1
|
Normal Thermostability of p.Ser113Leu and p.Arg631Cys Variants of Mitochondrial Carnitine Palmitoyltransferase II (CPT II) in Human Muscle Homogenate. Metabolites 2022; 12:metabo12111141. [DOI: 10.3390/metabo12111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Previous fibroblast and recombinant enzyme studies showed a markedly thermolabile p.Ser113Leu variant compared to the wild-type (WT) in muscle carnitine palmitoyltransferase II (CPT II) deficiency. Additionally, it has been shown that cardiolipin (CLP) stimulated or inhibited the p.Ser113Leu recombinant variant depending on the pre-incubation temperatures. In this study, the thermolabilities of mitochondrial enzyme CPT II in muscle homogenates of patients with the p.Ser113Leu (n = 3) and p.Arg631Cys (n = 2) variants were identified to be similar to that of WT. Pre-incubation with CLP on ice stimulated the WT enzyme more than both variants. However, CLP stimulated the variants and WT at 46 °C to about 6–18-fold. The present data indicate that the thermostability of CPT II variant in muscle homogenate is similar to that of WT. This is in contrast to the increased thermolability of enzymes derived from fibroblast and that of recombinant enzymes. Hence, it can be speculated that the disruption of the compartmentation in muscle homogenate mediates a protective effect on the thermolability of the native variant. However, the exact mechanism remains unclear. However, the activating effect of CLP on CPT II in muscle homogenate seems to align with those on recombinant enzymes.
Collapse
|
2
|
Negro M, Cerullo G, Parimbelli M, Ravazzani A, Feletti F, Berardinelli A, Cena H, D'Antona G. Exercise, Nutrition, and Supplements in the Muscle Carnitine Palmitoyl-Transferase II Deficiency: New Theoretical Bases for Potential Applications. Front Physiol 2021; 12:704290. [PMID: 34408664 PMCID: PMC8365340 DOI: 10.3389/fphys.2021.704290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Carnitine palmitoyltransferase II (CPTII) deficiency is the most frequent inherited disorder regarding muscle fatty acid metabolism, resulting in a reduced mitochondrial long-chain fatty acid oxidation during endurance exercise. This condition leads to a clinical syndrome characterized by muscle fatigue and/or muscle pain with a variable annual frequency of severe rhabdomyolytic episodes. While since the CPTII deficiency discovery remarkable scientific advancements have been reached in genetic analysis, pathophysiology and diagnoses, the same cannot be said for the methods of treatments. The current recommendations remain those of following a carbohydrates-rich diet with a limited fats intake and reducing, even excluding, physical activity, without, however, taking into account the long-term consequences of this approach. Suggestions to use carnitine and medium chain triglycerides remain controversial; conversely, other potential dietary supplements able to sustain muscle metabolism and recovery from exercise have never been taken into consideration. The aim of this review is to clarify biochemical mechanisms related to nutrition and physiological aspects of muscle metabolism related to exercise in order to propose new theoretical bases of treatment which, if properly tested and validated by future trials, could be applied to improve the quality of life of these patients.
Collapse
Affiliation(s)
- Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Mauro Parimbelli
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Alberto Ravazzani
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Fausto Feletti
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | | | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, University of Pavia, Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Meinhardt B, Motlagh Scholle L, Seifert F, Anwand M, Pietzsch M, Zierz S. Cardiolipin Stabilizes and Increases Catalytic Efficiency of Carnitine Palmitoyltransferase II and Its Variants S113L, P50H, and Y479F. Int J Mol Sci 2021; 22:4831. [PMID: 34063237 PMCID: PMC8125234 DOI: 10.3390/ijms22094831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022] Open
Abstract
Muscle carnitine palmitoyltransferase II (CPT II) deficiency is associated with various mutations in CPT2 gene. In the present study, the impact of the two CPT II variants P50H and Y479F were characterized in terms of stability and activity in vitro in comparison to wildtype (WT) and the well investigated variant S113L. While the initial enzyme activity of all variants showed wild-type-like behavior, the activity half-lives of the variants at different temperatures were severely reduced. This finding was validated by the investigation of thermostability of the enzymes using nano differential scanning fluorimetry (nanoDSF). Further, it was studied whether the protein stabilizing diphosphatidylglycerol cardiolipin (CL) has an effect on the variants. CL indeed had a positive effect on the stability. This effect was strongest for WT and least pronounced for variant P50H. Additionally, CL improved the catalytic efficiency for CPT II WT and the investigated variants by twofold when carnitine was the varied substrate due to a decrease in KM. However, there was no influence detected for the variation of substrate palmitoyl-CoA. The functional consequences of the stabilization by CL in vivo remain open.
Collapse
Affiliation(s)
- Beate Meinhardt
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (L.M.S.); (S.Z.)
| | - Leila Motlagh Scholle
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (L.M.S.); (S.Z.)
| | - Franziska Seifert
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany; (F.S.); (M.A.); (M.P.)
| | - Martina Anwand
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany; (F.S.); (M.A.); (M.P.)
| | - Markus Pietzsch
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany; (F.S.); (M.A.); (M.P.)
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (L.M.S.); (S.Z.)
| |
Collapse
|
4
|
Joshi PR, Zierz S. Muscle Carnitine Palmitoyltransferase II (CPT II) Deficiency: A Conceptual Approach. Molecules 2020; 25:molecules25081784. [PMID: 32295037 PMCID: PMC7221885 DOI: 10.3390/molecules25081784] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022] Open
Abstract
Carnitine palmitoyltransferase (CPT) catalyzes the transfer of long- and medium-chain fatty acids from cytoplasm into mitochondria, where oxidation of fatty acids takes place. Deficiency of CPT enzyme is associated with rare diseases of fatty acid metabolism. CPT is present in two subforms: CPT I at the outer mitochondrial membrane and carnitine palmitoyltransferase II (CPT II) inside the mitochondria. Deficiency of CPT II results in the most common inherited disorder of long-chain fatty acid oxidation affecting skeletal muscle. There is a lethal neonatal form, a severe infantile hepato-cardio-muscular form, and a rather mild myopathic form characterized by exercise-induced myalgia, weakness, and myoglobinuria. Total CPT activity (CPT I + CPT II) in muscles of CPT II-deficient patients is generally normal. Nevertheless, in some patients, not detectable to reduced total activities are also reported. CPT II protein is also shown in normal concentration in patients with normal CPT enzymatic activity. However, residual CPT II shows abnormal inhibition sensitivity towards malonyl-CoA, Triton X-100 and fatty acid metabolites in patients. Genetic studies have identified a common p.Ser113Leu mutation in the muscle form along with around 100 different rare mutations. The biochemical consequences of these mutations have been controversial. Hypotheses include lack of enzymatically active protein, partial enzyme deficiency and abnormally regulated enzyme. The recombinant enzyme experiments that we recently conducted have shown that CPT II enzyme is extremely thermoliable and is abnormally inhibited by different emulsifiers and detergents such as malonyl-CoA, palmitoyl-CoA, palmitoylcarnitine, Tween 20 and Triton X-100. Here, we present a conceptual overview on CPT II deficiency based on our own findings and on results from other studies addressing clinical, biochemical, histological, immunohistological and genetic aspects, as well as recent advancements in diagnosis and therapeutic strategies in this disorder.
Collapse
|
5
|
Ivin N, Della Torre V, Sanders F, Youngman M. Rhabdomyolysis caused by carnitine palmitoyltransferase 2 deficiency: A case report and systematic review of the literature. J Intensive Care Soc 2019; 21:165-173. [PMID: 32489413 DOI: 10.1177/1751143719889766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Carnitine palmitoyltransferase 2 deficiency is an inherited metabolic disorder involving a deficiency in a mitochondrial enzyme necessary for long chain fatty acid oxidation, and therefore decreased utilisation of fatty acids. The adult form of this condition leads to recurrent rhabdomyolysis triggered by exercise, fasting and infection. It is a very rare condition with only a few hundred reported cases worldwide. Here we present a case of severe rhabdomyolysis in the context of carnitine palmitoyltransferase 2 deficiency in which major organ involvement was avoided, and organ support was not needed. This prompted us to perform a systematic review of the existing case reports in the literature to ascertain the most frequent patterns of organ involvement and assess the outcomes that are seen in these patients. Our findings suggest that these patients most frequently develop isolated renal failure, often requiring renal replacement therapy; however, the outcomes following this are very good, supporting the early involvement of intensive care teams.
Collapse
Affiliation(s)
- Nicholas Ivin
- Critical Care Unit, West Suffolk Hospital, NHS Foundation Trust, Bury St Edmunds, UK
| | - Valentina Della Torre
- Department of Critical Care, Imperial College Healthcare NHS Trust, St Mary's Hospital, London, UK
| | - Francis Sanders
- Critical Care Unit, West Suffolk Hospital, NHS Foundation Trust, Bury St Edmunds, UK
| | - Matthew Youngman
- Critical Care Unit, West Suffolk Hospital, NHS Foundation Trust, Bury St Edmunds, UK
| |
Collapse
|
6
|
Motlagh Scholle L, Lehmann D, Joshi PR, Zierz S. Normal FGF-21-Serum Levels in Patients with Carnitine Palmitoyltransferase II (CPT II) Deficiency. Int J Mol Sci 2019; 20:ijms20061400. [PMID: 30897730 PMCID: PMC6471933 DOI: 10.3390/ijms20061400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Fibroblast growth factor 21 (FGF-21) is known to be a biomarker for mitochondrial disorders. An upregulation of FGF-21 in serum and muscle of carnitine palmitoyltransferase I (CPT I) and carnitine palmitoyltransferase II (CPT II) knock-out mice has been reported. In human CPT II deficiency, enzyme activity and protein content are normal, but the enzyme is abnormally regulated by malonyl-CoA and is abnormally thermolabile. Citrate synthase (CS) activity is increased in patients with CPT II deficiency. This may indicate a compensatory response to an impaired function of CPT II. In this study, FGF-21 serum levels in patients with CPT II deficiency during attack free intervals and in healthy controls were measured by enzyme linked immunosorbent assay (ELISA). The data showed no significant difference between FGF-21 concentration in the serum of patients with CPT II deficiency and that in the healthy controls. The results of the present work support the hypothesis that in muscle CPT II deficiency, in contrast to the mouse knockout model, mitochondrial fatty acid utilization is not persistently reduced. Thus, FGF-21 does not seem to be a useful biomarker in the diagnosis of CPT II deficiency.
Collapse
Affiliation(s)
- Leila Motlagh Scholle
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Diana Lehmann
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Pushpa Raj Joshi
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
7
|
Motlagh Scholle L, Thaele A, Beckers M, Meinhardt B, Zierz S. Lack of activation of the S113L variant of carnitine palmitoyltransfersase II by cardiolipin. J Bioenerg Biomembr 2019; 50:461-466. [PMID: 30604089 DOI: 10.1007/s10863-018-9781-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/27/2018] [Indexed: 11/24/2022]
Abstract
The phospholipid environment of the mitochondrial inner membrane, which contains large amounts of cardiolipin, could play a key role in transport of the long chain fatty acids. In the present study, the pre-incubation of cardiolipin with the wild type carnitine palmitoyltransferase (CPT) II led to a more than 1.5-fold increase of enzyme activity at physiological temperatures. At higher temperatures, however, there was a pronounced loss of activity. The most frequent variant S113L showed even at 37 °C a great activity loss. Pre-incubation of the wild type with both malonyl-CoA and cardiolipin counteracted the positive effect of cardiolipin. Malonyl-CoA, however, showed no inhibition effect on the variant in presence of cardiolipin. The activity loss in presence of cardiolipin at fever simulating situations was more pronounced for the variant comparing to the wild type. The reason might be a disturbed membrane association or a blockage of the active center of the mutated enzyme.
Collapse
Affiliation(s)
- Leila Motlagh Scholle
- Department of Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany.
| | - Annemarie Thaele
- Department of Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Marie Beckers
- Department of Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Beate Meinhardt
- Department of Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Stephan Zierz
- Department of Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| |
Collapse
|
8
|
Muscle Carnitine Palmitoyltransferase II Deficiency: A Review of Enzymatic Controversy and Clinical Features. Int J Mol Sci 2017; 18:ijms18010082. [PMID: 28054946 PMCID: PMC5297716 DOI: 10.3390/ijms18010082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022] Open
Abstract
CPT (carnitine palmitoyltransferase) II muscle deficiency is the most common form of muscle fatty acid metabolism disorders. In contrast to carnitine deficiency, it is clinically characterized by attacks of myalgia and rhabdomyolysis without persistent muscle weakness and lipid accumulation in muscle fibers. The biochemical consequences of the disease-causing mutations are still discussed controversially. CPT activity in muscles of patients with CPT II deficiency ranged from not detectable to reduced to normal. Based on the observation that in patients, total CPT is completely inhibited by malony-CoA, a deficiency of malonyl-CoA-insensitive CPT II has been suggested. In contrast, it has also been shown that in muscle CPT II deficiency, CPT II protein is present in normal concentrations with normal enzymatic activity. However, CPT II in patients is abnormally sensitive to inhibition by malonyl-CoA, Triton X-100 and fatty acid metabolites. A recent study on human recombinant CPT II enzymes (His6-N-hCPT2 and His6-N-hCPT2/S113L) revealed that the wild-type and the S113L variants showed the same enzymatic activity. However, the mutated enzyme showed an abnormal thermal destabilization at 40 and 45 °C and an abnormal sensitivity to inhibition by malony-CoA. The thermolability of the mutant enzyme might explain why symptoms in muscle CPT II deficiency mainly occur during prolonged exercise, infections and exposure to cold. In addition, the abnormally regulated enzyme might be mostly inhibited when the fatty acid metabolism is stressed.
Collapse
|
9
|
Motlagh L, Golbik R, Sippl W, Zierz S. Stabilization of the thermolabile variant S113L of carnitine palmitoyltransferase II. NEUROLOGY-GENETICS 2016; 2:e53. [PMID: 27123472 PMCID: PMC4830186 DOI: 10.1212/nxg.0000000000000053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 01/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Muscle carnitine palmitoyltransferase (CPT) II deficiency, the most common defect of lipid metabolism in muscle, is characterized by attacks of myoglobinuria without persistent muscle weakness. METHODS His6-N-hCPT2 (wild-type) and His6-N-hCPT2/S113L (variant) were produced recombinantly in prokaryotic host and characterized according to their functional and regulatory properties. RESULTS The wild-type and the variant S113L showed the same enzymatic activity and thermostability at 30°C. The mutated enzyme, however, revealed an abnormal thermal destabilization at 40°C and 45°C. This was consistent with an increased flexibility (B-factor) of the variant at 40°C compared with that of the wild-type shown by molecular dynamics analysis. Preincubation of the enzymes with l-carnitine and acyl-l-carnitines containing more than 10 carbons in the acyl side-chain stabilized the mutated enzyme against thermal inactivation. In contrast, palmitoyl-CoA destabilized both enzymes. CONCLUSIONS The problems in CPT II deficiency originating from the S113L mutation are not caused by the loss of catalytically active enzyme. They might be at least partially related to an impaired thermal stability of the protein. The lower thermodynamic stability of the variant might explain why fever and prolonged exertion provoke attacks of myoglobinuria in CPT II deficiency. The stabilization by acyl-l-carnitines might provide the basis for possible preventive therapy of CPT II deficiency.
Collapse
Affiliation(s)
- Leila Motlagh
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralph Golbik
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephan Zierz
- Department of Neurology (L.M., S.Z.), Institute of Biochemistry and Biotechnology (R.G.), and Institute of Pharmacy (W.S.), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|