1
|
Laquel P, Ayciriex S, Doignon F, Camougrand N, Fougère L, Rocher C, Wattelet-Boyer V, Bessoule JJ, Testet E. Mlg1, a yeast acyltransferase located in ER membranes associated with mitochondria (MAMs), is involved in de novo synthesis and remodelling of phospholipids. FEBS J 2024; 291:2683-2702. [PMID: 38297966 DOI: 10.1111/febs.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
In cells, phospholipids contain acyl chains of variable lengths and saturation, features that affect their functions. Their de novo synthesis in the endoplasmic reticulum takes place via the cytidine diphosphate diacylglycerol (CDP-DAG) and Kennedy pathways, which are conserved in eukaryotes. PA is a key intermediate for all phospholipids (PI, PIPs, PS, PE, PC, PG and CL). The de novo synthesis of PA occurs by acylation of glycerophosphate leading to the synthesis of 1-acyl lysoPA and subsequent acylation of 1-acyl lysoPA at the sn-2 position. Using membranes from Escherichia coli overexpressing MLG1, we showed that the yeast gene MLG1 encodes an acyltransferase, leading specifically to the synthesis of PA from 1-acyl lysoPA. Moreover, after their de novo synthesis, phospholipids can be remodelled by acyl exchange with one and/or two acyl chains exchanged at the sn-1 and/or sn-2 position. Based on shotgun lipidomics of the reference and mlg1Δ strains, as well as biochemical assays for acyltransferase activities, we identified an additional remodelling activity for Mlg1p, namely, incorporation of palmitic acid into the sn-1 position of PS and PE. By using confocal microscopy and subcellular fractionation, we also found that this acyltransferase is located in ER membranes associated with mitochondria, a finding that highlights the importance of these organelles in the global cellular metabolism of lipids.
Collapse
Affiliation(s)
- Patricia Laquel
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | - Sophie Ayciriex
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ISA, UMR 5280, Villeurbanne, France
| | | | | | - Louise Fougère
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | | | | | | | - Eric Testet
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
- Bordeaux INP, LBM, UMR 5200, Villenave d'Ornon, France
| |
Collapse
|
2
|
Takagi K, Kikkawa A, Iwama R, Fukuda R, Horiuchi H. Type II phosphatidylserine decarboxylase is crucial for the growth and morphogenesis of the filamentous fungus Aspergillus nidulans. J Biosci Bioeng 2020; 131:139-146. [PMID: 33109479 DOI: 10.1016/j.jbiosc.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022]
Abstract
Phosphatidylserine decarboxylases (PSDs) catalyze the production of phosphatidylethanolamine (PE) from phosphatidylserine (PS) and are crucial for the maintenance of PE levels in fungi. The PSDs are classified into two types; the type I PSDs are conserved from bacteria to humans, while the type II PSDs exist only in fungi and plants. In yeasts, the deletion of type I PSD-encoding genes causes severe growth retardation. In contrast, the deletion of type II PSD-encoding genes has little or no effect. In this study, we found four genes encoding type II PSD orthologs in the filamentous fungus Aspergillus nidulans; these included psdB, psdC, psdD, and psdE. Deletion of psdB caused severe growth defects on minimal medium and these defects were partially restored by the addition of ethanolamine, choline, PE, or phosphatidylcholine into the medium. The conidiation efficiency of the psdB deletion mutant was dramatically decreased and its conidiophore structures were aberrant. In the psdB deletion mutant, the PE content decreased while the PS content increased. We further showed that PsdB had a major PSD activity. Our findings suggest that the type II PSDs exert important roles in the phospholipid homeostasis, and in the growth and morphogenesis of filamentous fungi.
Collapse
Affiliation(s)
- Keiko Takagi
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Akari Kikkawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
3
|
Patton-Vogt J, de Kroon AIPM. Phospholipid turnover and acyl chain remodeling in the yeast ER. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158462. [PMID: 31146038 PMCID: PMC10716787 DOI: 10.1016/j.bbalip.2019.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
The turnover of phospholipids plays an essential role in membrane lipid homeostasis by impacting both lipid head group and acyl chain composition. This review focusses on the degradation and acyl chain remodeling of the major phospholipid classes present in the ER membrane of the reference eukaryote Saccharomyces cerevisiae, i.e. phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylethanolamine (PE). Phospholipid turnover reactions are introduced, and the occurrence and important functions of phospholipid remodeling in higher eukaryotes are briefly summarized. After presenting an inventory of established mechanisms of phospholipid acyl chain exchange, current knowledge of phospholipid degradation and remodeling by phospholipases and acyltransferases localized to the yeast ER is summarized. PC is subject to the PC deacylation-reacylation remodeling pathway (PC-DRP) involving a phospholipase B, the recently identified glycerophosphocholine acyltransferase Gpc1p, and the broad specificity acyltransferase Ale1p. PI is post-synthetically enriched in C18:0 acyl chains by remodeling reactions involving Cst26p. PE may undergo turnover by the phospholipid: diacylglycerol acyltransferase Lro1p as first step in acyl chain remodeling. Clues as to the functions of phospholipid acyl chain remodeling are discussed.
Collapse
Affiliation(s)
- Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anton I P M de Kroon
- Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Kwiatek JM, Han GS, Carman GM. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158434. [PMID: 30910690 PMCID: PMC6755077 DOI: 10.1016/j.bbalip.2019.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
In yeast and higher eukaryotes, phospholipids and triacylglycerol are derived from phosphatidate at the nuclear/endoplasmic reticulum membrane. In de novo biosynthetic pathways, phosphatidate is channeled into membrane phospholipids via its conversion to CDP-diacylglycerol. Its dephosphorylation to diacylglycerol is required for the synthesis of triacylglycerol as well as for the synthesis of phosphatidylcholine and phosphatidylethanolamine via the Kennedy pathway. In addition to the role of phosphatidate as a precursor, it is a regulatory molecule in the transcriptional control of phospholipid synthesis genes via the Henry regulatory circuit. Pah1 phosphatidate phosphatase and Dgk1 diacylglycerol kinase are key players that function counteractively in the control of the phosphatidate level at the nuclear/endoplasmic reticulum membrane. Loss of Pah1 phosphatidate phosphatase activity not only affects triacylglycerol synthesis but also disturbs the balance of the phosphatidate level, resulting in the alteration of lipid synthesis and related cellular defects. The pah1Δ phenotypes requiring Dgk1 diacylglycerol kinase exemplify the importance of the phosphatidate level in the misregulation of cellular processes. The catalytic function of Pah1 requires its translocation from the cytoplasm to the nuclear/endoplasmic reticulum membrane, which is regulated through its phosphorylation in the cytoplasm by multiple protein kinases as well as through its dephosphorylation by the membrane-associated Nem1-Spo7 protein phosphatase complex. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
5
|
Mizuike A, Kobayashi S, Rikukawa T, Ohta A, Horiuchi H, Fukuda R. Suppression of respiratory growth defect of mitochondrial phosphatidylserine decarboxylase deficient mutant by overproduction of Sfh1, a Sec14 homolog, in yeast. PLoS One 2019; 14:e0215009. [PMID: 30958856 PMCID: PMC6453485 DOI: 10.1371/journal.pone.0215009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Interorganelle phospholipid transfer is critical for eukaryotic membrane biogenesis. In the yeast Saccharomyces cerevisiae, phosphatidylserine (PS) synthesized by PS synthase, Pss1, in the endoplasmic reticulum (ER) is decarboxylated to phosphatidylethanolamine (PE) by PS decarboxylase, Psd1, in the ER and mitochondria or by Psd2 in the endosome, Golgi, and/or vacuole, but the mechanism of interorganelle PS transport remains to be elucidated. Here we report that Sfh1, a member of Sec14 family proteins of S. cerevisiae, possesses the ability to enhance PE production by Psd2. Overexpression of SFH1 in the strain defective in Psd1 restored its growth on non-fermentable carbon sources and increased the intracellular and mitochondrial PE levels. Sfh1 was found to bind various phospholipids, including PS, in vivo. Bacterially expressed and purified Sfh1 was suggested to have the ability to transport fluorescently labeled PS between liposomes by fluorescence dequenching assay in vitro. Biochemical subcellular fractionation suggested that a fraction of Sfh1 localizes to the endosome, Golgi, and/or vacuole. We propose a model that Sfh1 promotes PE production by Psd2 by transferring phospholipids between the ER and endosome.
Collapse
Affiliation(s)
- Aya Mizuike
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Kobayashi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Rikukawa
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Anaokar S, Kodali R, Jonik B, Renne MF, Brouwers JFHM, Lager I, de Kroon AIPM, Patton-Vogt J. The glycerophosphocholine acyltransferase Gpc1 is part of a phosphatidylcholine (PC)-remodeling pathway that alters PC species in yeast. J Biol Chem 2018; 294:1189-1201. [PMID: 30514764 DOI: 10.1074/jbc.ra118.005232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Phospholipase B-mediated hydrolysis of phosphatidylcholine (PC) results in the formation of free fatty acids and glycerophosphocholine (GPC) in the yeast Saccharomyces cerevisiae GPC can be reacylated by the glycerophosphocholine acyltransferase Gpc1, which produces lysophosphatidylcholine (LPC), and LPC can be converted to PC by the lysophospholipid acyltransferase Ale1. Here, we further characterized the regulation and function of this distinct PC deacylation/reacylation pathway in yeast. Through in vitro and in vivo experiments, we show that Gpc1 and Ale1 are the major cellular GPC and LPC acyltransferases, respectively. Importantly, we report that Gpc1 activity affects the PC species profile. Loss of Gpc1 decreased the levels of monounsaturated PC species and increased those of diunsaturated PC species, whereas Gpc1 overexpression had the opposite effects. Of note, Gpc1 loss did not significantly affect phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine profiles. Our results indicate that Gpc1 is involved in postsynthetic PC remodeling that produces more saturated PC species. qRT-PCR analyses revealed that GPC1 mRNA abundance is regulated coordinately with PC biosynthetic pathways. Inositol availability, which regulates several phospholipid biosynthetic genes, down-regulated GPC1 expression at the mRNA and protein levels and, as expected, decreased levels of monounsaturated PC species. Finally, loss of GPC1 decreased stationary phase viability in inositol-free medium. These results indicate that Gpc1 is part of a postsynthetic PC deacylation/reacylation remodeling pathway (PC-DRP) that alters the PC species profile, is regulated in coordination with other major lipid biosynthetic pathways, and affects yeast growth.
Collapse
Affiliation(s)
- Sanket Anaokar
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282
| | - Ravindra Kodali
- Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Benjamin Jonik
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282
| | - Mike F Renne
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, 3584 CH Utrecht, The Netherlands
| | - Jos F H M Brouwers
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Anton I P M de Kroon
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, 3584 CH Utrecht, The Netherlands
| | - Jana Patton-Vogt
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
7
|
Morisada S, Ono Y, Kodaira T, Kishino H, Ninomiya R, Mori N, Watanabe H, Ohta A, Horiuchi H, Fukuda R. The membrane‐bound
O
‐acyltransferase Ale1 transfers an acyl moiety to newly synthesized 2‐alkyl‐
sn
‐glycero‐3‐phosphocholine in yeast. FEBS Lett 2018; 592:1829-1836. [DOI: 10.1002/1873-3468.13103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Shiho Morisada
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| | - Yusuke Ono
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| | - Teruhisa Kodaira
- Department of Applied Biological Chemistry The University of Tokyo Bunkyo‐ku Japan
| | - Hideyuki Kishino
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| | - Ryo Ninomiya
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| | - Naoki Mori
- Department of Applied Biological Chemistry The University of Tokyo Bunkyo‐ku Japan
| | - Hidenori Watanabe
- Department of Applied Biological Chemistry The University of Tokyo Bunkyo‐ku Japan
| | - Akinori Ohta
- Department of Biological Chemistry College of Bioscience and Biotechnology Chubu University Kasugai Japan
| | | | - Ryouichi Fukuda
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| |
Collapse
|
8
|
Renne MF, de Kroon AIPM. The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett 2017; 592:1330-1345. [PMID: 29265372 PMCID: PMC5947837 DOI: 10.1002/1873-3468.12944] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
In most eukaryotes, including Saccharomyces cerevisiae, glycerophospholipids are the main membrane lipid constituents. Besides serving as general membrane ‘building blocks’, glycerophospholipids play an important role in determining the physical properties of the membrane, which are crucial for proper membrane function. To ensure optimal physical properties, membrane glycerophospholipid composition and synthesis are tightly regulated. This review will summarize our current knowledge of factors and processes determining the membrane glycerophospholipid composition of the reference eukaryote S. cerevisiae at the level of molecular species. Extrapolating from relevant model membrane data, we also discuss how modulation of the molecular species composition can regulate membrane physical properties.
Collapse
Affiliation(s)
- Mike F. Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryBijvoet Center for Biomolecular Research & Institute of BiomembranesUtrecht Universitythe Netherlands
| | - Anton I. P. M. de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryBijvoet Center for Biomolecular Research & Institute of BiomembranesUtrecht Universitythe Netherlands
| |
Collapse
|
9
|
Oelkers P, Pokhrel K. Four Acyltransferases Uniquely Contribute to Phospholipid Heterogeneity in Saccharomyces cerevisiae. Lipid Insights 2016; 9:31-41. [PMID: 27920551 PMCID: PMC5127605 DOI: 10.4137/lpi.s40597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/25/2016] [Accepted: 10/25/2016] [Indexed: 11/14/2022] Open
Abstract
Diverse acyl-CoA species and acyltransferase isoenzymes are components of a complex system that synthesizes glycerophospholipids and triacylglycerols. Saccharomyces cerevisiae has four main acyl-CoA species, two main glycerol-3-phosphate 1-O-acyltransferases (Gat1p, Gat2p), and two main 1-acylglycerol-3-phosphate O-acyltransferases (Lpt1p, Slc1p). The in vivo contribution of these isoenzymes to phospholipid heterogeneity was determined using haploids with compound mutations: gat1Δlpt1Δ, gat2Δlpt1Δ, gat1Δslc1Δ, and gat2Δslc1Δ. All mutations mildly reduced [3H]palmitic acid incorporation into phospholipids relative to triacylglycerol. Electrospray ionization tandem mass spectrometry identified few differences from wild type in gat1Δlpt1Δ, dramatic differences in gat2Δslc1Δ, and intermediate changes in gat2Δlpt1Δ and gat1Δslc1Δ. Yeast expressing Gat1p and Lpt1p had phospholipids enriched with acyl chains that were unsaturated, 18 carbons long, and paired for length. These alterations prevented growth at 18.5°C and in 10% ethanol. Therefore, Gat2p and Slc1p dictate phospholipid acyl chain composition in rich media at 30°C. Slc1p selectively pairs acyl chains of different lengths.
Collapse
Affiliation(s)
- Peter Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, USA
| |
Collapse
|
10
|
Renne MF, Bao X, De Smet CH, de Kroon AIPM. Lipid Acyl Chain Remodeling in Yeast. Lipid Insights 2016; 8:33-40. [PMID: 26819558 PMCID: PMC4720183 DOI: 10.4137/lpi.s31780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/21/2015] [Indexed: 11/05/2022] Open
Abstract
Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Xue Bao
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands.; Present address: Division of Cell Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Anton I P M de Kroon
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Kobayashi S, Mizuike A, Horiuchi H, Fukuda R, Ohta A. Mitochondrially-targeted bacterial phosphatidylethanolamine methyltransferase sustained phosphatidylcholine synthesis of a Saccharomyces cerevisiae Δpem1 Δpem2 double mutant without exogenous choline supply. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1264-71. [DOI: 10.1016/j.bbalip.2014.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
|
12
|
Selvaraju K, Rajakumar S, Nachiappan V. Identification of a phospholipase B encoded by the LPL1 gene in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1383-92. [PMID: 25014274 DOI: 10.1016/j.bbalip.2014.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Phospholipids also play a major role in maintaining the lipid droplet (LD) morphology. In our current study, deletion of LPL1 resulted in altered morphology of LDs and was confirmed by microscopic analysis. LPL1/YOR059c contains lipase specific motif GXSXG and acetate labeling in the LPL1 overexpressed strains depicted a decrease in glycerophospholipids and an increase in free fatty acids. The purified Lpl1p showed phospholipase activity with broader substrate specificity, acting on all glycerophospholipids primarily at sn-2 position and later at sn-1 position. Localization studies precisely revealed that Lpl1 is exclusively localized in the LD at the stationary phase. Site directed mutagenesis experiments clearly demonstrated that the lipase motif is vital for the phospholipase activity. In summary, our results demonstrate that yeast Lpl1 exerts phospholipase activity, plays a vital role in LD morphology, and its absence results in altered LD size. Based on the localization and enzyme activity we renamed YOR059c as LPL1 (LD phospholipase 1).
Collapse
Affiliation(s)
- Kandasamy Selvaraju
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Selvaraj Rajakumar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India.
| |
Collapse
|
13
|
Involvement ofLEM3/ROS3in the Uptake of Phosphatidylcholine with Short Acyl Chains inSaccharomyces cerevisiae. Biosci Biotechnol Biochem 2014; 73:750-2. [DOI: 10.1271/bbb.80675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014; 14:369-88. [DOI: 10.1111/1567-1364.12141] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lisa Klug
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| | - Günther Daum
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| |
Collapse
|
15
|
Kishino H, Eguchi H, Takagi K, Horiuchi H, Fukuda R, Ohta A. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis. Biochem Biophys Res Commun 2014; 445:289-93. [PMID: 24491568 DOI: 10.1016/j.bbrc.2014.01.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of (13)C-labeled diC8PC ((methyl-(13)C)3-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-(13)C)3-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.
Collapse
Affiliation(s)
- Hideyuki Kishino
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Eguchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiko Takagi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akinori Ohta
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Characterization of a lysophospholipid acyltransferase involved in membrane remodeling in Candida albicans. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:505-13. [PMID: 24406902 DOI: 10.1016/j.bbalip.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/08/2013] [Accepted: 12/30/2013] [Indexed: 11/22/2022]
Abstract
Phospholipid remodeling involves phospholipase activity to remove acyl chains and acyltransferases to replace acyl chains. We here describe the characterization of a lysophospholipid acyltransferase in the opportunistic fungal pathogen, Candida albicans. Expression of this gene, C.a. LPT1, complemented the lysophospholipid acyltransferase defect in Saccharomyces cerevisiae strains lacking the homologous LPT1 gene. In vitro, lysophospholipid acyltransferase activity in these strains showed acyl-CoA substrate specificity, as measured by apparent Vmax/Km ratios, to be linolenoyl-CoA>oleoyl-CoA>linoleoyl-CoA>stearoyl-CoA. To address the physiological importance of C.a. LPT1, homozygous deletion strains were generated. Lysophospholipid acyltransferase activity with amine containing lysophospholipids was dramatically reduced while lysophosphatidylinositol and lysophosphatidic acid esterification was not significantly lowered. However, C.a. LPT1 over-expression yielded an increased amount of lysophosphatidic acyltransferase activity, suggesting a role in de novo phospholipid synthesis. LPT1 deletion strains showed slightly slowed growth in standard liquid media but no phenotype in media containing three antifungals that target sterols. To assess the role of C.a. Lpt1 in phospholipid remodeling, an in vivo, pulse-chase assay utilizing polysorbitan palmitate and mass spectrometry was developed. Cellular phospholipid composition became atypical with the provision of palmitate and gradually returned to the typical distribution when palmitate was removed. Deletion of C.a. LPT1 showed a modest yet significant effect on remodeling under these conditions.
Collapse
|
17
|
Fahy D, Scheer B, Wallis JG, Browse J. Reducing saturated fatty acids in Arabidopsis seeds by expression of a Caenorhabditis elegans 16:0-specific desaturase. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:480-489. [PMID: 23279079 DOI: 10.1111/pbi.12034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT-5, a membrane-bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed-specific promoter. The FAT-5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1∆9; expression of fat-5 reduced the 16:0 content of the seed by two-thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn-1 position. Seeds from a plant line homozygous for FAT-5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.
Collapse
Affiliation(s)
- Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | | | | | |
Collapse
|
18
|
Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 2013; 52:374-94. [PMID: 23631861 DOI: 10.1016/j.plipres.2013.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.
Collapse
|
19
|
De Smet CH, Cox R, Brouwers JF, de Kroon AIPM. Yeast cells accumulate excess endogenous palmitate in phosphatidylcholine by acyl chain remodeling involving the phospholipase B Plb1p. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1167-76. [PMID: 23501167 DOI: 10.1016/j.bbalip.2013.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the molecular species profile of the major membrane glycerophospholipid phosphatidylcholine (PC) is determined by the molecular species-selectivity of the biosynthesis routes and by acyl chain remodeling. Overexpression of the glycerol-3-phosphate acyltransferase Sct1p was recently shown to induce a strong increase in the cellular content of palmitate (C16:0). Using stable isotope labeling and mass spectrometry, the present study shows that wild type yeast overexpressing Sct1p incorporates excess C16:0 into PC via the methylation of PE, the CDP-choline route, and post-synthetic acyl chain remodeling. Overexpression of Sct1p increased the extent of remodeling of PE-derived PC, providing a novel tool to perform mechanistic studies on PC acyl chain exchange. The exchange of acyl chains occurred at both the sn-1 and sn-2 positions of the glycerol backbone of PC, and required the phospholipase B Plb1p for optimal efficiency. Sct1p-catalyzed acyl chain exchange, the acyl-CoA binding protein Acb1p, the Plb1p homologue Plb2p, and the glycerophospholipid:triacylglycerol transacylase Lro1p were not required for PC remodeling. The results indicate that PC serves as a buffer for excess cellular C16:0.
Collapse
|
20
|
Mora G, Scharnewski M, Fulda M. Neutral lipid metabolism influences phospholipid synthesis and deacylation in Saccharomyces cerevisiae. PLoS One 2012; 7:e49269. [PMID: 23139841 PMCID: PMC3489728 DOI: 10.1371/journal.pone.0049269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/07/2012] [Indexed: 12/29/2022] Open
Abstract
Establishment and maintenance of equilibrium in the fatty acid (FA) composition of phospholipids (PL) requires both regulation of the substrate available for PL synthesis (the acyl-CoA pool) and extensive PL turnover and acyl editing. In the present study, we utilize acyl-CoA synthetase (ACS) deficient cells, unable to recycle FA derived from lipid deacylation, to evaluate the role of several enzymatic activities in FA trafficking and PL homeostasis in Saccharomyces cerevisiae. The data presented show that phospholipases B are not contributing to constitutive PL deacylation and are therefore unlikely to be involved in PL remodeling. In contrast, the enzymes of neutral lipid (NL) synthesis and mobilization are central mediators of FA trafficking. The phospholipid:DAG acyltransferase (PDAT) Lro1p has a substantial effect on FA release and on PL equilibrium, emerging as an important mediator in PL remodeling. The acyl-CoA dependent biosynthetic activities of NL metabolism are also involved in PL homeostasis through active modulation of the substrate available for PL synthesis. In addition TAG mobilization makes an important contribution, especially in cells from stationary phase, to FA availability. Beyond its well-established role in the formation of a storage pool, NL metabolism could play a crucial role as a mechanism to uncouple the pools of PL and acyl-CoAs from each other and thereby to allow independent regulation of each one.
Collapse
Affiliation(s)
- Gabriel Mora
- Department of Plant Biochemistry, Albrecht-von-Haller Institute, Georg-August University Goettingen, Goettingen, Germany
| | | | | |
Collapse
|
21
|
Abstract
Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways.
Collapse
|
22
|
Abstract
The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
23
|
Dippe M, Ulbrich-Hofmann R. Phospholipid acylhydrolases trigger membrane degradation during fungal sporogenesis. Fungal Genet Biol 2011; 48:921-7. [DOI: 10.1016/j.fgb.2011.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/06/2011] [Accepted: 05/28/2011] [Indexed: 11/27/2022]
|
24
|
Kainu V, Hermansson M, Somerharju P. Introduction of phospholipids to cultured cells with cyclodextrin. J Lipid Res 2010; 51:3533-41. [PMID: 20881052 DOI: 10.1194/jlr.d009373] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Previous studies indicate that methyl-β-cyclodextrin (meβ-CD) can greatly enhance translocation of long-chain phospholipids from vesicles to cells in culture, which is very useful when studying, e.g., phospholipid metabolism and trafficking. However, the parameters affecting the transfer have not been systematically studied. Therefore, we studied the relevant parameters including meβ-CD and vesicle concentration, incubation time, phospholipid structure, and cell type. Because meβ-CD can extract cholesterol and other lipids from cells, thereby potentially altering cell growth or viability, these issues were studied as well. The results show that efficient incorporation of phospholipid species with hydrophobicity similar to that of natural species can be obtained without significantly compromising cell growth or viability. Cellular content of phosphatidyl-serine, -ethanolamine, and -choline could be increased dramatically, i.e., 400, 125, and 25%, respectively. Depletion of cellular cholesterol could be prevented or alleviated by inclusion of the proper amount of cholesterol in the donor vesicles. In summary, meβ-CD mediates efficient transfer of long-chain (phospho) lipids from vesicles to cells without significantly compromising their growth or viability. This lays a basis for detailed studies of phospholipid metabolism and trafficking as well as enables extensive manipulation of cellular phospholipid composition, which is particularly useful when investigating mechanisms underlying phospholipid homeostasis.
Collapse
Affiliation(s)
- Ville Kainu
- Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
25
|
Deng L, Fukuda R, Kakihara T, Narita K, Ohta A. Incorporation and remodeling of phosphatidylethanolamine containing short acyl residues in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:635-45. [PMID: 20176132 DOI: 10.1016/j.bbalip.2010.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/06/2010] [Accepted: 02/11/2010] [Indexed: 11/17/2022]
Abstract
Phosphatidylethanolamine (PE) is one of the essential phospholipids in the yeast Saccharomyces cerevisiae. We have previously shown that a yeast strain, the endogenous PE synthesis of which was controllable, grew in the presence of PE containing decanoyl residues (diC10PE) when PE synthesis was repressed. In this study, we investigated the fate of diC10PE, its uptake and remodeling in yeast. Deletion of the genes encoding Lem3p/Ros3p or P-type ATPases, Dnf1p and Dnf2p, impaired the growth of the mutants in the medium containing diC10PE, suggesting the involvement of these proteins in the uptake of diC10PE. Analysis of the metabolism of deuterium-labeled diC10PE by electrospray ionization tandem mass spectrometry revealed that it was rapidly converted to deuterium-labeled PEs containing C16 or C18 acyl residues. The probable intermediate PEs that contained decanoic acid and C16 or C18 fatty acids as acyl residues were also detected. In addition, a substantial amount of decanoic acid was released into the culture medium during growth in the presence of diC10PE. These results imply that diC10PE was remodeled to PEs with longer acyl residues and used as membrane components. Defects in the remodeling of diC10PE in the deletion mutants of ALE1 and SLC1, products of which were capable of acyl-transfer to the sn-2 position of lyso-phospholipids, suggested their involvement in the introduction of acyl residues to the sn-2 position of lyso-phosphatidylethanolamine in the remodeling reaction of diC10PE. Our results also suggest the presence of a mechanism to maintain the physiological length of PE acyl residues in yeast.
Collapse
Affiliation(s)
- Lan Deng
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
26
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
Beranek A, Rechberger G, Knauer H, Wolinski H, Kohlwein SD, Leber R. Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast. J Biol Chem 2009; 284:11572-8. [PMID: 19244244 PMCID: PMC2670162 DOI: 10.1074/jbc.m805511200] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial dimeric phospholipid cardiolipin is characterized by a high degree of unsaturation of its acyl chains, which is important for its functional interaction with mitochondrial enzymes. The unusual fatty acid composition of cardiolipin molecular species emerges from a de novo synthesized "premature" species by extensive acyl chain remodeling that involves as yet only partially identified acyltransferases and phospholipases. Recently, the yeast protein Taz1p was shown to function as a transacylase, which catalyzes the reacylation of monolysocardiolipin to mature cardiolipin. A defect in the orthologous human TAZ gene is associated with Barth syndrome, a severe genetic disorder, which may lead to cardiac failure and death in childhood. We now identified the protein encoded by reading frame YGR110W as a mitochondrial phospholipase, which deacylates de novo synthesized cardiolipin. Ygr110wp has a strong substrate preference for palmitic acid residues and functions upstream of Taz1p, to generate monolysocardiolipin for Taz1p-dependent reacylation with unsaturated fatty acids. We therefore rename the Ygr110wp as Cld1p (cardiolipin-specific deacylase 1).
Collapse
Affiliation(s)
- Andreas Beranek
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/II, Graz A-8010, Austria
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Phospholipid synthesis in the yeast Saccharomyces cerevisiae is a complex process that involves regulation by both genetic and biochemical mechanisms. The activity levels of phospholipid synthesis enzymes are controlled by gene expression (e.g., transcription) and by factors (lipids, water-soluble phospholipid precursors and products, and covalent modification of phosphorylation) that modulate catalysis. Phosphatidic acid, whose levels are controlled by the biochemical regulation of key phospholipid synthesis enzymes, plays a central role in the regulation of phospholipid synthesis gene expression.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|