1
|
sPLA2 Wobbles on the Lipid Bilayer between Three Positions, Each Involved in the Hydrolysis Process. Toxins (Basel) 2022; 14:toxins14100669. [PMID: 36287938 PMCID: PMC9610741 DOI: 10.3390/toxins14100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) are peripheral membrane enzymes that hydrolyze phospholipids in the sn-2 position. The action of sPLA2 is associated with the work of two active sites. One, the interface binding site (IBS), is needed to bind the enzyme to the membrane surface. The other one, the catalytic site, is needed to hydrolyze the substrate. The interplay between sites, how the substrate protrudes to, and how the hydrolysis products release from, the catalytic site remains in the focus of investigations. Here, we report that bee venom PLA2 has two additional interface binding modes and enzyme activity through constant switching between three different orientations (modes of binding), only one of which is responsible for substrate uptake from the bilayer. The finding was obtained independently using atomic force microscopy and molecular dynamics. Switching between modes has biological significance: modes are steps of the enzyme moving along the membrane, product release in biological milieu, and enzyme desorption from the bilayer surface.
Collapse
|
2
|
Sadhu SP, Yarla NS, Pragada RR, Konduri P. Anti-inflammatory Activity of PLA 2 Inhibitory Saccharumoside-B. Antiinflamm Antiallergy Agents Med Chem 2022; 21:121-134. [PMID: 35362396 DOI: 10.2174/1871523021666220330143058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Saccharumoside-B and its analogs were found to have anticancer potential in vitro. The present study reports acute toxicity, molecular docking, ADMET profile analysis, and in vitro and in vivo anti-inflammatory activity of saccharumoside-B for the first time. METHODS The in vitro enzyme inhibitory activity of saccharumoside-B on PLA2, COX-1, COX-2, and 5-LOX enzymes was evaluated by the cell-free method, and its effect on TNF-α, IL1β, and IL- 6 secretion levels in LPS stimulated THP-1 human monocytes was determined by ELISA-based methods. The anti-inflammatory activity was evaluated in vivo by carrageenan-induced rat paw edema model. To test its binding affinity at the active site pockets of PLA2 enzymes and assess drug-like properties, docking experiments and ADMET studies were performed. RESULTS Saccharumoside-B showed selective inhibition of the sPLA2 enzyme (IC50 = 7.53 ± 0.232 μM), and thioetheramide-PC was used as a positive control. It showed significant inhibition (P ≤ 0.05) of TNF-α, IL-1β, and IL-6 cytokines compared to the positive control dexamethasone. Saccharumoside-B showed a dose-dependent inhibition of carrageenan-induced rat paw edema, with a maximum inhibition (76.09 ± 0.75) observed at 3 hours after the phlogistic agent injection. Saccharumoside-B potentially binds to the active site pocket of sPLA2 crystal protein (binding energy -7.6 Kcal/Mol). It complies with Lipinski's Rule of Five, showing a promising safety profile. The bioactivity scores suggested it to be a better enzyme inhibitor. CONCLUSION Saccharumoside-B showed significant PLA2 inhibition. It can become a potential lead molecule in synthesizing a new class of selective PLA2 inhibitors with a high safety profile in the future.
Collapse
Affiliation(s)
- Surya Prabha Sadhu
- Department of AU College of Pharmaceutical Sciences and Pharmacology, Andhra University, Visakhapatnam, India
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, India
| | - Nagendra Sastry Yarla
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, India
| | - Rajeswara Rao Pragada
- Department of AU College of Pharmaceutical Sciences, Pharmacology, Andhra University, Visakhapatnam, India
| | - Prasad Konduri
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, India
| |
Collapse
|
3
|
Alekseeva AS, Volynsky PE, Boldyrev IA. Estimation of the Phospholipase A2 Selectivity on POPC/POPG Membranes Using the Interaction Map. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821050032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The regulation of the activity and selectivity of phospholipase A2 (PLA2), which is capable of cleaving fatty acid in the second position (sn-2) of the phospholipid, is carried out through the membrane-binding and catalytic sites of the enzyme. For hydrolytic activity, PLA2 must first bind to the phospholipid membrane, and the binding efficiency depends on the composition of the membrane. The membrane-binding site of PLA2 is formed by several tens of amino acids and its composition differs from enzyme to enzyme; hydrophobic and positively charged amino acids play a key role in the interaction. In this work, we investigated the interaction of PLA2 from bee venom with phospholipid bilayers of palmitoyl oleoylphosphatidylcholine (POPC) containing different amounts of palmitoyloleoylphosphatidylglycerol (POPG). On the basis of the measurements of the protein intrinsic fluorescence and the anisotropy of the fluorescence of the lipid probe we propose the construction of lipid–protein interaction maps, which reflect both the efficiency of protein binding and changes in the structure of the membrane. These changes cause alterations in the fluorescence anisotropy of the label, which in turn is a measure of the mobility of the lipid environment of the fluorescent probe. Analysis of interaction maps showed that there is a relationship between lipid mobility and enzyme binding efficiency: the optimum interaction of PLA2 with membranes from a POPC/POPG mixture lies in the region of the highest lipid mobility, and not in the region of the highest negative charge. This dependence complements the existing understanding of the process of recognition of the membrane surface by the enzyme and the selection of lipids by the enzyme already bound to the membrane. The proposed mapping method can be extended to other membrane-active proteins.
Collapse
|
4
|
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett 2020; 497:165-177. [PMID: 33080311 DOI: 10.1016/j.canlet.2020.10.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Phospholipase A2 enzymes (PLA2s) comprise a superfamily that is generally divided into six subfamilies known as cytosolic PLA2s (cPLA2s), calcium-independent PLA2s (iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-activating factor (PAF) acetylhydrolases, and adipose specific PLA2s. Each subfamily consists of several isozymes that possess PLA2 activity. The first three PLA2 subfamilies play important roles in inflammation-related diseases and cancer. In this review, the roles of well-studied enzymes sPLA2-IIA, cPLA2α and iPLA2β in carcinogenesis and cancer development were discussed. sPLA2-IIA seems to play conflicting roles and can act as a tumor suppressor or a tumor promoter according to the cancer type, but cPLA2α and iPLA2β play protumorigenic role in most cancers. The mechanisms of PLA2-mediated signal transduction and crosstalk between cancer cells and endothelial cells in the tumor microenvironment are described. Moreover, the mechanisms by which PLA2s mediate lipid reprogramming and glycerophospholipid remodeling in cancer cells are illustrated. PLA2s as the upstream regulators of the arachidonic acid cascade are generally high expressed and activated in various cancers. Therefore, they can be considered as potential pharmacological targets and biomarkers in cancer. The detailed information summarized in this review may aid in understanding the roles of PLA2s in cancer, and provide new clues for the development of novel agents and strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Yanxin Chang
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Surgical Hospital, Navy Military Medical University, Shanghai, 200438, China.
| | - Jianhui Fan
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, 350025, Fujian Province, China.
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Alekseeva AS, Boldyrev IA. Phospholipase A2. Methods for Activity Monitoring. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747820040030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Kim RR, Chen Z, J. Mann T, Bastard K, F. Scott K, Church WB. Structural and Functional Aspects of Targeting the Secreted Human Group IIA Phospholipase A 2. Molecules 2020; 25:molecules25194459. [PMID: 32998383 PMCID: PMC7583969 DOI: 10.3390/molecules25194459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Human group IIA secretory phospholipase A2 (hGIIA) promotes the proliferation of cancer cells, making it a compelling therapeutic target, but it is also significant in other inflammatory conditions. Consequently, suitable inhibitors of hGIIA have always been sought. The activation of phospholipases A2 and the catalysis of glycerophospholipid substrates generally leads to the release of fatty acids such as arachidonic acid (AA) and lysophospholipid, which are then converted to mediator compounds, including prostaglandins, leukotrienes, and the platelet-activating factor. However, this ability of hGIIA to provide AA is not a complete explanation of its biological role in inflammation, as it has now been shown that it also exerts proinflammatory effects by a catalysis-independent mechanism. This mechanism is likely to be highly dependent on key specific molecular interactions, and the full mechanistic descriptions of this remain elusive. The current candidates for the protein partners that may mediate this catalysis-independent mechanism are also introduced in this review. A key discovery has been that selective inhibition of the catalysis-independent activity of hGIIA is achieved with cyclised derivatives of a pentapeptide, FLSYK, derived from the primary sequence of hGIIA. The effects of hGIIA on cell function appear to vary depending on the pathology studied, and so its mechanism of action is complex and context-dependent. This review is comprehensive and covers the most recent developments in the understanding of the many facets of hGIIA function and inhibition and the insight they provide into their clinical application for disease treatment. A cyclic analogue of FLSYK, c2, the most potent analogue known, has now been taken into clinical trials targeting advanced prostate cancer.
Collapse
Affiliation(s)
- Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Zheng Chen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
| | - Karine Bastard
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| |
Collapse
|
7
|
Alekseeva AS, Volynsky PE, Krylov NA, Chernikov VP, Vodovozova EL, Boldyrev IA. Phospholipase A2 way to hydrolysis: Dint formation, hydrophobic mismatch, and lipid exclusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183481. [PMID: 33002451 DOI: 10.1016/j.bbamem.2020.183481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
Phospholipase A2 (PLA2) exerts a wide range of biological effects and attracts a lot of attention of researchers. Two sites are involved in manifestation of PLA2 enzymatic activity: catalytic site responsible for substrate binding and fatty acid cleavage from the sn-2 position of a glycerophospholipid, and interface binding site (IBS) responsible for the protein binding to lipid membrane. IBS is formed by positively charged and hydrophobic amino acids on the outer surface of the protein molecule. Understanding the mechanism of PLA2 interaction with the lipid membrane is the most challenging step in biochemistry of this enzyme. We used a combination of experimental and computer simulation techniques to clarify molecular details of bee venom PLA2 interaction with lipid bilayers formed by palmitoyloleoylphosphatidylcholine or dipalmitoylphosphatidylcholine. We found that after initial enzyme contact with the membrane, a network of hydrogen bonds was formed. This led to deformation of the interacting leaflet and dint formation. The bilayer response to the deformation depended on its phase state. In a gel-phase bilayer, diffusion of lipids is restricted therefore chain melting occurred in both leaflets of the bilayer. In the case of a fluid-phase bilayer, lateral diffusion is possible, and lipid polar head groups were excluded from the contact area. As a result, the bilayer became thinner and a large hydrophobic area was formed. We assume that relative ability of a bilayer to come through lipid redistribution process defines the rate of initial stages of the catalysis.
Collapse
Affiliation(s)
- Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Valery P Chernikov
- Scientific Research Institute of Human Morphology, Tsyurupy st., 3, 117418 Moscow, Russia
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia.
| |
Collapse
|
8
|
Manukyan AK. Structural aspects and activation mechanism of human secretory group IIA phospholipase. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:511-531. [DOI: 10.1007/s00249-020-01458-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022]
|
9
|
Khan AK, Ho JCS, Roy S, Liedberg B, Nallani M. Facile Mixing of Phospholipids Promotes Self-Assembly of Low-Molecular-Weight Biodegradable Block Co-Polymers into Functional Vesicular Architectures. Polymers (Basel) 2020; 12:E979. [PMID: 32331448 PMCID: PMC7240622 DOI: 10.3390/polym12040979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, we have used low-molecular-weight (PEG12-b-PCL6, PEG12-b-PCL9 or PEG16-b-PLA38; MW, 1.25-3.45 kDa) biodegradable block co-polymers to construct nano- and micron-scaled hybrid (polymer/lipid) vesicles, by solvent dispersion and electroformation methods, respectively. The hybrid vesicles exhibit physical properties (size, bilayer thickness and small molecule encapsulation) of a vesicular boundary, confirmed by cryogenic transmission electron microscopy, calcein leakage assay and dynamic light scattering. Importantly, we find that these low MW polymers, on their own, do not self-assemble into polymersomes at nano and micron scales. Using giant unilamellar vesicles (GUVs) model, their surface topographies are homogeneous, independent of cholesterol, suggesting more energetically favorable mixing of lipid and polymer. Despite this mixed topography with a bilayer thickness similar to that of a lipid bilayer, variation in surface topology is demonstrated using the interfacial sensitive phospholipase A2 (sPLA2). The biodegradable hybrid vesicles are less sensitive to the phospholipase digestion, reminiscent of PEGylated vesicles, and the degree of sensitivity is polymer-dependent, implying that the nano-scale surface topology can further be tuned by its chemical composition. Our results reveal and emphasize the role of phospholipids in promoting low MW polymers for spontaneous vesicular self-assembly, generating a functional hybrid lipid-polymer interface.
Collapse
Affiliation(s)
- Amit Kumar Khan
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
- ACM Biolabs Pte. Ltd., NTU Innovation Center, 71 Nanyang Drive, Singapore 638075, Singapore
| | - James C. S. Ho
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
| | - Susmita Roy
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
| | - Madhavan Nallani
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
- ACM Biolabs Pte. Ltd., NTU Innovation Center, 71 Nanyang Drive, Singapore 638075, Singapore
| |
Collapse
|
10
|
Mariani ME, Fidelio GD. Secretory Phospholipases A 2 in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:861. [PMID: 31354755 PMCID: PMC6635587 DOI: 10.3389/fpls.2019.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 05/17/2023]
Abstract
Secreted phospholipases (sPLA2s) in plants are a growing group of enzymes that catalyze the hydrolysis of sn-2 glycerophospholipids to lysophospholipids and free fatty acids. Until today, around only 20 sPLA2s were reported from plants. This review discusses the newly acquired information on plant sPLA2s including molecular, biochemical, catalytic, and functional aspects. The comparative analysis also includes phylogenetic, evolutionary, and tridimensional structure. The observations with emphasis in Glycine max sPLA2 are compared with the available data reported for all plants sPLA2s and with those described for animals (mainly from pancreatic juice and venoms sources).
Collapse
Affiliation(s)
- María Elisa Mariani
- Departamento de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Fundamentación Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gerardo Daniel Fidelio
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
11
|
Nilsson Å, Duan RD. Pancreatic and mucosal enzymes in choline phospholipid digestion. Am J Physiol Gastrointest Liver Physiol 2019; 316:G425-G445. [PMID: 30576217 DOI: 10.1152/ajpgi.00320.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The digestion of choline phospholipids is important for choline homeostasis, lipid signaling, postprandial lipid and energy metabolism, and interaction with intestinal bacteria. The digestion is mediated by the combined action of pancreatic and mucosal enzymes. In the proximal small intestine, hydrolysis of phosphatidylcholine (PC) to 1-lyso-PC and free fatty acid (FFA) by the pancreatic phospholipase A2 IB coincides with the digestion of the dietary triacylglycerols by lipases, but part of the PC digestion is extended and must be mediated by other enzymes as the jejunoileal brush-border phospholipase B/lipase and mucosal secreted phospholipase A2 X. Absorbed 1-lyso-PC is partitioned in the mucosal cells between degradation and reacylation into chyle PC. Reutilization of choline for hepatic bile PC synthesis, and the reacylation of 1-lyso-PC into chylomicron PC by the lyso-PC-acyl-CoA-acyltransferase 3 are important features of choline recycling and postprandial lipid metabolism. The role of mucosal enzymes is emphasized by sphingomyelin (SM) being sequentially hydrolyzed by brush-border alkaline sphingomyelinase (alk-SMase) and neutral ceramidase to sphingosine and FFA, which are well absorbed. Ceramide and sphingosine-1-phosphate are generated and are both metabolic intermediates and important lipid messengers. Alk-SMase has anti-inflammatory effects that counteract gut inflammation and tumorigenesis. These may be mediated by multiple mechanisms including generation of sphingolipid metabolites and suppression of autotaxin induction and lyso-phosphatidic acid formation. Here we summarize current knowledge on the roles of pancreatic and mucosal enzymes in PC and SM digestion, and its implications in intestinal and liver diseases, bacterial choline metabolism in the gut, and cholesterol absorption.
Collapse
Affiliation(s)
- Åke Nilsson
- Department of Clow-linical Sciences Lund, Division of Medicine, Gastroenterology, Lund University , Lund , Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Department of Clinical Sciences, Lund University , Lund , Sweden
| |
Collapse
|
12
|
In silico investigation of the molecular effects caused by R123H variant in secretory phospholipase A2-IIA associated with ARDS. J Mol Graph Model 2018. [PMID: 29529495 DOI: 10.1016/j.jmgm.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phospholipase A2-IIA catalyzes the hydrolysis of the sn-2 ester of glycerophospholipids. A rare c.428G > A (p.Arg143His) variant in PLA2G2A gene was found in two infants affected by acute respiratory distress syndrome (ARDS) by whole coding region and exon/intron boundaries sequencing. To obtain insights into the possible molecular effects of the rare R123H mutation in secretory PLA2-IIA (sPLA2-IIA), molecular modelling, molecular dynamics (MD) using principal component analysis (PCA) and continuum electrostatic calculations were conducted on the crystal structure of the wild type protein and on a generated model structure of the R123H mutant. Analysis of MD trajectories indicate that the overall stability of the protein is not affected by this mutation but nevertheless the catalytically crucial H-bond between Tyr51 and Asp91 as well as main electrostatic interactions in the region close to the mutation site are altered. PCA results indicate that the R123H replacement alter the internal molecular motions of the enzyme and that collective motions are increased. Electrostatic surface potential studies suggest that after mutation the interfacial binding to anionic phospholipid membranes and anionic proteins may be changed. The strengthening of electrostatic interactions may be propagated into the active site region thus potentially affecting the substrate recognition and enzymatic activity. Our findings provide the basis for further investigation and advances our understanding of the effects of mutations on sPLA2 structure and function.
Collapse
|
13
|
Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia. Toxins (Basel) 2017; 9:toxins9120406. [PMID: 29311537 PMCID: PMC5744126 DOI: 10.3390/toxins9120406] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022] Open
Abstract
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms.
Collapse
|
14
|
Grabner AN, Alfonso J, Kayano AM, Moreira-Dill LS, dos Santos APDA, Caldeira CA, Sobrinho JC, Gómez A, Grabner FP, Cardoso FF, Zuliani JP, Fontes MR, Pimenta DC, Gómez CV, Teles CB, Soares AM, Calderon LA. BmajPLA 2 -II, a basic Lys49-phospholipase A 2 homologue from Bothrops marajoensis snake venom with parasiticidal potential. Int J Biol Macromol 2017; 102:571-581. [DOI: 10.1016/j.ijbiomac.2017.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023]
|
15
|
Kim RR, Malde AK, Nematollahi A, Scott KF, Church WB. Molecular dynamics simulations reveal structural insights into inhibitor binding modes and functionality in human Group IIA phospholipase A 2. Proteins 2017; 85:827-842. [PMID: 28056488 DOI: 10.1002/prot.25235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022]
Abstract
Human Group IIA phospholipase A2 (hGIIA) promotes inflammation in immune-mediated pathologies by regulating the arachidonic acid pathway through both catalysis-dependent and -independent mechanisms. The hGIIA crystal structure, both alone and inhibitor-bound, together with structures of closely related snake-venom-derived secreted phospholipase enzymes has been well described. However, differentiation of biological and nonbiological contacts and the relevance of structures determined from snake venom enzymes to human enzymes are not clear. We employed molecular dynamics (MD) and docking approaches to understand the binding of inhibitors that selectively or nonselectively block the catalysis-independent mechanism of hGIIA. Our results indicate that hGIIA behaves as a monomer in the solution environment rather than a dimer arrangement that is in the asymmetric unit of some crystal structures. The binding mode of a nonselective inhibitor, KH064, was validated by a combination of the experimental electron density and MD simulations. The binding mode of the selective pentapeptide inhibitor FLSYK to hGIIA was stipulated to be different to that of the snake venom phospholipases A2 of Daboia russelli pulchella (svPLA2 ). Our data suggest that the application of MD approaches to crystal structure data is beneficial in evaluating the robustness of conclusions drawn based on crystal structure data alone. Proteins 2017; 85:827-842. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryung Rae Kim
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alpeshkumar K Malde
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia, 4072
| | - Alireza Nematollahi
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kieran F Scott
- School of Medicine, Western Sydney University, The Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia, 2170.,Centre for Oncology Education and Research Translation (CONCERT), The Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia, 2170
| | - W Bret Church
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
16
|
Fernandes CAH, Pazin WM, Dreyer TR, Bicev RN, Cavalcante WLG, Fortes-Dias CL, Ito AS, Oliveira CLP, Fernandez RM, Fontes MRM. Biophysical studies suggest a new structural arrangement of crotoxin and provide insights into its toxic mechanism. Sci Rep 2017; 7:43885. [PMID: 28256632 PMCID: PMC5335569 DOI: 10.1038/srep43885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/31/2017] [Indexed: 11/19/2022] Open
Abstract
Crotoxin (CTX) is the main neurotoxin found in Crotalus durissus rattlesnake venoms being composed by a nontoxic and non-enzymatic component (CA) and a toxic phospholipase A2 (CB). Previous crystallographic structures of CTX and CB provided relevant insights: (i) CTX structure showed a 1:1 molecular ratio between CA and CB, presenting three tryptophan residues in the CA/CB interface and one exposed to solvent; (ii) CB structure displayed a tetrameric conformation. This study aims to provide further information on the CTX mechanism of action by several biophysical methods. Our data show that isolated CB can in fact form tetramers in solution; however, these tetramers can be dissociated by CA titration. Furthermore, CTX exhibits a strong reduction in fluorescence intensity and lifetime compared with isolated CA and CB, suggesting that all tryptophan residues in CTX may be hidden by the CA/CB interface. By companying spectroscopy fluorescence and SAXS data, we obtained a new structural model for the CTX heterodimer in which all tryptophans are located in the interface, and the N-terminal region of CB is largely exposed to the solvent. Based on this model, we propose a toxic mechanism of action for CTX, involving the interaction of N-terminal region of CB with the target before CA dissociation.
Collapse
Affiliation(s)
- Carlos A. H. Fernandes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu-SP, Brazil
| | - Wallance M. Pazin
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto-SP, Brazil
| | - Thiago R. Dreyer
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu-SP, Brazil
| | - Renata N. Bicev
- Departamento de Física Experimental, Instituto de Física, Universidade de São Paulo – USP, São Paulo, SP, Brazil
| | - Walter L. G. Cavalcante
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu-SP, Brazil
- Departamento de Farmacologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil
| | - Consuelo L. Fortes-Dias
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil
| | - Amando S. Ito
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto-SP, Brazil
| | - Cristiano L. P. Oliveira
- Departamento de Física Experimental, Instituto de Física, Universidade de São Paulo – USP, São Paulo, SP, Brazil
| | - Roberto Morato Fernandez
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu-SP, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu-SP, Brazil
| |
Collapse
|
17
|
Molecular modeling of Gly80 and Ser80 variants of human group IID phospholipase A2 and their receptor complexes: potential basis for weight loss in chronic obstructive pulmonary disease. J Mol Model 2016; 22:232. [PMID: 27585677 DOI: 10.1007/s00894-016-3095-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Weight loss is a well known systemic manifestation of chronic obstructive pulmonary disease (COPD). A Gly80Ser mutation on human group IID secretory phospholipase A2 (sPLA2) enhances expression of the cytokines that are responsible for weight loss. In this study, we seek to establish a structural correlation of wild type sPLA2 and the Gly80Ser mutation with function. sPLA2 with glycine and serine at the 80th positions and the M-type receptor were modelled. The enzymes were docked to the receptor and molecular dynamics was carried out to 70 ns. Structural analysis revealed the enzymes to comprise three helices (H1-H3), two short helices (SH1 and SH2), and five loops including a calcium binding loop (L1-L5), and to be stabilized by seven disulfide bonds. The overall backbone folds of the two models are very similar, with main chain RMSD of less than 1 Å. The active site within the substrate binding channel shows a catalytic triad of water-His67-Asp112, showing a hydrogen bonded network. Major structural differences between wild type and mutant enzymes were observed locally at the site of the mutation and in their global conformations. These differences include: (1) loop-L3 between H2 and H3, which bears residue Gly80 in the wild type, is in a closed conformation with respect to the channel opening, while in the mutant enzyme it adopts a relatively open conformation; (2) the mutant enzyme is less compact and has higher solvent accessible surface area; and (3) interfacial binding contact surface area is greater, and the quality of interactions with the receptor is better in the mutant enzyme as compared to the wild type. Therefore, the structural differences delineated in this study are potential biophysical factors that could determine the increased potency of the mutant enzyme with macrophage receptor for cytokine secreting function, resulting in exacerbation of cachexia in COPD.
Collapse
|
18
|
Inhibition of Human Group IIA-Secreted Phospholipase A2 and THP-1 Monocyte Recruitment by Maslinic Acid. Lipids 2016; 51:1153-1159. [PMID: 27540737 DOI: 10.1007/s11745-016-4186-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Maslinic acid is a natural pentacyclic triterpenoid which has anti-inflammatory properties. A recent study showed that secretory phospholipase A2 (sPLA2) may be a potential binding target of maslinic acid. The human group IIA (hGIIA)-sPLA2 is found in human sera and their levels are correlated with severity of inflammation. This study aims to determine whether maslinic acid interacts with hGIIA-sPLA2 and inhibits inflammatory response induced by this enzyme. It is shown that maslinic acid enhanced intrinsic fluorescence of hGIIA-sPLA2 and inhibited its enzyme activity in a concentration-dependent manner. Molecular docking revealed that maslinic acid binds to calcium binding and interfacial phospholipid binding site, suggesting that it inhibit access of catalytic calcium ion for enzymatic reaction and block binding of the enzyme to membrane phospholipid. The hGIIA-sPLA2 enzyme is also responsible in mediating monocyte recruitment and differentiation. Results showed that maslinic acid inhibit hGIIA-sPLA2-induced THP-1 cell differentiation and migration, and the effect observed is specific to hGIIA-sPLA2 as cells treated with maslinic acid alone did not significantly affect the number of adherent and migrated cells. Considering that hGIIA-sPLA2 enzyme is known to hydrolyze glyceroacylphospholipids present in lipoproteins and cell membranes, maslinic acid may bind and inhibit hGIIA-sPLA2 enzymatic activity, thereby reduces the release of fatty acids and lysophospholipids which stimulates monocyte migration and differentiation. This study is the first to report on the molecular interaction between maslinic acid and inflammatory target hGIIA-sPLA2 as well as its effect towards hGIIA-sPLA2-induced THP-1 monocyte adhesive and migratory capabilities, an important immune-inflammation process in atherosclerosis.
Collapse
|
19
|
Mariani ME, Sánchez-Borzone ME, García DA. Effects of bioactive monoterpenic ketones on membrane organization. A langmuir film study. Chem Phys Lipids 2016; 198:39-45. [DOI: 10.1016/j.chemphyslip.2016.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/13/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
20
|
Baîram D, Aissa I, Louati H, Othman H, Abdelkafi-Koubaa Z, Krayem N, El Ayeb M, Srairi-Abid N, Marrakchi N, Gargouri Y. Biochemical and monolayer characterization of Tunisian snake venom phospholipases. Int J Biol Macromol 2016; 89:640-6. [PMID: 27164498 DOI: 10.1016/j.ijbiomac.2016.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022]
Abstract
The present study investigated the kinetic and interfacial properties of two secreted phospholipases isolated from Tunisian vipers'venoms: Cerastes cerastes (CC-PLA2) and Macrovipera lebetina transmediterranea (MVL-PLA2). Results show that these enzymes have great different abilities to bind and hydrolyse phospholipids. Using egg-yolk emulsions as substrate at pH 8, we found that MVL-PLA2 has a specific activity of 1473U/mg at 37°C in presence of 1mM CaCl2. Furthermore the interfacial kinetic and binding data indicate that MVL-PLA2 has a preference to the zwitterionic phosphatidylcholine monolayers (PC). Conversely, CC-PLA2 was found to be able to hydrolyse preferentially negatively charged head group phospholipids (PG and PS) and exhibits a specific activity 9 times more important (13333U/mg at 60°C in presence of 3mM CaCl2). Molecular models of both CC-PLA2 and MVL-PLA2 3D structures have been built and their electrostatic potentials surfaces have been calculated. A marked anisotropy of the overall electrostatic charge distribution leads to a significantly difference in the dipole moment intensity between the two enzymes explaining the great differences in catalytic and binding properties, which seems to be governed by the electrostatic and hydrophobic forces operative at the surface of the two phospholipases.
Collapse
Affiliation(s)
- Douja Baîram
- Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, 13, Place Pasteur, BP 74, 1002 Tunis-Belvédère, Tunisia; Université de Tunis El Manar, Tunisia
| | - Imen Aissa
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, BP 1173, 3038 Sfax, Tunisia; Université de Sfax, Tunisia
| | - Hanen Louati
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, BP 1173, 3038 Sfax, Tunisia; Université de Sfax, Tunisia
| | - Houcemeddine Othman
- Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, 13, Place Pasteur, BP 74, 1002 Tunis-Belvédère, Tunisia; Université de Tunis El Manar, Tunisia
| | - Zaineb Abdelkafi-Koubaa
- Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, 13, Place Pasteur, BP 74, 1002 Tunis-Belvédère, Tunisia; Université de Tunis El Manar, Tunisia
| | - Najeh Krayem
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, BP 1173, 3038 Sfax, Tunisia; Université de Sfax, Tunisia
| | - Mohamed El Ayeb
- Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, 13, Place Pasteur, BP 74, 1002 Tunis-Belvédère, Tunisia; Université de Tunis El Manar, Tunisia
| | - Najet Srairi-Abid
- Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, 13, Place Pasteur, BP 74, 1002 Tunis-Belvédère, Tunisia; Université de Tunis El Manar, Tunisia
| | - Naziha Marrakchi
- Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, 13, Place Pasteur, BP 74, 1002 Tunis-Belvédère, Tunisia; Université de Tunis El Manar, Tunisia
| | - Youssef Gargouri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, BP 1173, 3038 Sfax, Tunisia; Université de Sfax, Tunisia.
| |
Collapse
|
21
|
Pruzanski W, Kopilov J, Kuksis A. Hydrolysis of lipoproteins by sPLA2's enhances mitogenesis and eicosanoid release from vascular smooth muscle cells: Diverse activity of sPLA2's IIA, V and X. Prostaglandins Other Lipid Mediat 2015; 122:64-8. [PMID: 26711221 DOI: 10.1016/j.prostaglandins.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022]
Abstract
Mitogenesis of Vascular Smooth Muscle Cells (VSMC) plays an important role in atherogenesis. Until recently, the effect of lipid subfractions has not been clarified. Secretory phospholipases A2 (sPLA2's) hydrolyse glycerophospholipids and release pro-inflammatory lyso-lipids, oxidized and non-oxidized fatty acids and isoprostanes. They localize in the vascular wall. We hypothesized that structurally similar sPLA2's may exert different impact on VSMC. The influence of sPLA2's, IIA, V, X, HDL, LDL, and hydrolysis products was tested on mitogenesis of VSMC, i.e., the early effect on the cell membrane phospholipids, and on PGE2 and LTB4 release, i.e., late effect of Cyclooxygenase and 5-lipooxygenase activity in VSMC. Mitogenesis was significantly enhanced by HDL and LDL, and by products of sPLA2 hydrolysis. Hydrolysis of HDL or LDL enhanced mitogenic activity in order V>X>IIA. The release of PGE2 was enhanced by group X sPLA2 and by HDL hydrolyzed by groups V and X. LDL and its hydrolysis products enhanced the release of PGE2 in order X>V>IIA. The release of LTB4 was markedly increased by LDL and HDL, and by hydrolytic products of group V and X, but not group IIA sPLA2. Our study demonstrates a diverse interaction of pro-inflammatory sPLA2's with HDL and LDL affecting both mitogenesis and eicosanoid release from VSMC, therefore potentially enhancing their pro-atherogenic activity.
Collapse
Affiliation(s)
- Waldemar Pruzanski
- St. Michael's Hopital, Toronto, Canada; University of Toronto, Toronto, Canada.
| | | | - Arnis Kuksis
- The Banting and Best Department of Medical Research, Toronto, Canada; University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
A constant area monolayer method to assess optimal lipid packing for lipolysis tested with several secreted phospholipase A2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2216-24. [DOI: 10.1016/j.bbamem.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/18/2015] [Accepted: 06/01/2015] [Indexed: 11/18/2022]
|
23
|
Mueller-Tribbensee SM, Karna M, Khalil M, Neurath MF, Reeh PW, Engel MA. Differential Contribution of TRPA1, TRPV4 and TRPM8 to Colonic Nociception in Mice. PLoS One 2015. [PMID: 26207981 PMCID: PMC4514604 DOI: 10.1371/journal.pone.0128242] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Various transient receptor potential (TRP) channels in sensory neurons contribute to the transduction of mechanical stimuli in the colon. Recently, even the cold-sensing menthol receptor TRPM(melastatin)8 was suggested to be involved in murine colonic mechano-nociception. Methods To analyze the roles of TRPM8, TRPA1 and TRPV4 in distension-induced colonic nociception and pain, TRP-deficient mice and selective pharmacological blockers in wild-type mice (WT) were used. Visceromotor responses (VMR) to colorectal distension (CRD) in vivo were recorded and distension/pressure-induced CGRP release from the isolated murine colon ex vivo was measured by EIA. Results Distension-induced colonic CGRP release was markedly reduced in TRPA1-/- and TRPV4-/- mice at 90/150 mmHg compared to WT. In TRPM8-deficient mice the reduction was only distinct at 150 mmHg. Exposure to selective pharmacological antagonists (HC030031, 100 μM; RN1734, 10 μM; AMTB, 10 μM) showed corresponding effects. The unselective TRP blocker ruthenium red (RR, 10 μM) was as efficient in inhibiting distension-induced CGRP release as the unselective antagonists of mechanogated DEG/ENaC (amiloride, 100 μM) and stretch-activated channels (gadolinium, 50 μM). VMR to CRD revealed prominent deficits over the whole pressure range (up to 90 mmHg) in TRPA1-/- and TRPV4-/- but not TRPM8-/- mice; the drug effects of the TRP antagonists were again highly consistent with the results from mice lacking the respective TRP receptor gene. Conclusions TRPA1 and TRPV4 mediate colonic distension pain and CGRP release and appear to govern a wide and congruent dynamic range of distensions. The role of TRPM8 seems to be confined to signaling extreme noxious distension, at least in the healthy colon.
Collapse
Affiliation(s)
- Sonja M. Mueller-Tribbensee
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manoj Karna
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mohammad Khalil
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Peter W. Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias A. Engel
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- * E-mail:
| |
Collapse
|
24
|
Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin. Toxicon 2014; 92:113-22. [PMID: 25449100 DOI: 10.1016/j.toxicon.2014.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/01/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022]
Abstract
Phosphatidylserine (PS) externalization is a hallmark for apoptotic death of cells. Previous studies showed that Naja naja atra phospholipase A2 (NnaPLA2) and Notechis scutatus scutatus notexin induced apoptosis of human cancer cells. However, NnaPLA2 and notexin did not markedly disrupt the integrity of cellular membrane as evidenced by membrane permeability of propidium iodide. These findings reflected that the ability of NnaPLA2 and notexin to hydrolyze membrane phospholipids may be affected by PS externalization. To address that question, this study investigated the membrane-interacted mode and catalytic activity of NnaPLA2 and notexin toward outer leaflet (phosphatidylcholine/sphingomyelin/cholesterol, PC/SM/Chol) and inner leaflet (phosphatidylserine/phosphatidylethanolamine/cholesterol, PS/PE/Chol) of plasma membrane-mimicking vesicles. PS incorporation promoted enzymatic activity of NnaPLA2 and notexin on PC and PC/SM vesicles, but suppressed NnaPLA2 and notexin activity on PC/SM/Chol and PE/Chol vesicles. PS incorporation increased the membrane fluidity of PC vesicles but reduced membrane fluidity of PC/SM, PC/SM/Chol and PE/Chol vesicles. PS increased the phospholipid order of all the tested vesicles. Moreover, PS incorporation did not greatly alter the binding affinity of notexin and NnaPLA2 with phospholipid vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that membrane-bound mode of notexin and NnaPLA2 varied with the targeted membrane compositions. The fine structure of catalytic site in NnaPLA2 and notexin in all the tested vesicles showed different changes. Collectively, the present data suggest that membrane-inserted PS modulates PLA2 interfacial activity via its effects on membrane structure and membrane-bound mode of NnaPLA2 and notexin, and membrane compositions determine the effect of PS on PLA2 activity.
Collapse
|
25
|
Öörni K, Rajamäki K, Nguyen SD, Lähdesmäki K, Plihtari R, Lee-Rueckert M, Kovanen PT. Acidification of the intimal fluid: the perfect storm for atherogenesis. J Lipid Res 2014; 56:203-14. [PMID: 25424004 DOI: 10.1194/jlr.r050252] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Atherosclerotic lesions are often hypoxic and exhibit elevated lactate concentrations and local acidification of the extracellular fluids. The acidification may be a consequence of the abundant accumulation of lipid-scavenging macrophages in the lesions. Activated macrophages have a very high energy demand and they preferentially use glycolysis for ATP synthesis even under normoxic conditions, resulting in enhanced local generation and secretion of lactate and protons. In this review, we summarize our current understanding of the effects of acidic extracellular pH on three key players in atherogenesis: macrophages, apoB-containing lipoproteins, and HDL particles. Acidic extracellular pH enhances receptor-mediated phagocytosis and antigen presentation by macrophages and, importantly, triggers the secretion of proinflammatory cytokines from macrophages through activation of the inflammasome pathway. Acidity enhances the proteolytic, lipolytic, and oxidative modifications of LDL and other apoB-containing lipoproteins, and strongly increases their affinity for proteoglycans, and may thus have major effects on their retention and the ensuing cellular responses in the arterial intima. Finally, the decrease in the expression of ABCA1 at acidic pH may compromise cholesterol clearance from atherosclerotic lesions. Taken together, acidic extracellular pH amplifies the proatherogenic and proinflammatory processes involved in atherogenesis.
Collapse
|
26
|
Crystal structure of phospholipase PA2-Vb, a protease-activated receptor agonist from theTrimeresurus stejnegerisnake venom. FEBS Lett 2014; 588:4604-12. [DOI: 10.1016/j.febslet.2014.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
|
27
|
Ramakrishnan C, Joshi V, Joseph JM, Vishwanath BS, Velmurugan D. Identification of Novel Inhibitors ofDaboia russelliPhospholipase A2Using the Combined Pharmacophore Modeling Approach. Chem Biol Drug Des 2014; 84:379-92. [DOI: 10.1111/cbdd.12332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chandrasekaran Ramakrishnan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| | - Vikram Joshi
- Department of Studies in Biochemistry; University of Mysore; Manasagangotri Mysore Karnataka 570006 India
| | - Joseph Mavelithuruthel Joseph
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| | - Bannikuppe S. Vishwanath
- Department of Studies in Biochemistry; University of Mysore; Manasagangotri Mysore Karnataka 570006 India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| |
Collapse
|
28
|
Nyegaard S, Novakovic VA, Rasmussen JT, Gilbert GE. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells. PLoS One 2013; 8:e77143. [PMID: 24194865 PMCID: PMC3806724 DOI: 10.1371/journal.pone.0077143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/21/2013] [Indexed: 01/09/2023] Open
Abstract
Secretory phospholipase A2 (sPLA2) is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2’s do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50–60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.
Collapse
Affiliation(s)
- Steffen Nyegaard
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark
- Departments of Medicine, Veterans Administration Boston Healthcare System, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Valerie A. Novakovic
- Departments of Medicine, Veterans Administration Boston Healthcare System, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jan T. Rasmussen
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark
- * E-mail:
| | - Gary E. Gilbert
- Departments of Medicine, Veterans Administration Boston Healthcare System, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
Bucher D, Hsu YH, Mouchlis VD, Dennis EA, McCammon JA. Insertion of the Ca²⁺-independent phospholipase A₂ into a phospholipid bilayer via coarse-grained and atomistic molecular dynamics simulations. PLoS Comput Biol 2013; 9:e1003156. [PMID: 23935474 PMCID: PMC3723492 DOI: 10.1371/journal.pcbi.1003156] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/11/2013] [Indexed: 01/19/2023] Open
Abstract
Group VI Ca²⁺-independent phospholipase A₂ (iPLA₂) is a water-soluble enzyme that is active when associated with phospholipid membranes. Despite its clear pharmaceutical relevance, no X-ray or NMR structural information is currently available for the iPLA₂ or its membrane complex. In this paper, we combine homology modeling with coarse-grained (CG) and all-atom (AA) molecular dynamics (MD) simulations to build structural models of iPLA₂ in association with a phospholipid bilayer. CG-MD simulations of the membrane insertion process were employed to provide a starting point for an atomistic description. Six AA-MD simulations were then conducted for 60 ns, starting from different initial CG structures, to refine the membrane complex. The resulting structures are shown to be consistent with each other and with deuterium exchange mass spectrometry (DXMS) experiments, suggesting that our approach is suitable for the modeling of iPLA₂ at the membrane surface. The models show that an anchoring region (residues 710-724) forms an amphipathic helix that is stabilized by the membrane. In future studies, the proposed iPLA₂ models should provide a structural basis for understanding the mechanisms of lipid extraction and drug-inhibition. In addition, the dual-resolution approach discussed here should provide the means for the future exploration of the impact of lipid diversity and sequence mutations on the activity of iPLA₂ and related enzymes.
Collapse
Affiliation(s)
- Denis Bucher
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|
30
|
Secretory Phospholipases A2 in Durum Wheat (Triticum durum Desf.): Gene Expression, Enzymatic Activity, and Relation to Drought Stress Adaptation. Int J Mol Sci 2013; 14:5146-69. [PMID: 23455473 PMCID: PMC3634499 DOI: 10.3390/ijms14035146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 01/12/2023] Open
Abstract
Phospholipases A2 (PLA2s) are known to mediate signaling cascades during plant growth and development, as well as biotic and abiotic stress responses. In this context, the present study provides extensive characterization of specific PLA2s in durum wheat, and assesses their involvement in durum wheat response to drought stress. In durum wheat leaves, four full-length expressed sequences encoding putative PLA2s were isolated and characterized as belonging to the class of secretory PLA2s (sPLA2s): TdsPLA2I, TdsPLA2II, TdsPLA2III and TdsPLA2IV. PLA2 activity was also detected, the characteristics of which resemble those of previously characterized plant sPLA2s: strong preference for phospholipids; requirement for millimolar Ca2+ concentrations; optimal activity at basic pH; heat stability; and inhibition by the reducing agent dithiothreitol. With drought stress imposed at both the vegetative and reproductive stages, accumulation of TdsPLA2I and TdsPLA2III transcripts, and to a lesser extent of TdsPLA2IV transcript, paralleled increased PLA2 activity; both transcript levels and enzymatic activity decreased as a consequence of stress recovery. Consistently, free fatty acid analysis of drought-stressed leaves revealed increased linoleate, linolenate and palmitate contents, which were reversed by plant re-watering. Overall, these findings strongly suggest that there are inducible sPLA2 isoforms in durum wheat that have roles in orchestrating the plant response to drought stress.
Collapse
|
31
|
Korotaeva A, Samoilova E, Pavlunina T, Panasenko OM. Halogenated phospholipids regulate secretory phospholipase A2 group IIA activity. Chem Phys Lipids 2013; 167-168:51-6. [PMID: 23438648 DOI: 10.1016/j.chemphyslip.2013.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/14/2013] [Accepted: 02/12/2013] [Indexed: 11/28/2022]
Abstract
Secretory phospholipase A2 group IIA (sPLA2-IIA) is an active participant of inflammation. The enzyme destroys bacterial cell wall and induces production of biologically active lipid mediators. It is involved in various pathological processes and high serum content and activity of sPLA2-IIA are associated with adverse cardiovascular events. Study of sPLA2-IIA regulation is of great physiological and clinical importance and is necessary for better understanding of mechanisms underlying inflammation. Another major participant of inflammatory response is the enzyme myeloperoxidase (MPO) which is secreted by neutrophils in the focus of inflammation and catalyzes formation of HOCl and HOBr. Both halogenated (chloro- and bromohydrins) and oxidized lipids are formed due to interaction between HOCl and HOBr with unsaturated bonds of phospholipid acyl chains. Previously we showed that oxidized phospholipids stimulate sPLA2-IIA activity. In this study we examined the effects of chloro- and bromohydrins of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on sPLA2-IIA activity. In contrast to POPC, chloro- and bromohydrins of POPC (POPC-Cl and POPC-Br, respectively) were not hydrolyzed by sPLA2-IIA. In addition, phospholipids which are sPLA2-IIA substrates, were not cleaved by the enzyme in the presence of POPC-Cl and POPC-Br. Halogenohydrins of POPC prevented the activity of both purified and serum sPLA2-IIA. Blocking effects of POPC-Cl and POPC-Br were abolished by increased concentrations of phospholipid-substrate. These results suggest that halogenated phospholipids formed in MPO-dependent reactions can be considered as a new class of biologically active compounds potentially capable of regulating sPLA2-IIA activity in the areas of inflammation and producing the effects opposite to those of oxidized phospholipids. Control over sPLA2-IIA can be useful in the therapy of diseases involving systemic inflammation.
Collapse
|
32
|
Point V, Bénarouche A, Jemel I, Parsiegla G, Lambeau G, Carrière F, Cavalier JF. Effects of the propeptide of group X secreted phospholipase A2 on substrate specificity and interfacial activity on phospholipid monolayers. Biochimie 2013; 95:51-8. [DOI: 10.1016/j.biochi.2012.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
|
33
|
Cao J, Burke JE, Dennis EA. Using hydrogen/deuterium exchange mass spectrometry to define the specific interactions of the phospholipase A2 superfamily with lipid substrates, inhibitors, and membranes. J Biol Chem 2012; 288:1806-13. [PMID: 23209293 DOI: 10.1074/jbc.r112.421909] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phospholipase A(2) (PLA(2)) superfamily consists of 16 groups and many subgroups and constitutes a diverse set of enzymes that have a common catalytic activity due to convergent evolution. However, different PLA(2) types have unique three-dimensional structures and catalytic residues as well as specific tissue localization and distinct biological functions. Understanding how the different PLA(2) enzymes associate with phospholipid membranes, specific phospholipid substrate molecules, and inhibitors on a molecular basis has advanced in recent years due to the introduction of hydrogen/deuterium exchange mass spectrometry. Its theory, practical considerations, and application to understanding PLA(2)/membrane interactions are addressed.
Collapse
Affiliation(s)
- Jian Cao
- Department of Chemistry and Biochemistry and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0601, USA
| | | | | |
Collapse
|
34
|
Mariani ME, Villarreal MA, Cheung F, Leiva EPM, Madoery RR, Fidelio GD. In silico and in vitro characterization of phospholipase A₂ isoforms from soybean (Glycine max). Biochimie 2012; 94:2608-19. [PMID: 23281487 DOI: 10.1016/j.biochi.2012.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
At the present, no secreted phospholipase A₂ (sPLA₂) from soybean (Glycine max) was investigated in detail. In this work we identified five sequences of putative secreted sPLA₂ from soybean after a BLAST search in G. max database. Sequence analysis showed a conserved PA2c domain bearing the Ca²⁺ binding loop and the active site motif. All the five mature proteins contain 12 cysteine residues, which are commonly conserved in plant sPLA₂s. We propose a phylogenetic tree based on sequence alignment of reported plant sPLA₂s including the novel enzymes from G. max. According to PLA₂ superfamily, two of G. max sPLA₂s are grouped as XIA and the rest of sequences as XIB, on the basis of differences found in their molecular weights and deviating sequences especially in the N- and C-terminal regions of the isoenzymes. Furthermore, we report the cloning, expression and purification of one of the putative isoenzyme denoted as GmsPLA₂-XIA-1. We demonstrate that this mature sPLA₂ of 114 residues had PLA₂ activity on Triton:phospholipid mixed micelles and determine the kinetic parameters for this system. We generate a model based on the known crystal structure of sPLA₂ from rice (isoform II), giving first insights into the three-dimensional structure of folded GmsPLA₂-XIA-1. Besides describing the spatial arrangement of highly conserved pair HIS-49/ASP-50 and the Ca⁺² loop domains, we propose the putative amino acids involved in the interfacial recognition surface. Additionally, molecular dynamics simulations indicate that calcium ion, besides its key function in the catalytic cycle, plays an important role in the overall stability of GmsPLA₂-XIA-1 structure.
Collapse
Affiliation(s)
- María Elisa Mariani
- Centro de Investigaciones en Química Biológica de Córdoba, (CIQUIBIC, UNCeCONICET), Departamento de Química Biológica, Fac. de Cs. Químicas, Universidad Nacional de Córdoba, Haya de Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
35
|
Bussières S, Cantin L, Desbat B, Salesse C. Binding of a truncated form of lecithin:retinol acyltransferase and its N- and C-terminal peptides to lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:3516-3523. [PMID: 22260449 DOI: 10.1021/la203896n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lecithin:retinol acyltransferase (LRAT) is a 230 amino acid membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. A truncated form of LRAT (tLRAT), which contains the residues required for catalysis but which is lacking the N- and C-terminal hydrophobic segments, was produced to study its membrane binding properties. Measurements of the maximum insertion pressure of tLRAT, which is higher than the estimated lateral pressure of membranes, and the positive synergy factor a argue in favor of a strong binding of tLRAT to phospholipid monolayers. Moreover, the binding, secondary structure and orientation of the peptides corresponding to its N- and C-terminal hydrophobic segments of LRAT have been studied by circular dichroism and polarization-modulation infrared reflection absorption spectroscopy in monolayers. The results show that these peptides spontaneously bind to lipid monolayers and adopt an α-helical secondary structure. On the basis of these data, a new membrane topology model of LRAT is proposed where its N- and C-terminal segments allow to anchor this protein to the lipid bilayer.
Collapse
Affiliation(s)
- Sylvain Bussières
- LOEX/CUO-recherche, Centre hospitalier affilié universitaire de Québec, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec (Québec), Canada
| | | | | | | |
Collapse
|
36
|
Lähdesmäki K, Öörni K, Alanne-Kinnunen M, Jauhiainen M, Hurt-Camejo E, Kovanen PT. Acidity and lipolysis by group V secreted phospholipase A2 strongly increase the binding of apoB-100-containing lipoproteins to human aortic proteoglycans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:257-67. [DOI: 10.1016/j.bbalip.2011.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 11/16/2022]
|
37
|
Pereañez JA, Gómez ID, Patiño AC. Relationship between the structure and the enzymatic activity of crotoxin complex and its phospholipase A2 subunit: an in silico approach. J Mol Graph Model 2012; 35:36-42. [PMID: 22481077 DOI: 10.1016/j.jmgm.2012.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/10/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Crotoxin, one of the major toxins of South American rattlesnake Crotalus durissus subspecies, is an heterodimeric complex composed of two distinct subunits: a basic phospholipase A(2) (PLA(2), CB) and an acidic nontoxic catalytically inactive protein, crotapotin (CA). It's well known that CB has a high enzymatic activity; however the molecular aspects that determine this fact remain unknown. In this study, an in silico approach was used to predict the CA structure by homology modeling, and the crotoxin structure by means of molecular docking. CA structure was built using the software Modeller taking Crotalus atrox PLA(2) (1PP2:R) as a template. Different criteria measured by Procheck, Verify 3D and ProSA were indicative of the reliability and the proper fold for the predicted structural model of CA. Then, a combination of this model and CB crystal structure was used to build the structure of crotoxin complex through rigid-body protein-protein docking. The crotoxin-3D model suggested that by means of hydrophobic and π-π stacking interactions, CA-Y24 and CA-F119 interact with CB-F24 and CB-F119, respectively. Those interactions could prevent the interfacial adsorption of the CB onto the lipid/water interface by blocking part of the interfacial binding surface of the PLA(2). This fact could explain the differences regarding to enzymatic activity between the crotoxin complex and CB. In addition, the crotoxin-3D model showed solvent-exposed regions of CA that could bind the receptor expressed in target cells.
Collapse
Affiliation(s)
- Jaime Andrés Pereañez
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, A.A. 1226, Medellín, Colombia.
| | | | | |
Collapse
|
38
|
Hariprasad G, Kaur P, Srinivasan A, Singh TP, Kumar M. Structural analysis of secretory phospholipase A2 from Clonorchis sinensis: therapeutic implications for hepatic fibrosis. J Mol Model 2012; 18:3139-45. [PMID: 22215060 DOI: 10.1007/s00894-011-1333-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022]
Abstract
Hepatic fibrosis is a common complication of the infection by the parasite, Clonorchis sinensis. There is a high incidence of this disease in the Asian countries with an increased risk of conversion to cancer. A secretory phospholipase A(2) (PLA(2)) enzyme from the parasite is implicated in the pathology. This is an attractive drug target in the light of extensive structural characterization of this class of enzyme. In this study, the structure of the enzyme was modeled based on its sequence homology to the group III bee venom PLA(2). On analysis, the overall structure essentially is comprised of three helices, two sets of β-wings and an elongated C-terminal extension. The structure is stabilized by four disulfide bonds. The structure is comprised of a calcium binding loop, active site and a substrate binding hydrophobic channel. The active site of the enzyme shows the classical features of PLA(2) with the participation of the three residues: histidine-aspartic acid-tyrosine in hydrogen bond formation. This is an interesting variation from the house keeping group III PLA(2) enzyme of human which has a histidine-aspartic acid and phenylalanine arrangement at the active site. This difference is therefore an important structural parameter that can be exploited to design specific inhibitor molecules against the pathogen PLA(2). Likewise, there are certain unique structural features in the hydrophobic channel and the putative membrane binding surface of the PLA(2) from Clonorchis sinensis that not only help understand the mechanism of action but also provide knowledge for a targeted therapy of liver fibrosis caused by the parasite.
Collapse
Affiliation(s)
- Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | | | | | | | | |
Collapse
|
39
|
Petrova S, Atanasov V, Balashev K. Vipoxin and Its Components. STRUCTURAL AND MECHANISTIC ENZYMOLOGY - BRINGING TOGETHER EXPERIMENTS AND COMPUTING 2012; 87:117-53. [DOI: 10.1016/b978-0-12-398312-1.00005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Sergouniotis P, Davidson A, Mackay D, Lenassi E, Li Z, Robson A, Yang X, Kam J, Isaacs T, Holder G, Jeffery G, Beck J, Moore A, Plagnol V, Webster A. Biallelic mutations in PLA2G5, encoding group V phospholipase A2, cause benign fleck retina. Am J Hum Genet 2011; 89:782-91. [PMID: 22137173 DOI: 10.1016/j.ajhg.2011.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022] Open
Abstract
Flecked-retina syndromes, including fundus flavimaculatus, fundus albipunctatus, and benign fleck retina, comprise a group of disorders with widespread or limited distribution of yellow-white retinal lesions of various sizes and configurations. Three siblings who have benign fleck retina and were born to consanguineous parents are the basis of this report. A combination of homozygosity mapping and exome sequencing helped to identify a homozygous missense mutation, c.133G>T (p.Gly45Cys), in PLA2G5, a gene encoding a secreted phospholipase (group V phospholipase A(2)). A screen of a further four unrelated individuals with benign fleck retina detected biallelic variants in the same gene in three patients. In contrast, no loss of function or common (minor-allele frequency>0.05%) nonsynonymous PLA2G5 variants have been previously reported (EVS, dbSNP, 1000 Genomes Project) or were detected in an internal database of 224 exomes (from subjects with adult onset neurodegenerative disease and without a diagnosis of ophthalmic disease). All seven affected individuals had fundoscopic features compatible with those previously described in benign fleck retina and no visual or electrophysiological deficits. No medical history of major illness was reported. Levels of low-density lipoprotein were mildly elevated in two patients. Optical coherence tomography and fundus autofluorescence findings suggest that group V phospholipase A(2) plays a role in the phagocytosis of photoreceptor outer-segment discs by the retinal pigment epithelium. Surprisingly, immunohistochemical staining of human retinal tissue revealed localization of the protein predominantly in the inner and outer plexiform layers.
Collapse
|
41
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 844] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
42
|
Moolenaar WH, Perrakis A. Insights into autotaxin: how to produce and present a lipid mediator. Nat Rev Mol Cell Biol 2011; 12:674-9. [PMID: 21915140 DOI: 10.1038/nrm3188] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autotaxin (ATX) is a secreted phosphodiesterase that produces the lipid mediator lysophosphatidic acid (LPA). LPA acts through specific guanine-nucleotide-binding protein (G protein)-coupled receptors to stimulate migration, proliferation, survival and other functions in many cell types. ATX is important in vivo for processes as diverse as vasculogenesis, lymphocyte trafficking and tumour progression. However, the inner workings of ATX have long been elusive, in terms of both its substrate specificity and how localized LPA signalling is achieved. Structural studies have shown how ATX recognizes its substrates and may interact with the cell surface to promote specificity in LPA signalling.
Collapse
|
43
|
Crystal Structure of Crotoxin Reveals Key Residues Involved in the Stability and Toxicity of This Potent Heterodimeric β-Neurotoxin. J Mol Biol 2011; 412:176-91. [DOI: 10.1016/j.jmb.2011.07.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/17/2011] [Accepted: 07/14/2011] [Indexed: 11/21/2022]
|
44
|
Ko KD, Bhardwaj G, Hong Y, Chang GS, Kiselyov K, van Rossum DB, Patterson RL. Phylogenetic profiles reveal structural/functional determinants of TRPC3 signal-sensing antennae. Commun Integr Biol 2011; 2:133-7. [PMID: 19704910 DOI: 10.4161/cib.7746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 01/02/2009] [Indexed: 11/19/2022] Open
Abstract
Biochemical assessment of channel structure/function is incredibly challenging. Developing computational tools that provide these data would enable translational research, accelerating mechanistic experimentation for the bench scientist studying ion channels. Starting with the premise that protein sequence encodes information about structure, function and evolution (SF&E), we developed a unified framework for inferring SF&E from sequence information using a knowledge-based approach. The Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST) provides phylogenetic profiles that can model, ab initio, SF&E relationships of biological sequences at the whole protein, single domain and single-amino acid level.1,2 In our recent paper,4 we have applied GDDA-BLAST analysis to study canonical TRP (TRPC) channels1 and empirically validated predicted lipid-binding and trafficking activities contained within the TRPC3 TRP_2 domain of unknown function. Overall, our in silico, in vitro, and in vivo experiments support a model in which TRPC3 has signal-sensing antennae which are adorned with lipid-binding, trafficking and calmodulin regulatory domains. In this Addendum, we correlate our functional domain analysis with the cryo-EM structure of TRPC3.3 In addition, we synthesize recent studies with our new findings to provide a refined model on the mechanism(s) of TRPC3 activation/deactivation.
Collapse
Affiliation(s)
- Kyung Dae Ko
- Department of Biology; The Pennsylvania State University; University Park; PA USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Cao J, Hsu YH, Li S, Woods VL, Dennis EA. Lipoprotein-associated phospholipase A(2) interacts with phospholipid vesicles via a surface-disposed hydrophobic α-helix. Biochemistry 2011; 50:5314-21. [PMID: 21553808 DOI: 10.1021/bi101916w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) plays important roles in both the inhibition and promotion of inflammation in human disease. It catalyzes the hydrolytic inactivation of plasma platelet activating factor (PAF) and is also known as PAF acetylhydrolase. High levels of PAF are implicated in a variety of inflammatory diseases such as asthma, necrotizing enterocolitis, and sepsis. Lp-PLA(2) also associates with lipoproteins in human plasma where it hydrolyzes oxidized phospholipids to produce pro-inflammatory lipid mediators that can promote inflammation and the development of atherosclerosis. Lp-PLA(2) plasma levels have recently been identified as a biomarker of vascular inflammation, atherosclerotic vulnerability, and future cardiovascular events. The enzyme is thus a prominent target for the development of inflammation and atherosclerosis-modulating therapeutics. While the crystallographically determined structure of the enzyme is known, the enzyme's mechanism of interaction with PAF and the function-modulating lipids in lipoproteins is unknown. We have employed peptide amide hydrogen-deuterium exchange mass spectrometry (DXMS) to characterize the association of Lp-PLA(2) with dimyristoylphosphatidylcholine (DMPC) vesicles and found that specific residues 113-120 in one of the enzyme's surface-disposed hydrophobic α-helices likely mediate liposome binding.
Collapse
Affiliation(s)
- Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, University of California, La Jolla, CA 92093-0601, USA
| | | | | | | | | |
Collapse
|
46
|
Changes in PLA2 activity after interacting with anti-inflammatory drugs and model membranes: evidence for the involvement of tryptophan residues. Chem Phys Lipids 2011; 164:292-9. [DOI: 10.1016/j.chemphyslip.2011.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/23/2022]
|
47
|
Munaron L. Shuffling the cards in signal transduction: Calcium, arachidonic acid and mechanosensitivity. World J Biol Chem 2011; 2:59-66. [PMID: 21537474 PMCID: PMC3083947 DOI: 10.4331/wjbc.v2.i4.59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 02/05/2023] Open
Abstract
Cell signaling is a very complex network of biochemical reactions triggered by a huge number of stimuli coming from the external medium. The function of any single signaling component depends not only on its own structure but also on its connections with other biomolecules. During prokaryotic-eukaryotic transition, the rearrangement of cell organization in terms of diffusional compartmentalization exerts a deep change in cell signaling functional potentiality. In this review I briefly introduce an intriguing ancient relationship between pathways involved in cell responses to chemical agonists (growth factors, nutrients, hormones) as well as to mechanical forces (stretch, osmotic changes). Some biomolecules (ion channels and enzymes) act as “hubs”, thanks to their ability to be directly or indirectly chemically/mechanically co-regulated. In particular calcium signaling machinery and arachidonic acid metabolism are very ancient networks, already present before eukaryotic appearance. A number of molecular “hubs”, including phospholipase A2 and some calcium channels, appear tightly interconnected in a cross regulation leading to the cellular response to chemical and mechanical stimulations.
Collapse
Affiliation(s)
- Luca Munaron
- Luca Munaron, Department of Animal and Human Biology, Nanostructured Interfaces and Surfaces Centre of Excellence, Center for Complex Systems in Molecular Biology and Medicine, University of Torino, 10123 Torino, Italy
| |
Collapse
|
48
|
Calvez P, Demers E, Boisselier E, Salesse C. Analysis of the contribution of saturated and polyunsaturated phospholipid monolayers to the binding of proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1373-9. [PMID: 21210634 DOI: 10.1021/la104097n] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The binding of peripheral proteins to membranes results in different biological effects. The large diversity of membrane lipids is thought to modulate the activity of these proteins. However, information on the selective binding of peripheral proteins to membrane lipids is still largely lacking. Lipid monolayers at the air/water interface are useful model membrane systems for studying the parameters responsible for peripheral protein membrane binding. We have thus measured the maximum insertion pressure (MIP) of two proteins from the photoreceptors, Retinitis pigmentosa 2 (RP2) and recoverin, to estimate their binding to lipid monolayers. Photoreceptor membranes have the unique characteristic that more than 60% of their fatty acids are polyunsaturated, making them the most unsaturated natural membranes known to date. These membranes are also thought to contain significant amounts of saturated phospholipids. MIPs of RP2 and recoverin have thus been measured in the presence of saturated and polyunsaturated phospholipids. MIPs higher than the estimated lateral pressure of biomembranes have been obtained only with a saturated phospholipid for RP2 and with a polyunsaturated phospholipid for recoverin. A new approach was then devised to analyze these data properly. In particular, a parameter called the synergy factor allowed us to highlight the specificity of RP2 for saturated phospholipids and recoverin for polyunsaturated phospholipids as well as to demonstrate clearly the preference of RP2 for saturated phospholipids that are known to be located in microdomains.
Collapse
Affiliation(s)
- Philippe Calvez
- LOEX/CUO-Recherche, Centre Hospitalier Affilié Universitaire de Québec, Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | | | | | | |
Collapse
|
49
|
Group XV phospholipase A₂, a lysosomal phospholipase A₂. Prog Lipid Res 2010; 50:1-13. [PMID: 21074554 DOI: 10.1016/j.plipres.2010.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/29/2010] [Accepted: 10/30/2010] [Indexed: 12/21/2022]
Abstract
A phospholipase A₂ was identified from MDCK cell homogenates with broad specificity toward glycerophospholipids including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. The phospholipase has the unique ability to transacylate short chain ceramides. This phospholipase is calcium-independent, localized to lysosomes, and has an acidic pH optimum. The enzyme was purified from bovine brain and found to be a water-soluble glycoprotein consisting of a single peptide chain with a molecular weight of 45 kDa. The primary structure deduced from the DNA sequences is highly conserved between chordates. The enzyme was named lysosomal phospholipase A₂ (LPLA₂) and subsequently designated group XV phospholipase A₂. LPLA₂ has 49% of amino acid sequence identity to lecithin-cholesterol acyltransferase and is a member of the αβ-hydrolase superfamily. LPLA₂ is highly expressed in alveolar macrophages. A marked accumulation of glycerophospholipids and extensive lamellar inclusion bodies, a hallmark of cellular phospholipidosis, is observed in alveolar macrophages in LPLA₂(-/-) mice. This defect can also be reproduced in macrophages that are exposed to cationic amphiphilic drugs such as amiodarone. In addition, older LPLA₂(-/-) mice develop a phenotype similar to human autoimmune disease. These observations indicate that LPLA₂ may play a primary role in phospholipid homeostasis, drug toxicity, and host defense.
Collapse
|
50
|
A biophysical approach to phospholipase A2 activity and inhibition by anti-inflammatory drugs. Biophys Chem 2010; 152:109-17. [DOI: 10.1016/j.bpc.2010.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/14/2010] [Accepted: 08/17/2010] [Indexed: 11/18/2022]
|