1
|
Mineo C, Shaul PW. New Player in an Old Field? Ecto-F 1-ATPase in Antidiabetic Actions of HDL in Pancreatic β-Cells. Arterioscler Thromb Vasc Biol 2024; 44:419-422. [PMID: 38095108 PMCID: PMC10842905 DOI: 10.1161/atvbaha.123.320426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Dept. of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
2
|
Chang YW, Tony Yang T, Chen MC, Liaw YG, Yin CF, Lin-Yan XQ, Huang TY, Hou JT, Hung YH, Hsu CL, Huang HC, Juan HF. Spatial and temporal dynamics of ATP synthase from mitochondria toward the cell surface. Commun Biol 2023; 6:427. [PMID: 37072500 PMCID: PMC10113393 DOI: 10.1038/s42003-023-04785-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
Ectopic ATP synthase complex (eATP synthase), located on cancer cell surface, has been reported to possess catalytic activity that facilitates the generation of ATP in the extracellular environment to establish a suitable microenvironment and to be a potential target for cancer therapy. However, the mechanism of intracellular ATP synthase complex transport remains unclear. Using a combination of spatial proteomics, interaction proteomics, and transcriptomics analyses, we find ATP synthase complex is first assembled in the mitochondria and subsequently delivered to the cell surface along the microtubule via the interplay of dynamin-related protein 1 (DRP1) and kinesin family member 5B (KIF5B). We further demonstrate that the mitochondrial membrane fuses to the plasma membrane in turn to anchor ATP syntheses on the cell surface using super-resolution imaging and real-time fusion assay in live cells. Our results provide a blueprint of eATP synthase trafficking and contribute to the understanding of the dynamics of tumor progression.
Collapse
Grants
- 109-2221-E-010-012-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2221-E-010-011-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2327-B-006-004 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2320-B-002-017-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MOST 109-2221-E-002-161-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NTU-110L8808 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-CC-109L104702-2 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-110L7103 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-111L7107 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- NTU-CC-112L892102 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
Collapse
Affiliation(s)
- Yi-Wen Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - T Tony Yang
- Department of Electrical Engineering, National Taiwan University, Taipei, 106, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Min-Chun Chen
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Y-Geh Liaw
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Chieh-Fan Yin
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Xiu-Qi Lin-Yan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Ting-Yu Huang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Jen-Tzu Hou
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Hsuan Hung
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan.
- Center for Computational and Systems Biology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
3
|
Wang J, Wang J, Qiu T, Wu J, Sun X, Jiang L, Liu X, Yang G, Cao J, Yao X. Mitochondrial iron overload mediated by cooperative transfer of plasma membrane ATP5B and TFR2 to mitochondria triggers hepatic insulin resistance under PFOS exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114662. [PMID: 36801541 DOI: 10.1016/j.ecoenv.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In general populations, insulin resistance (IR) is related to perfluorooctane sulfonate (PFOS), a persistent organic pollutant. However, the underlying mechanism remains unclear. In this study, PFOS induced mitochondrial iron accumulation in the liver of mice and human hepatocytes L-O2. In the PFOS-treated L-O2 cells, mitochondrial iron overload preceded the occurrence of IR, and pharmacological inhibition of mitochondrial iron relieved PFOS-caused IR. Both transferrin receptor 2 (TFR2) and ATP synthase β subunit (ATP5B) were redistributed from the plasma membrane to mitochondria with PFOS treatment. Inhibiting the translocation of TFR2 to mitochondria reversed PFOS-induced mitochondrial iron overload and IR. In the PFOS-treated cells, ATP5B interacted with TFR2. Stabilizing ATP5B on the plasma membrane or knockdown of ATP5B disturbed the translocation of TFR2. PFOS inhibited the activity of plasma-membrane ATP synthase (ectopic ATP synthase, e-ATPS), and activating e-ATPS prevented the translocation of ATP5B and TFR2. Consistently, PFOS induced ATP5B/TFR2 interaction and redistribution of ATP5B and TFR2 to mitochondria in the liver of mice. Thus, our results indicated that mitochondrial iron overload induced by collaborative translocation of ATP5B and TFR2 was an up-stream and initiating event for PFOS-related hepatic IR, providing novel understandings of the biological function of e-ATPS, the regulatory mechanism for mitochondrial iron and the mechanism underlying PFOS toxicity.
Collapse
Affiliation(s)
- Jianyu Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jinling Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jialu Wu
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Food Nutrition and Safety Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofang Liu
- Food Nutrition and Safety Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Food Nutrition and Safety Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jun Cao
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
4
|
Prothymosin α Plays Role as a Brain Guardian through Ecto-F 1 ATPase-P2Y 12 Complex and TLR4/MD2. Cells 2023; 12:cells12030496. [PMID: 36766838 PMCID: PMC9914670 DOI: 10.3390/cells12030496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Prothymosin alpha (ProTα) was discovered to be a necrosis inhibitor from the conditioned medium of a primary culture of rat cortical neurons under starved conditions. This protein carries out a neuronal cell-death-mode switch from necrosis to apoptosis, which is, in turn, suppressed by a variety of neurotrophic factors (NTFs). This type of NTF-assisted survival action of ProTα is reproduced in cerebral and retinal ischemia-reperfusion models. Further studies that used a retinal ischemia-reperfusion model revealed that ProTα protects retinal cells via ecto-F1 ATPase coupled with the Gi-coupled P2Y12 receptor and Toll-like receptor 4 (TLR4)/MD2 coupled with a Toll-IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF). In cerebral ischemia-reperfusion models, ProTα has additional survival mechanisms via an inhibition of matrix metalloproteases in microglia and vascular endothelial cells. Heterozygous or conditional ProTα knockout mice show phenotypes of anxiety, memory learning impairment, and a loss of neurogenesis. There are many reports that ProTα has multiple intracellular functions for cell survival and proliferation through a variety of protein-protein interactions. Overall, it is suggested that ProTα plays a key role as a brain guardian against ischemia stress through a cell-death-mode switch assisted by NTFs and a role of neurogenesis.
Collapse
|
5
|
Pires Da Silva J, Wargny M, Raffin J, Croyal M, Duparc T, Combes G, Genoux A, Perret B, Vellas B, Guyonnet S, Thalamas C, Langin D, Moro C, Viguerie N, Rolland Y, Barreto PDS, Cariou B, Martinez LO. Plasma level of ATPase inhibitory factor 1 (IF1) is associated with type 2 diabetes risk in humans: A prospective cohort study. DIABETES & METABOLISM 2023; 49:101391. [PMID: 36174852 DOI: 10.1016/j.diabet.2022.101391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023]
Abstract
AIM Mitochondrial dysfunction is associated with the development of type 2 diabetes mellitus (T2DM). It is thus of clinical relevance to identify plasma biomarkers of mitochondrial dysfunction associated with the risk of T2DM. ATPase inhibitory factor 1 (IF1) endogenously inhibits mitochondrial ATP synthase activity. Here, we analyzed association of the plasma IF1 level with markers of glucose homeostasis and with the conversion to new-onset diabetes (NOD) in individuals with prediabetes. METHODS In the IT-DIAB prospective study, the baseline plasma level of IF1 was measured in 307 participants with prediabetes. The primary outcome was the incidence of NOD within five years of follow-up. Cross-sectional analysis of the IF1 level was also done in two independent interventional studies. Correlations between plasma IF1 and metabolic parameters at baseline were assessed by Spearman's correlation coefficients, and the association with the risk of NOD was determined using Cox proportional-hazards models. RESULTS In IT-DIAB, the mean IF1 plasma level was lower in participants who developed NOD than in those who did not (537 ± 248 versus 621 ± 313 ng/mL, P = 0.01). The plasma IF1 level negatively correlated with clinical variables associated with obesity and insulin resistance, including the body mass index (r = -0.20, P = 0.0005) and homeostasis model assessment of insulin resistance (HOMA-IR). (r = -0.37, P < 0.0001). Conversely, IF1 was positively associated with plasma markers of cardiometabolic health, such as HDL-C (r = 0.63, P < 0.0001) and apoA-I (r = 0.33, P < 0.0001). These correlations were confirmed in cross-sectional analyses. In IT-DIAB, the IF1 level was significantly associated with a lower risk of T2DM after adjustment for age, sex, and fasting plasma glucose (HR [95% CI] per 1 SD = 0.76 [0.62; 0.94], P = 0.012). CONCLUSION We identified for the first time the mitochondrial-related biomarker IF1 as being associated with the risk of T2DM.
Collapse
Affiliation(s)
- Julie Pires Da Silva
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Matthieu Wargny
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France; Nantes Université, CHU Nantes, Pôle Hospitalo-Universitaire 11 : Santé Publique, Clinique des données, INSERM, CIC 1413, F-44000 Nantes, France
| | - Jérémy Raffin
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, F-44000 Nantes, France; CRNH-Ouest Mass Spectrometry Core Facility, 44000 Nantes, France
| | - Thibaut Duparc
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Guillaume Combes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Annelise Genoux
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bertrand Perret
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bruno Vellas
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Sophie Guyonnet
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Claire Thalamas
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France; Clinical Investigation Center, Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Toulouse University Hospitals, CIC1436, F-CRIN/FORCE Network, Toulouse, France
| | - Dominique Langin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France; Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France; Institut Universitaire de France (IUF), Paris, France
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Nathalie Viguerie
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Yves Rolland
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Philipe de Souto Barreto
- Institut du Vieillissement, Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP UMR 1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), UMR1297, Toulouse, France.
| | -
- Members are listed in the acknowledgements
| |
Collapse
|
6
|
Gatto C, Grandi M, Solaini G, Baracca A, Giorgio V. The F1Fo-ATPase inhibitor protein IF1 in pathophysiology. Front Physiol 2022; 13:917203. [PMID: 35991181 PMCID: PMC9389554 DOI: 10.3389/fphys.2022.917203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
The endogenous inhibitor of ATP synthase is a protein of about 10 kDa, known as IF1 which binds to the catalytic domain of the enzyme during ATP hydrolysis. The main role of IF1 consists of limiting ATP dissipation under condition of severe oxygen deprivation or in the presence of dysfunctions of mitochondrial respiratory complexes, causing a collapse in mitochondrial membrane potential and therefore ATP hydrolysis. New roles of IF1 are emerging in the fields of cancer and neurodegeneration. Its high expression levels in tumor tissues have been associated with different roles favouring tumor formation, progression and evasion. Since discordant mechanisms of action have been proposed for IF1 in tumors, it is of the utmost importance to clarify them in the prospective of defining novel approaches for cancer therapy. Other IF1 functions, including its involvement in mitophagy, may be protective for neurodegenerative and aging-related diseases. In the present review we aim to clarify and discuss the emerging mechanisms in which IF1 is involved, providing a critical view of the discordant findings in the literature.
Collapse
|
7
|
Gore E, Duparc T, Genoux A, Perret B, Najib S, Martinez LO. The Multifaceted ATPase Inhibitory Factor 1 (IF1) in Energy Metabolism Reprogramming and Mitochondrial Dysfunction: A New Player in Age-Associated Disorders? Antioxid Redox Signal 2022; 37:370-393. [PMID: 34605675 PMCID: PMC9398489 DOI: 10.1089/ars.2021.0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The mitochondrial oxidative phosphorylation (OXPHOS) system, comprising the electron transport chain and ATP synthase, generates membrane potential, drives ATP synthesis, governs energy metabolism, and maintains redox balance. OXPHOS dysfunction is associated with a plethora of diseases ranging from rare inherited disorders to common conditions, including diabetes, cancer, neurodegenerative diseases, as well as aging. There has been great interest in studying regulators of OXPHOS. Among these, ATPase inhibitory factor 1 (IF1) is an endogenous inhibitor of ATP synthase that has long been thought to avoid the consumption of cellular ATP when ATP synthase acts as an ATP hydrolysis enzyme. Recent Advances: Recent data indicate that IF1 inhibits ATP synthesis and is involved in a multitude of mitochondrial-related functions, such as mitochondrial quality control, energy metabolism, redox balance, and cell fate. IF1 also inhibits the ATPase activity of cell-surface ATP synthase, and it is used as a cardiovascular disease biomarker. Critical Issues: Although recent data have led to a paradigm shift regarding IF1 functions, these have been poorly studied in entire organisms and in different organs. The understanding of the cellular biology of IF1 is, therefore, still limited. The aim of this review was to provide an overview of the current understanding of the role of IF1 in mitochondrial functions, health, and diseases. Future Directions: Further investigations of IF1 functions at the cell, organ, and whole-organism levels and in different pathophysiological conditions will help decipher the controversies surrounding its involvement in mitochondrial function and could unveil therapeutic strategies in human pathology. Antioxid. Redox Signal. 37, 370-393.
Collapse
Affiliation(s)
- Emilia Gore
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Thibaut Duparc
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Annelise Genoux
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bertrand Perret
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Souad Najib
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | | |
Collapse
|
8
|
The Interplay of Endothelial P2Y Receptors in Cardiovascular Health: From Vascular Physiology to Pathology. Int J Mol Sci 2022; 23:ijms23115883. [PMID: 35682562 PMCID: PMC9180512 DOI: 10.3390/ijms23115883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.
Collapse
|
9
|
Dong Z, Yang X, Qiu T, an Y, Zhang G, Li Q, Jiang L, Yang G, Cao J, Sun X, Liu X, Liu D, Yao X. Exosomal miR-181a-2-3p derived from citreoviridin-treated hepatocytes activates hepatic stellate cells trough inducing mitochondrial calcium overload. Chem Biol Interact 2022; 358:109899. [DOI: 10.1016/j.cbi.2022.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
|
10
|
Yergöz F, Friebel J, Kränkel N, Rauch-Kroehnert U, Schultheiss HP, Landmesser U, Dörner A. Adenine Nucleotide Translocase 1 Expression Modulates the Immune Response in Ischemic Hearts. Cells 2021; 10:cells10082130. [PMID: 34440901 PMCID: PMC8393693 DOI: 10.3390/cells10082130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Adenine nucleotide translocase 1 (ANT1) transfers ATP and ADP over the mitochondrial inner membrane and thus supplies the cell with energy. This study analyzed the role of ANT1 in the immune response of ischemic heart tissue. Ischemic ANT1 overexpressing hearts experienced a shift toward an anti-inflammatory immune response. The shift was characterized by low interleukin (IL)-1β expression and M1 macrophage infiltration, whereas M2 macrophage infiltration and levels of IL-10, IL-4, and transforming growth factor (TGFβ) were increased. The modulated immune response correlated with high mitochondrial integrity, reduced oxidative stress, low left ventricular end-diastolic heart pressure, and a high survival rate. Isolated ANT1-transgenic (ANT1-TG) cardiomyocytes expressed low levels of pro-inflammatory cytokines such as IL-1α, tumor necrosis factor α, and TGFβ. However, they showed increased expression and cellular release of anti-inflammatory immunomodulators such as vascular endothelial growth factor. The secretome from ANT1-TG cardiomyocytes initiated stress resistance when applied to ischemic wild-type cardiomyocytes and endothelial cells. It additionally prevented macrophages from expressing pro-inflammatory cytokines. Additionally, ANT1 expression correlated with genes that are related to cytokine and growth factor pathways in hearts of patients with ischemic cardiomyopathy. In conclusion, ANT1-TG cardiomyocytes secrete soluble factors that influence ischemic cardiac cells and initiate an anti-inflammatory immune response in ischemic hearts.
Collapse
Affiliation(s)
- Fatih Yergöz
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Julian Friebel
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Nicolle Kränkel
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Ursula Rauch-Kroehnert
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | | | - Ulf Landmesser
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Andrea Dörner
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513-727
| |
Collapse
|
11
|
Papegay B, Nuyens V, Albert A, Cherkaoui-Malki M, Andreoletti P, Leo O, Kruys V, Boogaerts JG, Vamecq J. Adenosine Diphosphate and the P2Y13 Receptor Are Involved in the Autophagic Protection of Ex Vivo Perfused Livers From Fasted Rats: Potential Benefit for Liver Graft Preservation. Liver Transpl 2021; 27:997-1006. [PMID: 33306256 DOI: 10.1002/lt.25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023]
Abstract
Studies on how to protect livers perfused ex vivo can help design strategies for hepatoprotection and liver graft preservation. The protection of livers isolated from 24-hour versus 18-hour starved rats has been previously attributed to autophagy, which contributes to the energy-mobilizing capacity ex vivo. Here, we explored the signaling pathways responsible for this protection. In our experimental models, 3 major signaling candidates were considered in view of their abilities to trigger autophagy: high mobility group box 1 (HMGB1), adenosine monophosphate-activated protein kinase (AMPK), and purinergic receptor P2Y13. To this end, ex vivo livers isolated from starved rats were perfused for 135 minutes, after which perfusate samples were studied for protein release and biopsies were performed for evaluating signaling protein contents. For HMGB1, no significant difference was observed between livers isolated from rats starved for 18 and 24 hours at perfusion times of both 0 and 135 minutes. The phosphorylated and total forms of AMPK, but not their ratios, were significantly higher in 24-hour fasted than in 18-hour fasted livers. However, although the level of phosphorylated AMPK increased, perfusing ex vivo 18-hour fasted livers with 1 mM 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, did not protect the livers. In addition, the adenosine diphosphate (ADP; and not adenosine monophosphate [AMP]) to AMP + ADP + adenosine triphosphate ratio increased in the 24-hour starved livers compared with that in the 18-hour starved livers. Moreover, perfusing 24-hour starved livers with 0.1 mM 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde (MRS2211), a specific antagonist of the P2Y13 receptor, induced an increase in cytolysis marker levels in the perfusate samples and a decrease in the levels of autophagic marker microtubule-associated proteins 1 light chain 3 II (LC3II)/actin (and a loss of p62/actin decrease), indicating autophagy inhibition and a loss of protection. The P2Y13 receptor and ADP (a physiological activator of this receptor) are involved in the protection of ex vivo livers. Therapeutic opportunities for improving liver graft preservation through the stimulation of the ADP/P2Y13 receptor axis are further discussed.
Collapse
Affiliation(s)
- Bérengère Papegay
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Vincent Nuyens
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Adelin Albert
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Mustapha Cherkaoui-Malki
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Pierre Andreoletti
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Oberdan Leo
- Laboratory of Immunobiology and ULB Centre for Research in Immunology (U-CRI), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), Gosselies, Belgium
| | - Jean G Boogaerts
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Joseph Vamecq
- Inserm, and Hormonology/Metabolism/Nutrition/Oncology Department of the Centre of Biology and Pathology, Metabolism Branch, University Hospital Center of Lille and EA 7364-RADEME (Rare Developmental and Metabolic Disorders), North France University Lille, Lille, France
| |
Collapse
|
12
|
Kliment CR, Nguyen JMK, Kaltreider MJ, Lu Y, Claypool SM, Radder JE, Sciurba FC, Zhang Y, Gregory AD, Iglesias PA, Sidhaye VK, Robinson DN. Adenine nucleotide translocase regulates airway epithelial metabolism, surface hydration and ciliary function. J Cell Sci 2021; 134:jcs.257162. [PMID: 33526710 DOI: 10.1242/jcs.257162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
Airway hydration and ciliary function are critical to airway homeostasis and dysregulated in chronic obstructive pulmonary disease (COPD), which is impacted by cigarette smoking and has no therapeutic options. We utilized a high-copy cDNA library genetic selection approach in the amoeba Dictyostelium discoideum to identify genetic protectors to cigarette smoke. Members of the mitochondrial ADP/ATP transporter family adenine nucleotide translocase (ANT) are protective against cigarette smoke in Dictyostelium and human bronchial epithelial cells. Gene expression of ANT2 is reduced in lung tissue from COPD patients and in a mouse smoking model, and overexpression of ANT1 and ANT2 resulted in enhanced oxidative respiration and ATP flux. In addition to the presence of ANT proteins in the mitochondria, they reside at the plasma membrane in airway epithelial cells and regulate airway homeostasis. ANT2 overexpression stimulates airway surface hydration by ATP and maintains ciliary beating after exposure to cigarette smoke, both of which are key functions of the airway. Our study highlights a potential for upregulation of ANT proteins and/or of their agonists in the protection from dysfunctional mitochondrial metabolism, airway hydration and ciliary motility in COPD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer M K Nguyen
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Jane Kaltreider
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - YaWen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josiah E Radder
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alyssa D Gregory
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Venkataramana K Sidhaye
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Environmental Health Sciences and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 2020; 187:114322. [PMID: 33161020 DOI: 10.1016/j.bcp.2020.114322] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Ectonucleotidases are key for purinergic signaling. They control the duration of activity of purinergic receptor agonists. At the same time, they produce hydrolysis products as additional ligands of purinergic receptors. Due to the considerable diversity of enzymes, purinergic receptor ligands and purinergic receptors, deciphering the impact of extracellular purinergic receptor control has become a challenge. The first group of enzymes described were the alkaline phosphatases - at the time not as nucleotide-metabolizing but as nonspecific phosphatases. Enzymes now referred to as nucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase were the first and only nucleotide-specific ectonucleotidases identified. And they were the first group of enzymes related to purinergic signaling. Additional research brought to light a surprising number of ectoenzymes with broad substrate specificity, which can also hydrolyze nucleotides. This short overview traces the development of the field and briefly highlights important results and benefits for therapies of human diseases achieved within nearly a century of investigations.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Brewster LM. Extracellular creatine kinase may modulate purinergic signalling. Purinergic Signal 2020; 16:305-312. [PMID: 32572751 PMCID: PMC7524943 DOI: 10.1007/s11302-020-09707-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular purine nucleotides and nucleosides including ADP and ATP regulate a wide array of physiological processes including platelet aggregation, vasomotor responses and inflammation through specific purinergic receptors. In the recent years, a strong association has been reported between circulating cytoplasmic-type creatine kinase and adverse clinical outcomes such as major bleeding, hypertension and obesity. Therefore, it is proposed that extracellular CK may modulate purinergic signalling through its ADP binding and/or ATP-generating effect.
Collapse
Affiliation(s)
- L M Brewster
- CK Science Foundation, POB 23639, 1100, EC, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Rahmaninejad H, Pace T, Bhatt S, Sun B, Kekenes-Huskey P. Co-localization and confinement of ecto-nucleotidases modulate extracellular adenosine nucleotide distributions. PLoS Comput Biol 2020; 16:e1007903. [PMID: 32584811 PMCID: PMC7316229 DOI: 10.1371/journal.pcbi.1007903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/22/2020] [Indexed: 12/30/2022] Open
Abstract
Nucleotides comprise small molecules that perform critical signaling roles in biological systems. Adenosine-based nucleotides, including adenosine tri-, di-, and mono-phosphate, are controlled through their rapid degradation by diphosphohydrolases and ecto-nucleotidases (NDAs). The interplay between nucleotide signaling and degradation is especially important in synapses formed between cells, which create signaling 'nanodomains'. Within these 'nanodomains', charged nucleotides interact with densely-packed membranes and biomolecules. While the contributions of electrostatic and steric interactions within such nanodomains are known to shape diffusion-limited reaction rates, less is understood about how these factors control the kinetics of nucleotidase activity. To quantify these factors, we utilized reaction-diffusion numerical simulations of 1) adenosine triphosphate (ATP) hydrolysis into adenosine monophosphate (AMP) and 2) AMP into adenosine (Ado) via two representative nucleotidases, CD39 and CD73. We evaluate these sequentially-coupled reactions in nanodomain geometries representative of extracellular synapses, within which we localize the nucleotidases. With this model, we find that 1) nucleotidase confinement reduces reaction rates relative to an open (bulk) system, 2) the rates of AMP and ADO formation are accelerated by restricting the diffusion of substrates away from the enzymes, and 3) nucleotidase co-localization and the presence of complementary (positive) charges to ATP enhance reaction rates, though the impact of these contributions on nucleotide pools depends on the degree to which the membrane competes for substrates. As a result, these contributions integratively control the relative concentrations and distributions of ATP and its metabolites within the junctional space. Altogether, our studies suggest that CD39 and CD73 nucleotidase activity within junctional spaces can exploit their confinement and favorable electrostatic interactions to finely control nucleotide signaling.
Collapse
Affiliation(s)
- Hadi Rahmaninejad
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Tom Pace
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shashank Bhatt
- Paul Laurence Dunbar High School, Lexington, Kentucky, United States of America
| | - Bin Sun
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter Kekenes-Huskey
- Department of Cell & Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Muñoz-Vega M, Massó F, Páez A, Vargas-Alarcón G, Coral-Vázquez R, Mas-Oliva J, Carreón-Torres E, Pérez-Méndez Ó. HDL-Mediated Lipid Influx to Endothelial Cells Contributes to Regulating Intercellular Adhesion Molecule (ICAM)-1 Expression and eNOS Phosphorylation. Int J Mol Sci 2018; 19:ijms19113394. [PMID: 30380707 PMCID: PMC6274843 DOI: 10.3390/ijms19113394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 01/19/2023] Open
Abstract
Reverse cholesterol transport (RCT) is considered as the most important antiatherogenic role of high-density lipoproteins (HDL), but interventions based on RCT have failed to reduce the risk of coronary heart disease. In contrast to RCT, important evidence suggests that HDL deliver lipids to peripheral cells. Therefore, in this paper, we investigated whether HDL could improve endothelial function by delivering lipids to the cells. Internalization kinetics using cholesterol and apolipoprotein (apo) AI fluorescent double-labeled reconstituted HDL (rHDL), and human dermal microvascular endothelial cells-1 (HMEC-1) showed a fast cholesterol influx (10 min) and a slower HDL protein internalization as determined by confocal microscopy and flow cytometry. Sphingomyelin kinetics overlapped that of apo AI, indicating that only cholesterol became dissociated from rHDL during internalization. rHDL apo AI internalization was scavenger receptor class B type I (SR-BI)-dependent, whereas HDL cholesterol influx was independent of SR-BI and was not completely inhibited by the presence of low-density lipoproteins (LDL). HDL sphingomyelin was fundamental for intercellular adhesion molecule-1 (ICAM-1) downregulation in HMEC-1. However, vascular cell adhesion protein-1 (VCAM-1) was not inhibited by rHDL, suggesting that components such as apolipoproteins other than apo AI participate in HDL's regulation of this adhesion molecule. rHDL also induced endothelial nitric oxide synthase eNOS S1177 phosphorylation in HMEC-1 but only when the particle contained sphingomyelin. In conclusion, the internalization of HDL implies the dissociation of lipoprotein components and a SR-BI-independent fast delivery of cholesterol to endothelial cells. HDL internalization had functional implications that were mainly dependent on sphingomyelin. These results suggest a new role of HDL as lipid vectors to the cells, which could be congruent with the antiatherogenic properties of these lipoproteins.
Collapse
Affiliation(s)
- Mónica Muñoz-Vega
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Felipe Massó
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Araceli Páez
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Ramón Coral-Vázquez
- Graduate School and Research Division, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 México City, Mexico.
- Sub-Directorate of Research and Education, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, 03100 México City, Mexico.
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Óscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| |
Collapse
|
17
|
Taurino F, Gnoni A. Systematic review of plasma-membrane ecto-ATP synthase: A new player in health and disease. Exp Mol Pathol 2018; 104:59-70. [DOI: 10.1016/j.yexmp.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
|