1
|
Wang Q, Zhang S, Ding J, Zhang Z, Li X, Chen Y, Zhu Y, Zeng D, Dong J, Liu Y. Ferulic acid alleviates cardiac injury by inhibiting avermectin-induced oxidative stress, inflammation and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110058. [PMID: 39442783 DOI: 10.1016/j.cbpc.2024.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Avermectin (AVM) is a broad-spectrum antibiotic from the macrolide class, extensively employed in fisheries and aquaculture. Nevertheless, its indiscriminate utilisation has resulted in a substantial accumulation of remnants in the aquatic ecosystem, potentially inflicting significant harm to the cardiovascular system of aquatic species. Ferulic acid (FA) is a naturally occurring compound in wheat grain husks. It possesses potent anti-inflammatory and antioxidant properties, which can help reduce cardiovascular damage. Additionally, its affordability makes it an excellent option for aquaculture usage as a feed additive. This article explored the potential of FA as a feed additive to protect against AVM-induced heart damage in carp. We subjected carp to AVM for 30 days and provided them with a diet of 400 mg/kg of FA. FA substantially reduced the pathogenic damage to heart tissue caused by AVM, as shown through hematoxylin-eosin staining. The biochemical analysis revealed that FA markedly enhanced the activity of antioxidant enzymes catalase (CAT), glutathione (GSH), and total antioxidant capacity (T-AOC) while reducing the malondialdehyde (MDA) content. Furthermore, qPCR analysis demonstrated a substantial increase in the mRNA levels of transforming growth factor-β1 (tgf-β1) and interleukin-10 (il-10) simultaneously, significantly reducing the expression levels of interleukin-10 (il-6), interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α) and inductible nitric oxide synthase (inos). Through the mitochondrial apoptotic route, FA reduced AVM-induced cell death in carp heart cells by upregulating bcl-2 while downregulating the mRNA expression levels of bax, fas, caspase8 and caspase9. In summary, FA alleviated cardiac injury by inhibiting AVM-induced oxidative stress, inflammatory response, and apoptosis in carp heart tissue.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Pathology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
| | - Shasha Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiahao Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiqiang Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxuan Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuxin Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yangye Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Danping Zeng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yi Liu
- Department of Pathology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China.
| |
Collapse
|
2
|
Sun Z, Wang Y, Jin X, Li S, Qiu HJ. Crosstalk between Dysfunctional Mitochondria and Proinflammatory Responses during Viral Infections. Int J Mol Sci 2024; 25:9206. [PMID: 39273156 PMCID: PMC11395300 DOI: 10.3390/ijms25179206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondria play pivotal roles in sustaining various biological functions including energy metabolism, cellular signaling transduction, and innate immune responses. Viruses exploit cellular metabolic synthesis to facilitate viral replication, potentially disrupting mitochondrial functions and subsequently eliciting a cascade of proinflammatory responses in host cells. Additionally, the disruption of mitochondrial membranes is involved in immune regulation. During viral infections, mitochondria orchestrate innate immune responses through the generation of reactive oxygen species (ROS) and the release of mitochondrial DNA, which serves as an effective defense mechanism against virus invasion. The targeting of mitochondrial damage may represent a novel approach to antiviral intervention. This review summarizes the regulatory mechanism underlying proinflammatory response induced by mitochondrial damage during viral infections, providing new insights for antiviral strategies.
Collapse
Affiliation(s)
- Zitao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Jin
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
3
|
Jenner A, Garcia-Saez AJ. The regulation of the apoptotic pore-An immunological tightrope walk. Adv Immunol 2024; 162:59-108. [PMID: 38866439 DOI: 10.1016/bs.ai.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Apoptotic pore formation in mitochondria is the pivotal point for cell death during mitochondrial apoptosis. It is regulated by BCL-2 family proteins in response to various cellular stress triggers and mediates mitochondrial outer membrane permeabilization (MOMP). This allows the release of mitochondrial contents into the cytosol, which triggers rapid cell death and clearance through the activation of caspases. However, under conditions of low caspase activity, the mitochondrial contents released into the cytosol through apoptotic pores serve as inflammatory signals and activate various inflammatory responses. In this chapter, we discuss how the formation of the apoptotic pore is regulated by BCL-2 proteins as well as other cellular or mitochondrial proteins and membrane lipids. Moreover, we highlight the importance of sublethal MOMP in the regulation of mitochondrial-activated inflammation and discuss its physiological consequences in the context of pathogen infection and disease and how it can potentially be exploited therapeutically, for example to improve cancer treatment.
Collapse
Affiliation(s)
- Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Wang P, Ouyang J, Zhou K, Hu D, Zhang S, Zhang A, Yang Y. Olesoxime protects against cisplatin-induced acute kidney injury by attenuating mitochondrial dysfunction. Biomed J 2024:100730. [PMID: 38643825 DOI: 10.1016/j.bj.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a critical factor in the pathogenesis of acute kidney injury (AKI). Agents that ameliorate mitochondrial dysfunction hold potential for AKI treatment. The objective of this study was to investigate the impact of olesoxime, a novel mitochondrial-targeted agent, on cisplatin-induced AKI. METHODS In vivo, a cisplatin-induced AKI mouse model was established by administering a single intraperitoneal dose of cisplatin (25 mg/kg) to male C57BL/6 mice for 72 hours, followed by gavage of either olesoxime or a control solution. In vitro, human proximal tubular HK2 cells were cultured and subjected to treatments with cisplatin, either in the presence or absence of olesoxime. RESULTS In vivo, our findings demonstrated that olesoxime administration significantly mitigated the nephrotoxic effects of cisplatin in mice, as evidenced by reduced blood urea nitrogen (BUN) and serum creatinine (SCr) levels, improved renal histopathology, and decreased expression of renal tubular injury markers such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, olesoxime administration markedly reduced cisplatin-induced apoptosis, inflammation, and oxidative stress in the kidneys of AKI mice. Additionally, olesoxime treatment effectively restored mitochondrial function in the kidneys of AKI mice. In vitro, our results indicated that olesoxime treatment protected against cisplatin-induced apoptosis and mitochondrial dysfunction in cultured HK2 cells. Notably, cisplatin's anticancer effects were unaffected by olesoxime treatment in human cancer cells. CONCLUSION The results of this study suggest that olesoxime is a viable and efficient therapeutic agent in the treatment of cisplatin-induced acute kidney injury presumably by alleviating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Peipei Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Jing Ouyang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Kaiqian Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Dandan Hu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Shengnan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China.
| | - Yunwen Yang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
5
|
Jäntti MH, Jackson SN, Kuhn J, Parkkinen I, Sree S, Hinkle JJ, Jokitalo E, Deterding LJ, Harvey BK. Palmitate and thapsigargin have contrasting effects on ER membrane lipid composition and ER proteostasis in neuronal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159219. [PMID: 35981704 PMCID: PMC9452468 DOI: 10.1016/j.bbalip.2022.159219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.
Collapse
Affiliation(s)
- Maria H Jäntti
- Molecular Mechanisms of Cellular Stress and Inflammation, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| | - Shelley N Jackson
- Translational Analytical Core, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Jeffrey Kuhn
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Ilmari Parkkinen
- Neuroscience Center, Helsinki Institute for Life Science, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Sreesha Sree
- Cell and Tissue Dynamics Research Programme, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Joshua J Hinkle
- Molecular Mechanisms of Cellular Stress and Inflammation, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Eija Jokitalo
- Cell and Tissue Dynamics Research Programme, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Leesa J Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| |
Collapse
|
6
|
Magalhães EP, Silva BP, Aires NL, Ribeiro LR, Ali A, Cavalcanti MM, Nunes JVS, Sampaio TL, de Menezes RRPPB, Martins AMC. (-)-α-Bisabolol as a protective agent against epithelial renal cytotoxicity induced by amphotericin B. Life Sci 2021; 291:120271. [PMID: 34974077 DOI: 10.1016/j.lfs.2021.120271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Amphotericin B (AmB), used for systemic fungal infections, has a limited clinical application because of its high nephrotoxicity. Natural antioxidant and anti-inflammatory substances have been widely studied for protection against drug-induced nephrotoxicity. α-Bisabolol (BIS) has demonstrated a nephroprotective effect on both in vitro and in vivo models. AIMS The aim of this work was to evaluate the effect of BIS against AmB-induced nephrotoxicity in vitro. MATERIAL AND METHODS LLC-MK2 cells were pre- and post-treated with non-toxic BIS concentrations and/or AmB IC50 (13.97 μM). Cell viability was assessed by MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] assay. Flow cytometry analyses were used to assess cell death mechanism, production of reactive oxidative stress (ROS) and mitochondrial transmembrane potential. Kidney Injury Molecule-1 (KIM-1) levels were measured via ELISA. KEY FINDINGS The present work showed that BIS pretreatment (125; 62.5 and 31.25 μM) increased cell viability when compared to the group treated only with AmB IC50. AmB treatment induced both necrosis (7-AAD-labeled cells) and late apoptosis (AnxV-labeled). BIS was able to prevent the occurrence of these events. These effects were associated with a decrease of ROS accumulation, improving transmembrane mitochondrial potential and protecting against tubular cell damage, highlighted by the inhibition of KIM-1 release after BIS treatment. SIGNIFICANCE BIS presented a potential effect on model of renal cytotoxicity induced by AmB, bringing perspectives for the research of new nephroprotective agents.
Collapse
Affiliation(s)
- Emanuel Paula Magalhães
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Brenna Pinheiro Silva
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Natália Luna Aires
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lyanna Rodrigues Ribeiro
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Arif Ali
- Postgraduate Program in Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - João Victor Serra Nunes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
7
|
Coones RT, Green RJ, Frazier RA. Investigating lipid headgroup composition within epithelial membranes: a systematic review. SOFT MATTER 2021; 17:6773-6786. [PMID: 34212942 DOI: 10.1039/d1sm00703c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane lipid composition is often quoted within the literature, but with very little insight into how or why these compositions vary when compared to other biological membranes. One prominent area that lacks understanding in terms of rationale for lipid variability is the human gastro-intestinal tract (GIT). We have carried out a comprehensive systematic literature search to ascertain the key lipid components of epithelial membranes, with a particular focus on addressing the human GIT and to use compositional data to understand structural aspects of biological membranes. Both bacterial outer membranes and the human erythrocyte membrane were used as a comparison for the mammalian [epithelial] membranes and to understand variations in lipid presence. We show that phosphatidylcholine (PC) lipid types tend to dominate (33%) with phosphatidylethanolamines (PE) and cholesterol having very similar abundances (25 and 23% respectively). This systematic review presents a detailed insight into lipid headgroup composition and roles in various membrane types, with a summary of the distinction between the major lipid bilayer forming lipids and how peripheral lipids regulate charge and fluidity. The variety of lipids present in biological membranes is discussed and rationalised in terms function as well as cellular position.
Collapse
Affiliation(s)
- R T Coones
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R J Green
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R A Frazier
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, UK.
| |
Collapse
|
8
|
Zhu Y, Han XQ, Sun XJ, Yang R, Ma WQ, Liu NF. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy. Apoptosis 2021; 25:321-340. [PMID: 31993850 DOI: 10.1007/s10495-020-01592-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arterial media calcification is related to mitochondrial dysfunction. Protective mitophagy delays the progression of vascular calcification. We previously reported that lactate accelerates osteoblastic phenotype transition of VSMC through BNIP3-mediated mitophagy suppression. In this study, we investigated the specific links between lactate, mitochondrial homeostasis, and vascular calcification. Ex vivo, alizarin S red and von Kossa staining in addition to measurement of calcium content, RUNX2, and BMP-2 protein levels revealed that lactate accelerated arterial media calcification. We demonstrated that lactate induced mitochondrial fission and apoptosis in aortas, whereas mitophagy was suppressed. In VSMCs, lactate increased NR4A1 expression, leading to activation of DNA-PKcs and p53. Lactate induced Drp1 migration to the mitochondria and enhanced mitochondrial fission through NR4A1. Western blot analysis of LC3-II and p62 and mRFP-GFP-LC3 adenovirus detection showed that NR4A1 knockdown was involved in enhanced autophagy flux. Furthermore, NR4A1 inhibited BNIP3-related mitophagy, which was confirmed by TOMM20 and BNIP3 protein levels, and LC3-II co-localization with TOMM20. The excessive fission and deficient mitophagy damaged mitochondrial structure and impaired respiratory function, determined by mPTP opening rate, mitochondrial membrane potential, mitochondrial morphology under TEM, ATP production, and OCR, which was reversed by NR4A1 silencing. Mechanistically, lactate enhanced fission but halted mitophagy via activation of the NR4A1/DNA-PKcs/p53 pathway, evoking apoptosis, finally accelerating osteoblastic phenotype transition of VSMC and calcium deposition. This study suggests that the NR4A1/DNA-PKcs/p53 pathway is involved in the mechanism by which lactate accelerates vascular calcification, partly through excessive Drp-mediated mitochondrial fission and BNIP3-related mitophagy deficiency.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xi-Qiong Han
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Rui Yang
- Pharmaceutical Department, Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Wen-Qi Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
9
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
10
|
Crosstalk between Long-Term Sublethal Oxidative Stress and Detrimental Inflammation as Potential Drivers for Age-Related Retinal Degeneration. Antioxidants (Basel) 2020; 10:antiox10010025. [PMID: 33383836 PMCID: PMC7823845 DOI: 10.3390/antiox10010025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/16/2022] Open
Abstract
Age-related retinal degenerations, including age-related macular degeneration (AMD), are caused by the loss of retinal pigmented epithelial (RPE) cells and photoreceptors. The pathogenesis of AMD, deeply linked to the aging process, also involves oxidative stress and inflammatory responses. However, the molecular mechanisms contributing to the shift from healthy aging to AMD are still poorly understood. Since RPE cells in the retina are chronically exposed to a pro-oxidant microenvironment throughout life, we simulated in vivo conditions by growing ARPE-19 cells in the presence of 10 μM H2O2 for several passages. This long-term oxidative insult induced senescence in ARPE-19 cells without affecting cell proliferation. Global proteomic analysis revealed a dysregulated expression in proteins involved in antioxidant response, mitochondrial homeostasis, and extracellular matrix organization. The analyses of mitochondrial functionality showed increased mitochondrial biogenesis and ATP generation and improved response to oxidative stress. The latter, however, was linked to nuclear factor-κB (NF-κB) rather than nuclear factor erythroid 2–related factor 2 (Nrf2) activation. NF-κB hyperactivation also resulted in increased pro-inflammatory cytokines expression and inflammasome activation. Moreover, in response to additional pro-inflammatory insults, senescent ARPE-19 cells underwent an exaggerated inflammatory reaction. Our results indicate senescence as an important link between chronic oxidative insult and detrimental chronic inflammation, with possible future repercussions for therapeutic interventions.
Collapse
|
11
|
Petricciuolo M, Davidescu M, Fettucciari K, Gatticchi L, Brancorsini S, Roberti R, Corazzi L, Macchioni L. The efficacy of the anticancer 3-bromopyruvate is potentiated by antimycin and menadione by unbalancing mitochondrial ROS production and disposal in U118 glioblastoma cells. Heliyon 2020; 6:e05741. [PMID: 33364504 PMCID: PMC7753915 DOI: 10.1016/j.heliyon.2020.e05741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming of tumour cells sustains cancer progression. Similar to other cancer cells, glioblastoma cells exhibit an increased glycolytic flow, which encourages the use of antiglycolytics as an effective complementary therapy. We used the antiglycolytic 3-bromopyruvate (3BP) as a metabolic modifier to treat U118 glioblastoma cells and investigated the toxic effects and the conditions to increase drug effectiveness at the lowest concentration. Cellular vitality was not affected by 3BP concentrations lower than 40 μM, although p-Akt dephosphorylation, p53 degradation, and ATP reduction occurred already at 30 μM 3BP. ROS generated in mitochondria were enhanced at 30 μM 3BP, possibly by unbalancing their generation and their disposal because of glutathione peroxidase inhibition. ROS triggered JNK and ERK phosphorylation, and cyt c release outside mitochondria, not accompanied by caspases-9 and -3 activation, probably due to 3BP-dependent alkylation of cysteine residues at caspase-9 catalytic site. To explore the possibility of sensitizing cells to 3BP treatment, we exploited 3BP effects on mitochondria by using 30 μM 3BP in association with antimycin A or menadione concentrations that in themselves exhibit poor toxicity. 3BP effect on cyt c release and cell vitality loss was potentiated due the greater oxidative stress induced by antimycin or menadione association with 3BP, supporting a preeminent role of mitochondrial ROS in 3BP toxicity. Indeed, the scavenger of mitochondrial superoxide MitoTEMPO counteracted 3BP-induced cyt c release and weakened the potentiating effect of 3BP/antimycin association. In conclusion, the biochemical mechanisms leading U118 glioblastoma cells to viability loss following 3BP treatment rely on mitochondrial ROS-dependent pathways. Their potentiation at low 3BP concentrations is consistent with the goal to minimize the toxic effect of the drug towards non-cancer cells.
Collapse
Affiliation(s)
- Maya Petricciuolo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Magdalena Davidescu
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Stefano Brancorsini
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Lanfranco Corazzi
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Lara Macchioni
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| |
Collapse
|
12
|
Cardiolipin in Immune Signaling and Cell Death. Trends Cell Biol 2020; 30:892-903. [DOI: 10.1016/j.tcb.2020.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
|
13
|
Graham KD, López SH, Sengupta R, Shenoy A, Schneider S, Wright CM, Feldman M, Furth E, Valdivieso F, Lemke A, Wilkins BJ, Naji A, Doolin E, Howard MJ, Heuckeroth RO. Robust, 3-Dimensional Visualization of Human Colon Enteric Nervous System Without Tissue Sectioning. Gastroenterology 2020; 158:2221-2235.e5. [PMID: 32113825 PMCID: PMC7392351 DOI: 10.1053/j.gastro.2020.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Small, 2-dimensional sections routinely used for human pathology analysis provide limited information about bowel innervation. We developed a technique to image human enteric nervous system (ENS) and other intramural cells in 3 dimensions. METHODS Using mouse and human colon tissues, we developed a method that combines tissue clearing, immunohistochemistry, confocal microscopy, and quantitative analysis of full-thickness bowel without sectioning to quantify ENS and other intramural cells in 3 dimensions. RESULTS We provided 280 adult human colon confocal Z-stacks from persons without known bowel motility disorders. Most of our images were of myenteric ganglia, captured using a 20× objective lens. Full-thickness colon images, viewed with a 10× objective lens, were as large as 4 × 5 mm2. Colon from 2 pediatric patients with Hirschsprung disease was used to show distal colon without enteric ganglia, as well as a transition zone and proximal pull-through resection margin where ENS was present. After testing a panel of antibodies with our method, we identified 16 antibodies that bind to molecules in neurons, glia, interstitial cells of Cajal, and muscularis macrophages. Quantitative analyses demonstrated myenteric plexus in 24.5% ± 2.4% of flattened colon Z-stack area. Myenteric ganglia occupied 34% ± 4% of myenteric plexus. Single myenteric ganglion volume averaged 3,527,678 ± 573,832 mm3 with 38,706 ± 5763 neuron/mm3 and 129,321 ± 25,356 glia/mm3. Images of large areas provided insight into why published values of ENS density vary up to 150-fold-ENS density varies greatly, across millimeters, so analyses of small numbers of thin sections from the same bowel region can produce varying results. Neuron subtype analysis revealed that approximately 56% of myenteric neurons stained with neuronal nitric oxide synthase antibody and approximately 33% of neurons produce and store acetylcholine. Transition zone regions from colon tissues of patients with Hirschsprung disease had ganglia in multiple layers and thick nerve fiber bundles without neurons. Submucosal neuron distribution varied among imaged colon regions. CONCLUSIONS We developed a 3-dimensional imaging method for colon that provides more information about ENS structure than tissue sectioning. This approach could improve diagnosis for human bowel motility disorders and may be useful for other bowel diseases as well.
Collapse
Affiliation(s)
- Kahleb D. Graham
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics at University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Silvia Huerta López
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318
| | - Rajarshi Sengupta
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,American Association for Cancer Research, 615 Chestnut Street, 17th Floor, Philadelphia, PA 19106-4404
| | - Archana Shenoy
- Department of Pathology, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A., 19104-4318
| | - Sabine Schneider
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| | - Christina M. Wright
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Emma Furth
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Federico Valdivieso
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Amanda Lemke
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318
| | - Benjamin J. Wilkins
- Department of Pathology, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A., 19104-4318
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104-4318
| | - Edward Doolin
- Pediatric General, Thoracic and Fetal Surgery, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A. 19104-4318
| | - Marthe J. Howard
- Department of Neurosciences, University of Toledo, Mail Stop # 1007, 3000 Arlington Avenue, Toledo, OH, U.S.A, 43614-2598
| | - Robert O. Heuckeroth
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| |
Collapse
|
14
|
Liu Z, Wang M, Wang H, Fang L, Gou S. Targeting RAS-RAF pathway significantly improves antitumor activity of Rigosertib-derived platinum(IV) complexes and overcomes cisplatin resistance. Eur J Med Chem 2020; 194:112269. [PMID: 32248002 DOI: 10.1016/j.ejmech.2020.112269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
RAS-RAF pathway presents a valuable target for the cancer treatment due to its important roles in the regulation of tumor proliferation, apoptosis and the obtained resistance. To explore such target a RAS/CRAF interference agent, was therefore conjugated with Pt(IV) prodrugs via ester bond, resulting in total eleven multifunctional Pt(IV) complexes. The complexes could target genomic DNA and disrupt the signaling transduction from RAS protein to CRAF so that block the mitogen-activated protein kinase (MAPK) signaling pathway. Experiments in vitro indicated that all of the Pt(IV) complexes showed potent anti-tumor activity with IC50 values ranged from 8 nM to 22.55 μM, which were significantly improved as compared with cisplatin (CDDP) whose IC50 values ranged from 5.45 μM to 9.05 μM. Among them, 26 exerted the best anti-tumor activity in vitro, which not only exhibited excellent cytotoxicity against normal tumor cells, but also against CDDP-resistance cell lines (e.g. A549/CDDP and SKOV-3/CDDP). Importantly, 26 only showed little effect on normal cell lines such as HUEVC and LO2. Besides, the following biological mechanisms studies demonstrated that 26 could efficiently enter. A549 cells, significantly arrest cell cycle at G2/M phase, disrupt the signaling pathway and trigger endogenous caspase apoptosis pathway. Furthermore, results of a xenograft subcutaneous model of A549 tumor showed that 26 could effectively decrease tumor growth rates without causing loss of bodyweight.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
15
|
Aldehyde biphenyl chalcones induce immunogenic apoptotic-like cell death and are promising new safe compounds against a wide range of hematologic cancers. Future Med Chem 2020; 12:673-688. [PMID: 32191531 DOI: 10.4155/fmc-2019-0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Investigate the apoptotic mechanisms of two new aldehyde biphenyl chalcones on leukemia cells. Materials & methods: From a series of 71 new chalcones, we selected the two most cytotoxic. Results: JA3 and JA7 were cytotoxic not only against hematological malignancies but also against solid tumor and cancer stem cells, yet with no toxicity to normal cells. Moreover, they induced immunogenic apoptotic-like cell death independently of promyelocytic leukemia protein, with extensive mitochondrial damages downstream of endoplasmic reticulum stress. Preventing endoplasmic reticulum stress and the upregulation of proapoptotic machinery inhibited JA3- and JA7-induced cell death. Likewise, blocking receptor Fas protected cells from killing. They increased the antileukemic effect of cytarabine and vincristine and killed leukemic cells collected from patients with different acute leukemia subtypes. Conclusion: JA3 and JA7 represent new promising prototypes for the development of new chemotherapeutics.
Collapse
|
16
|
Chlorogenic acid against palmitic acid in endoplasmic reticulum stress-mediated apoptosis resulting in protective effect of primary rat hepatocytes. Lipids Health Dis 2018; 17:270. [PMID: 30486828 PMCID: PMC6263050 DOI: 10.1186/s12944-018-0916-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background We demonstrated growing evidence supports a protective role of chlorogenic acid of rat hepatocytes elicited by two compounds, i.e. thapsigargin and palmitic acid. Nevertheless, little is known about the mechanisms of palmitic acid induced endoplasmic reticulum (ER) stress and cell death. Methods The proliferation of primary rat hepatocytes was detected by MTT assay. The expression of GRP78, CHOP and GRP94 was detected by Western blot analyses. Caspase-3 activity was detected by a Caspase-3 substrate kit. Cell apoptosis was detected by Hoechst 33342 staining. Results We demonstrated that incubation of hepatocytes for 16 h with palmitic acid elevated cell death. Moreover, Western blot analyses demonstrated increased levels of the endoplasmic reticulum stress markers — glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and glucose regulated protein 94 (GRP94). Chlorogenic acid could inhibit ER stress induced cell death and levels of indicators of ER stress caused by palmitic acid. The effect of thapsigargin, which evokes ER stress were reversed by chlorogenic acid. Conclusions Altogether, our data indicate that in primary rat hepatocytes, chlorogenic acid prevents ER stress-mediated apoptosis of palmitic acid.
Collapse
|