserta, Italy; (S.D.M.); (S.C.); (A.B.)
| | - Sandro Cosconati
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania ’Luigi Vanvitelli’, 81100 Caserta, Italy; (S.D.M.); (S.C.); (A.B.)
| | - Alfonso Baldi
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania ’Luigi Vanvitelli’, 81100 Caserta, Italy; (S.D.M.); (S.C.); (A.B.)
| | - Emma Niméus
- Department of Oncology and Pathology, Lund University, SE-221 00 Lund, Sweden; (T.D.M.); (E.N.)
- Department of Surgery, Skånes University Hospital, 222 29 Lund, Sweden
| | - Johan Schultz
- Kancera AB, Banvaktsvagen 22, SE-17148 Solna, Sweden;
| | - Urban Höglund
- Adlego Biomedical AB, P.O. Box 42, SE-751 03 Uppsala, Sweden;
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.B.); (S.M.)
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
| | - Francesco Iovino
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy;
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Radboud University, 6500 HB Nijmegen, The Netherlands; (N.Q.L.); (H.G.S.)
- Prinses Maxima Centrum, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
- Correspondence: (R.B.); (L.A.); Tel.: +39-081-5667564 (R.B.); +39-081-5667569 (L.A.)
| |
Collapse
|
7
|
Brossaud J, Pallet V, Corcuff JB. Vitamin A, endocrine tissues and hormones: interplay and interactions. Endocr Connect 2017; 6:R121-R130. [PMID: 28720593 PMCID: PMC5551430 DOI: 10.1530/ec-17-0101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A (retinol) is a micronutrient critical for cell proliferation and differentiation. In adults, vitamin A and metabolites such as retinoic acid (RA) play major roles in vision, immune and brain functions, and tissue remodelling and metabolism. This review presents the physiological interactions of retinoids and endocrine tissues and hormonal systems. Two endocrine systems have been particularly studied. In the pituitary, retinoids targets the corticotrophs with a possible therapeutic use in corticotropinomas. In the thyroid, retinoids interfere with iodine metabolism and vitamin A deficiency aggravates thyroid dysfunction caused by iodine-deficient diets. Retinoids use in thyroid cancer appears less promising than expected. Recent and still controversial studies investigated the relations between retinoids and metabolic syndrome. Indeed, retinoids contribute to pancreatic development and modify fat and glucose metabolism. However, more detailed studies are needed before planning any therapeutic use. Finally, retinoids probably play more minor roles in adrenal and gonads development and function apart from their major effects on spermatogenesis.
Collapse
Affiliation(s)
- Julie Brossaud
- J Brossaud, Nuclear Medicine, University hospital of Bordeaux, Pessac, France
| | - Veronique Pallet
- V Pallet, NutriNeurO-INRA 1286 - Université Bdx 2, University of Bordeaux, Bordeaux, 33076 BORDEAUX , France
| | - Jean-Benoit Corcuff
- J Corcuff, Nuclear Medicine, University hospital of Bordeaux, Pessac, 33604, France
| |
Collapse
|
8
|
Kiyama R. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur J Pharmacol 2017; 815:405-415. [PMID: 28970013 DOI: 10.1016/j.ejphar.2017.09.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
Abstract
Terpenes are made of the isoprene unit (C5), and along with their derivatives, terpenoids, they are widely distributed in plants as active ingredients involved in anti-inflammation, anti-carcinogenesis and neuroprotection. Estrogenic terpenes and terpenoids are an important category of phytoestrogens and have been used as traditional medicines. The comprehensive list of estrogenic terpenes and terpenoids includes hemi-, mono-, sesqui-, di-, tri-, tetra- and polyterpenes, their derivatives, and meroterpenes, along with the signaling pathways and cellular functions on which their estrogenicity is exerted. Signaling pathways are further classified as bidirectional or unidirectional, the latter being further divided into two types depending upon the presence of both ligands, or the absence of one or both ligands. Although estrogenic activity of terpenes and terpenoids was evaluated by ligand-binding assays, yeast two-hybrid assays, reporter-gene assays, transcription assays, protein assays, cell assays and animal testing, the mechanism of estrogenic activity is still not fully understood. Applications of estrogenic terpenes and terpenoids are categorized into cancer treatment and prevention, cardioprotection, endocrine toxicity/reproductive dysfunction, food/supplement/traditional medicine, immunology/inflammation, menopausal syndromes and neuroprotection, where their benefits are discussed based on their availability, stability and variations.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Faculty of Life Science, Kyushu Sangyo University, Fukuoka, Japan.
| |
Collapse
|
9
|
Bennesch MA, Segala G, Wider D, Picard D. LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP. Nucleic Acids Res 2016; 44:8655-8670. [PMID: 27325688 PMCID: PMC5062963 DOI: 10.1093/nar/gkw522] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/28/2016] [Indexed: 02/06/2023] Open
Abstract
The estrogen receptor α (ERα) is a transcription factor that can be directly activated by estrogen or indirectly by other signaling pathways. We previously reported that activation of the unliganded ERα by cAMP is mediated by phosphorylation of the transcriptional coactivator CARM1 by protein kinase A (PKA), allowing CARM1 to bind ERα directly. This being insufficient by itself to activate ERα, we looked for additional factors and identified the histone H3 demethylase LSD1 as a substrate of PKA and an important mediator of this signaling crosstalk as well as of the response to estrogen. Surprisingly, ERα engages not only LSD1, but its partners of the CoREST corepressor complex and the molecular chaperone Hsp90. The recruitment of Hsp90 to promote ERα transcriptional activity runs against the steroid receptor paradigm and suggests that it might be involved as an assembly factor or scaffold. In a breast cancer cell line, which is resistant to the anti-estrogen tamoxifen because of constitutively activated PKA, some interactions are constitutive and drug combinations partially rescue tamoxifen sensitivity. In ERα-positive breast cancer patients, high expression of the genes encoding some of these factors correlates with poor prognosis. Thus, these mechanisms might contribute to ERα-driven breast cancer.
Collapse
Affiliation(s)
- Marcela A Bennesch
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Gregory Segala
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Diana Wider
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| |
Collapse
|
10
|
Kilinc S, Savarino A, Coleman JH, Schwob JE, Lane RP. Lysine-specific demethylase-1 (LSD1) is compartmentalized at nuclear chromocenters in early post-mitotic cells of the olfactory sensory neuronal lineage. Mol Cell Neurosci 2016; 74:58-70. [PMID: 26947098 DOI: 10.1016/j.mcn.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/29/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
Mammalian olfaction depends on the development of specialized olfactory sensory neurons (OSNs) that each express one odorant receptor (OR) protein from a large family of OR genes encoded in the genome. The lysine-specific demethylase-1 (LSD1) protein removes activating H3K4 or silencing H3K9 methylation marks at gene promoters and is required for proper OR regulation. We show that LSD1 protein exhibits variable organization within nuclei of developing OSNs, and tends to consolidate into a single dominant compartment at the edges of chromocenters within nuclei of early post-mitotic cells of the mouse olfactory epithelium (MOE). Using an immortalized cell line derived from developing olfactory placode, we show that consolidation of LSD1 appears to be cell-cycle regulated, with a peak occurrence in early G1. LSD1 co-compartmentalizes with CoREST, a protein known to collaborate with LSD1 to carry out a variety of chromatin-modifying functions. We show that LSD1 compartments co-localize with 1-3 OR loci at the exclusion of most OR genes, and commonly associate with Lhx2, a transcription factor involved in OR regulation. Together, our data suggests that LSD1 is sequestered into a distinct nuclear space that might restrict a histone-modifying function to a narrow developmental time window and/or range of OR gene targets.
Collapse
Affiliation(s)
- Seda Kilinc
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| | - Alyssa Savarino
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
| | - Julie H Coleman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA.
| |
Collapse
|
11
|
Ma L, Ma S, Zhao G, Yang L, Zhang P, Yi Q, Cheng S. miR-708/LSD1 axis regulates the proliferation and invasion of breast cancer cells. Cancer Med 2016; 5:684-92. [PMID: 26833707 PMCID: PMC4831287 DOI: 10.1002/cam4.623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. The microRNAs (miRNAs) are small, noncoding RNAs that regulate various biological processes, including breast cancer. miR‐708 played an important role in a variety of cancers. However, its involvement in breast cancer remains largely unclear. In this study, we found that forced the expression of miR‐708 in breast cancer cell lines decreased cell proliferation and invasion, whereas inhibition of miR‐708 increased cell growth and invasion. miR‐708 could directly target the LSD1 3′UTR to downregulate the expression. Further studies suggested that inhibition of LSD1 could phenocopied function of the miR‐708 overexpression in MDA‐MB‐231 cells .Overexpression of LSD1 could counteract the effects of miR‐708 on the proliferation and invasion. Taken together, the results indicate that miR‐708 may function as a tumor suppressor gene in breast cancer development, and miR‐708/LSD1 axis may be a therapeutic intervention in breast cancer in the future.
Collapse
Affiliation(s)
- Lin Ma
- Department of Neurology, Shanghai Tongji Hospital, Tongji University, School of Medicine, Shanghai, 200065, China
| | - Shan Ma
- Department of Oncology, The Center Hospital of Zaozhuang Mining Group, Zaozhuang, 277000, China
| | - Guimei Zhao
- Vocational College of Zaozhuang, Zaozhuang, 277000, China
| | - Longqiu Yang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou City, Henan Province, 450007, China
| | - Peng Zhang
- Department of Oncology, The Center Hospital of Zaozhuang Mining Group, Zaozhuang, 277000, China
| | - Qingting Yi
- Department of Oncology, The Center Hospital of Zaozhuang Mining Group, Zaozhuang, 277000, China
| | - Shuguang Cheng
- Department of Oncology, The Center Hospital of Zaozhuang Mining Group, Zaozhuang, 277000, China
| |
Collapse
|
12
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
13
|
Huang J, Liu R, Su L, Xiao Q, Yu M. Transcriptome Analysis Revealed the Embryo-Induced Gene Expression Patterns in the Endometrium from Meishan and Yorkshire Pigs. Int J Mol Sci 2015; 16:22692-710. [PMID: 26393584 PMCID: PMC4613331 DOI: 10.3390/ijms160922692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/28/2015] [Accepted: 09/14/2015] [Indexed: 11/16/2022] Open
Abstract
The expression patterns in Meishan- and Yorkshire-derived endometrium during early (gestational day 15) and mid-gestation (gestational days 26 and 50) were investigated, respectively. Totally, 689 and 1649 annotated genes were identified to be differentially expressed in Meishan and Yorkshire endometrium during the three gestational stages, respectively. Hierarchical clustering analysis identified that, of the annotated differentially expressed genes (DEGs), 73 DEGs were unique to Meishan endometrium, 536 DEGs were unique to Yorkshire endometrium, and 228 DEGs were common in Meishan and Yorkshire endometriums. Subsequently, DEGs in each of the three types of expression patterns were grouped into four distinct categories according to the similarities in their temporal expression patterns. The expression patterns identified from the microarray analysis were validated by quantitative RT-PCR. The functional enrichment analysis revealed that the common DEGs were enriched in pathways of steroid metabolic process and regulation of retinoic acid receptor signaling. These unique DEGs in Meishan endometrium were involved in cell cycle and adherens junction. The DEGs unique to Yorkshire endometrium were associated with regulation of Rho protein signal transduction, maternal placenta development and cell proliferation. This study revealed the different gene expression patterns or pathways related to the endometrium remodeling in Meishan and Yorkshire pigs, respectively. These unique DEGs in either Meishan or Yorkshire endometriums may contribute to the divergence of the endometrium environment in the two pig breeds.
Collapse
Affiliation(s)
- Jiangnan Huang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Ruize Liu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijie Su
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qian Xiao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry and the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Maggio M, de Vita F, Lauretani F, Bandinelli S, Semba RD, Bartali B, Cherubini A, Cappola AR, Ceda GP, Ferrucci L. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women. Nutrients 2015; 7:6506-19. [PMID: 26251919 PMCID: PMC4555135 DOI: 10.3390/nu7085296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/22/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2) in a cohort of late post-menopausal women. METHODS We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998-2000) by High-Performance Liquid Chromatography. Estradiol and testosterone (T) levels were assessed by Radioimmunometry (RIA) and testosterone-to-estradiol ratio (T/E2), as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1) and further adjusted for other confounders including Body Mass Index (BMI) BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2) were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. RESULTS After adjustment for age, α-carotene (β ± SE = -0.01 ± 0.004, p = 0.02) and β-carotene (β ± SE = -0.07 ± 0.02, p = 0.0007) were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01). After adjustment for other confounders (Model 2), the inverse relationship between α-carotene (β ± SE = -1.59 ± 0.61, p = 0.01), β-carotene (β ± SE = -0.29 ± 0.08, p = 0.0009), and E2 persisted whereas the relationship between α-carotene and T/E2 ratio was attenuated (β ± SE = 0.22 ± 0.12, p = 0.07). In a fully adjusted model (Model 3), only β-carotene (β ± SE = -0.05 ± 0.02, p = 0.03) was significantly and inversely associated with E2 levels independent of α-carotene. No association was found between retinol, total non-pro-vitamin A carotenoids, lutein, zeaxanthin, and lycopene, and E2 levels. CONCLUSIONS In older women, β-carotene levels are independently and inversely associated with E2.
Collapse
Affiliation(s)
- Marcello Maggio
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, Parma 43126, Italy.
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci 14, Parma 43126, Italy.
| | - Francesca de Vita
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, Parma 43126, Italy.
| | - Fulvio Lauretani
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci 14, Parma 43126, Italy.
| | | | - Richard D Semba
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 733 North Broadway Baltimore, MD 21225, USA.
| | - Benedetta Bartali
- New England Research Institute, 480 Pleasant Street, Watertown, MA 02472, USA.
| | - Antonio Cherubini
- Geriatrics, IRCCS-INRCA, Via della Montagnola, Ancona 81 60127, Italy.
| | - Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 295 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Gian Paolo Ceda
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, Parma 43126, Italy.
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci 14, Parma 43126, Italy.
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health (NIH), Harbor Hospital 3001 Hanover Street Baltimore, MD 21225, USA.
| |
Collapse
|
15
|
Perillo B, Di Santi A, Cernera G, Ombra MN, Castoria G, Migliaccio A. Nuclear receptor-induced transcription is driven by spatially and timely restricted waves of ROS. The role of Akt, IKKα, and DNA damage repair enzymes. Nucleus 2015; 5:482-91. [PMID: 25482200 PMCID: PMC4164490 DOI: 10.4161/nucl.36274] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gene expression is governed by chromatin mainly through posttranslational modifications at the N-terminal tails of nucleosomal histone proteins. According to the histone code theory, peculiar sets of such modifications (marks) give rise to reproducible final effects on transcription and, very recently, a further level of complexity has been highlighted in binary switches between specific marks at adjacent residues. In particular, disappearance of dimethyl-lysine 9 in histone H3 is faced by phosphorylation of the following serine during activation of gene expression. Demethylation of lysine 9 by the lysine-specific demethylase 1 (LSD1) is a pre-requisite for addition of the phosphoryl mark to serine 10 and an essential step in the transcriptional control by estrogens. It generates a local burst of oxygen reactive species (ROS) that induce oxidation of nearby nucleotides and recruitment of repair enzymes with a consequent formation of single or double stranded nicks on DNA that modify chromatin flexibility in order to allow correct assembly of the transcriptional machinery.
We describe here the molecular mechanism by which members of the family of nuclear receptors prevent the potential damage to DNA during transcription of target genes elicited by the use of ROS to shape chromatin. The mechanism is based on the presence of phosphorylated serine 10 in histone H3 to prevent unbalanced DNA oxidation waves. We also discuss the opportunities raised by the use of voluntary derangement of this servo system to induce selective death in hormone-responsive transformed cells.
Collapse
Affiliation(s)
- Bruno Perillo
- a Istituto di Scienze dell'Alimentazione; Avellino, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 2015; 104:213-46. [PMID: 25787087 PMCID: PMC4747437 DOI: 10.1002/bip.22643] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1-selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance.
Collapse
|
17
|
Koch C, Kohn FPM, Bauer J. Preparing normal tissue cells for space flight experiments. Prep Biochem Biotechnol 2015; 46:208-13. [PMID: 25806650 DOI: 10.1080/10826068.2015.1015565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Deterioration of health is a problem in modern space flight business. In order to develop countermeasures, research has been done on human bodies and also on single cells. Relevant experiments on human cells in vitro are feasible when microgravity is simulated by devices such as the Random Positioning Machine or generated for a short time during parabolic flights. However, they become difficult in regard to performance and interpretation when long-term experiments are designed that need a prolonged stay on the International Space Station (ISS). One huge problem is the transport of living cells from a laboratory on Earth to the ISS. For this reason, mainly rapidly growing, rather robust human cells such as cancer cells, embryonic cells, or progenitor cells have been investigated on the ISS up to now. Moreover, better knowledge on the behavior of normal mature cells, which mimic the in vivo situation, is strongly desirable. One solution to the problem could be the use of redifferentiable cells, which grow rapidly and behave like cancer cells in plain medium, but are reprogrammed to normal cells when substances like retinoic acid are added. A list of cells capable of redifferentiation is provided, together with names of suitable drugs, in this review.
Collapse
Affiliation(s)
- Claudia Koch
- a Institute of Physiology, Department of Membrane Physiology , University of Hohenheim , Stuttgart , Germany
| | - Florian P M Kohn
- a Institute of Physiology, Department of Membrane Physiology , University of Hohenheim , Stuttgart , Germany
| | - Johann Bauer
- b Max Planck Institute of Biochemistry , Martinsried , Germany
| |
Collapse
|
18
|
Chen MC, Hsu SL, Lin H, Yang TY. Retinoic acid and cancer treatment. Biomedicine (Taipei) 2014; 4:22. [PMID: 25520935 PMCID: PMC4265016 DOI: 10.7603/s40681-014-0022-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Retinoic acid which belongs to the retinoid class of chemical compounds is an important metabolite of vitamin A in diets. It is currently understood that retinoic acid plays important roles in cell development and differentiation as well as cancer treatment. Lung, prostate, breast, ovarian, bladder, oral, and skin cancers have been demonstrated to be suppressed by retinoic acid. Our results also show that low doses and high doses of retinoic acid may respectively cause cell cycle arrest and apoptosis of cancer cells. Also, the common cell cycle inhibiting protein, p27, and the new cell cycle regulator, Cdk5, are involved in retinoic acid’s effects. These results provide new evidence indicating that the molecular mechanisms of/in retinoic acid may control cancer cells’ fates. Since high doses of retinoic acid may lead to cytotoxicity, it is probably best utilized as a potential supplement in one’s daily diet to prevent or suppress cancer progression. In this review, we have collected numerous references demonstrating the findings of retinoic acid in melanoma, hepatoma, lung cancer, breast cancer, and prostate cancer. We hope these observations will shed light on the future investigation of retinoic acid in cancer prevention and therapy.
Collapse
Affiliation(s)
- Mei-Chih Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taichung, Taiwan
| | - Shih-Lan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, No. 250, Kuokuang Rd., Taichung 402, Taichung, Taiwan
| | - Tsung-Ying Yang
- Department of Chest Medicine, Taichung Veterans General Hospital, No. 160, Taichung Harbor Rd., Sec. 3, Taichung 407, Taichung, Taiwan
| |
Collapse
|
19
|
In vitro interactions between 17β-estradiol and DNA result in formation of the hormone-DNA complexes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7725-39. [PMID: 25089777 PMCID: PMC4143829 DOI: 10.3390/ijerph110807725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 11/17/2022]
Abstract
Beyond the role of 17β-estradiol (E2) in reproduction and during the menstrual cycle, it has been shown to modulate numerous physiological processes such as cell proliferation, apoptosis, inflammation and ion transport in many tissues. The pathways in which estrogens affect an organism have been partially described, although many questions still exist regarding estrogens' interaction with biomacromolecules. Hence, the present study showed the interaction of four oligonucleotides (17, 20, 24 and/or 38-mer) with E2. The strength of these interactions was evaluated using optical methods, showing that the interaction is influenced by three major factors, namely: oligonucleotide length, E2 concentration and interaction time. In addition, the denaturation phenomenon of DNA revealed that the binding of E2 leads to destabilization of hydrogen bonds between the nitrogenous bases of DNA strands resulting in a decrease of their melting temperatures (Tm). To obtain a more detailed insight into these interactions, MALDI-TOF mass spectrometry was employed. This study revealed that E2 with DNA forms non-covalent physical complexes, observed as the mass shifts for app. 270 Da (Mr of E2) to higher molecular masses. Taken together, our results indicate that E2 can affect biomacromolecules, as circulating oligonucleotides, which can trigger mutations, leading to various unwanted effects.
Collapse
|
20
|
Heger Z, Rodrigo MAM, Krizkova S, Zitka O, Beklova M, Kizek R, Adam V. Identification of estrogen receptor proteins in breast cancer cells using matrix-assisted laser desorption/ionization time of flight mass spectrometry (Review). Oncol Lett 2014; 7:1341-1344. [PMID: 24765135 PMCID: PMC3997732 DOI: 10.3892/ol.2014.1912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/06/2013] [Indexed: 01/03/2023] Open
Abstract
Estrogen receptors [ERs (subtypes α and β)], classified as a nuclear receptor super family, are intracellular proteins with an important biological role as the transcription factors for estrogen target genes. For ER-induced transcription, an interaction must exist between ligand and coregulators. Coregulators may stimulate (coactivators) or inhibit (corepressors) transcription, following binding with a specific region of the gene, called the estrogen response element. Misbalanced activity of coregulators or higher ligand concentrations may cause increased cell proliferation, resulting in specific types of cancer. These are exhibited as overexpression of ER proteins. Breast cancer currently ranks first in the incidence and second in the mortality of cancer in females worldwide. In addition, 70% of breast tumors are ERα positive and the importance of these proteins for diagnostic use is indisputable. Early diagnosis of the tumor and its classification has a large influence on the selection of appropriate therapy, as ER-positive tumors demonstrate a positive response to hormonal therapy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS) has been hypothesized to have great potential, as it offers reliable, robust and efficient analysis methods for biomarker monitoring and identification. The present review discusses ER protein analysis by MALDI TOF MS, including the crucial step of protein separation.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Ondrej Zitka
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Miroslava Beklova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| |
Collapse
|
21
|
Retinoids and breast cancer: from basic studies to the clinic and back again. Cancer Treat Rev 2014; 40:739-49. [PMID: 24480385 DOI: 10.1016/j.ctrv.2014.01.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 11/23/2022]
Abstract
All-trans retinoic acid (ATRA) is the most important active metabolite of vitamin A controlling segmentation in the developing organism and the homeostasis of various tissues in the adult. ATRA as well as natural and synthetic derivatives, collectively known as retinoids, are also promising agents in the treatment and chemoprevention of different types of neoplasia including breast cancer. The major aim of the present article is to review the basic knowledge acquired on the anti-tumor activity of classic retinoids, like ATRA, in mammary tumors, focusing on the underlying cellular and molecular mechanisms and the determinants of retinoid sensitivity/resistance. In the first part, an analysis of the large number of pre-clinical studies available is provided, stressing the point that this has resulted in a limited number of clinical trials. This is followed by an overview of the knowledge acquired on the role played by the retinoid nuclear receptors in the anti-tumor responses triggered by retinoids. The body of the article emphasizes the potential of ATRA and derivatives in modulating and in being influenced by some of the most relevant cellular pathways involved in the growth and progression of breast cancer. We review the studies centering on the cross-talk between retinoids and some of the growth-factor pathways which control the homeostasis of the mammary tumor cell. In addition, we consider the cross-talk with relevant intra-cellular second messenger pathways. The information provided lays the foundation for the development of rational and retinoid-based therapeutic strategies to be used for the management of breast cancer.
Collapse
|
22
|
Abstract
Motivation: Prior biological knowledge greatly facilitates the meaningful interpretation of gene-expression data. Causal networks constructed from individual relationships curated from the literature are particularly suited for this task, since they create mechanistic hypotheses that explain the expression changes observed in datasets. Results: We present and discuss a suite of algorithms and tools for inferring and scoring regulator networks upstream of gene-expression data based on a large-scale causal network derived from the Ingenuity Knowledge Base. We extend the method to predict downstream effects on biological functions and diseases and demonstrate the validity of our approach by applying it to example datasets. Availability: The causal analytics tools ‘Upstream Regulator Analysis', ‘Mechanistic Networks', ‘Causal Network Analysis' and ‘Downstream Effects Analysis' are implemented and available within Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com). Supplementary information:Supplementary material is available at Bioinformatics online.
Collapse
Affiliation(s)
- Andreas Krämer
- Ingenuity Systems, 1700 Seaport Boulevard, Redwood City, CA and Translational and Experimental Medicine-Bioinformatics, Sanofi-Aventis, 270 Albany Street, Cambridge, MA, USA
| | | | | | | |
Collapse
|