1
|
KRAS Affects the Lipid Composition by Regulating Mitochondrial Functions and MAPK Activation in Bovine Mammary Epithelial Cells. Animals (Basel) 2022; 12:ani12223070. [PMID: 36428301 PMCID: PMC9686882 DOI: 10.3390/ani12223070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS), or guanosine triphosphatase KRAS, is a proto-oncogene that encodes the small guanosine triphosphatase transductor protein. Previous studies have found that KRAS can promote cytokine secretion, cell chemotaxis, and survival. However, its effects on milk fat synthesis in bovine mammary epithelial cells are unclear. In this study, the effects of KRAS inhibition on cell metabolism, autophagy, oxidative stress, endoplasmic reticulum stress, mitochondrial function, and lipid composition as well as the potential mechanisms were detected in an immortalized dairy cow mammary epithelial cell line (MAC-T). The results showed that inhibition of KRAS changed the lipid composition (especially the triglyceride level), mitochondrial functions, autophagy, and endoplasmic reticulum stress in cells. Moreover, KRAS inhibition regulated the levels of the mammalian target of rapamycin and mitogen-activated protein kinase (extracellular regulated protein kinases, c-Jun N-terminal kinases, p38) activation. These results indicated that regulation of KRAS would affect the synthesis and composition of milk fat. These results are also helpful for exploring the synthesis and secretion of milk fat at the molecular level and provide a theoretical basis for improving the percentage of fat in milk and the yield of milk from cows.
Collapse
|
2
|
Sighinolfi G, Clark S, Blanc L, Cota D, Rhourri-Frih B. Mass spectrometry imaging of mice brain lipid profile changes over time under high fat diet. Sci Rep 2021; 11:19664. [PMID: 34608169 PMCID: PMC8490458 DOI: 10.1038/s41598-021-97201-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Overweight and obesity have been shown to significantly affect brain structures and size. Obesity has been associated with cerebral atrophy, alteration of brain functions, including cognitive impairement, and psychiatric diseases such as depression. Given the importance of lipids in the structure of the brain, here, by using 47 mice fed a high fat diet (HFD) with 60% calories from fat (40% saturated fatty acids) and 20% calories from carbohydrates and age-matched control animals on a normal chow diet, we examined the effects of HFD and diet-induced obesity on the brain lipidome. Using a targeted liquid chromatography mass spectrometry analysis and a non-targeted mass spectrometry MALDI imaging approach, we show that the relative concentration of most lipids, in particular brain phospholipids, is modified by diet-induced obesity (+ 40%of body weight). Use of a non-targeted MALDI-MS imaging approach further allowed define cerebral regions of interest (ROI) involved in eating behavior and changes in their lipid profile. Principal component analysis (PCA) of the obese/chow lipidome revealed persistence of some of the changes in the brain lipidome of obese animals even after their switch to chow feeding and associated weight loss. Altogether, these data reveal that HFD feeding rapidly modifies the murine brain lipidome. Some of these HFD-induced changes persist even after weight loss, implying that some brain sequelae caused by diet-induced obesity are irreversible.
Collapse
Affiliation(s)
| | - Samantha Clark
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | | - Daniela Cota
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | |
Collapse
|
3
|
Hu X, Zhang W, Chi X, Wang H, Liu Z, Wang Y, Ma L, Xu B. Non-targeted lipidomics and transcriptomics analysis reveal the molecular underpinnings of mandibular gland development in Apis mellifera ligustica. Dev Biol 2021; 479:23-36. [PMID: 34332994 DOI: 10.1016/j.ydbio.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022]
Abstract
The mandibular gland is an important exocrine gland of worker bees, which mainly secretes fatty acids and pheromones. Lipids have important roles in energy storage, membrane structure stabilization, and signaling. However, molecular underpinnings of mandibular gland development and lipid remodeling at the different physiological stages of worker bees is still lacking. In this study, we used scanning and transmission electron microscopy to reveal the morphological changes in secretory cells, and liquid chromatography-mass spectrometry and RNA-seq to investigate the lipidome and gene transcripts during development. The morphology of secretory cells was flat in newly emerged workers, becoming vacuolated and turgid when they were activated in nurse bees and foragers. Transport vesicles became denser from newly emerged bees to 21-day worker bees. Concentrations of 10-HDA reached a maximum within 15d workers and changes in genes expression were consistent with 10-HDA content. Non-targeted lipidomics analysis of newly emerged, 6d, and 15d worker bees revealed that PC and TAG were the main lipids in mandibular gland, and lipids dramatically altered across developmental stages. TAG 54:4 was increased most strongly at 6d and 15d worker bees, meanwhile, the abundances of TAG 54:1 and TAG 54:2 were decreased sharply. Further, transcriptomics analysis showed that differentially expressed genes were significantly enriched in key nutrient metabolic pathways, particularly lipid metabolism, in 6d and 15d bees. This multi-omic perspective provides a unique resource and deeper insight into bee mandibular gland development and baseline data for further study of the mandibular gland in worker bees.
Collapse
Affiliation(s)
- Xiyi Hu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Weixing Zhang
- School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
4
|
Chen S, Wang M, Li L, Wang J, Ma X, Zhang H, Cai Y, Kang B, Huang J, Li B. High-coverage targeted lipidomics revealed dramatic lipid compositional changes in asthenozoospermic spermatozoa and inverse correlation of ganglioside GM3 with sperm motility. Reprod Biol Endocrinol 2021; 19:105. [PMID: 34233713 PMCID: PMC8262046 DOI: 10.1186/s12958-021-00792-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It has been previously demonstrated that cholesterol content and cholesterol/phospholipid ratio were significantly higher in asthenozoospermia and oligoasthenoteratozoospermia. The majority of published studies have investigated the fatty acid composition of phospholipids rather than lipids themselves. This study evaluated the lipid composition of asthenozoospermic and normozoospermic spermatozoa, and identified the exact lipid species that correlated with sperm motility. METHODS A total of 12 infertile asthenozoospermia patients and 12 normozoospermia subjects with normal sperm motility values were tested for semen volume, sperm concentration, count, motility, vitality and morphology. High-coverage targeted lipidomics with 25 individual lipid classes was performed to analyze the sperm lipid components and establish the exact lipid species that correlated with sperm motility. RESULTS A total of 25 individual lipid classes and 479 lipid molecular species were identified and quantified. Asthenozoospermic spermatozoa showed an increase in the level of four lipid classes, including Cho, PE, LPI and GM3. A total of 48 lipid molecular species were significantly altered between normozoospermic and asthenozoospermic spermatozoa. Furthermore, the levels of total GM3 and six GM3 molecular species, which were altered in normozoospermic spermatozoa versus asthenozoospermic spermatozoa, were inversely correlated with sperm progressive and total motility. CONCLUSIONS Several unique lipid classes and lipid molecular species were significantly altered between asthenozoospermic and normozoospermic spermatozoa, revealing new possibilities for further mechanistic pursuits and highlighting the development needs of culture medium formulations to improve sperm motility.
Collapse
Affiliation(s)
- Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Li Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Xuhui Ma
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Hengde Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Yang Cai
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Bin Kang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Jianlei Huang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China.
| |
Collapse
|
5
|
Li R, Sun Q, Lam SM, Chen R, Zhu J, Gu W, Zhang L, Tian H, Zhang K, Chen LC, Sun Q, Shui G, Liu C. Sex-dependent effects of ambient PM 2.5 pollution on insulin sensitivity and hepatic lipid metabolism in mice. Part Fibre Toxicol 2020; 17:14. [PMID: 32321544 PMCID: PMC7178763 DOI: 10.1186/s12989-020-00343-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background & aims Emerging evidence supports ambient fine particulate matter (PM2.5) exposure is associated with insulin resistance (IR) and hepatic lipid accumulation. In this study, we aimed to evaluate the sex-dependent vulnerability in response to PM2.5 exposure and investigate the underlying mechanism by which PM2.5 modulates hepatic lipid metabolism. Methods Both male and female C57BL/6 mice were randomly assigned to ambient PM2.5 or filtered air for 24 weeks via a whole body exposure system. High-coverage quantitative lipidomics approaches and liquid chromatography-mass spectrometry techniques were performed to measure hepatic metabolites and hormones in plasma. Metabolic studies, histological analyses, as well as gene expression levels and molecular signal transduction analysis were applied to examine the effects and mechanisms by which PM2.5 exposure-induced metabolic disorder. Results Female mice were more susceptible than their male counterparts to ambient PM2.5 exposure-induced IR and hepatic lipid accumulation. The hepatic lipid profile was changed in response to ambient PM2.5 exposure. Levels of hepatic triacylglycerols (TAGs), free fatty acids (FFAs) and cholesterol were only increased in female mice from PM group compared to control group. Plasmalogens were dysregulated in the liver from PM2.5-exposed mice as well. In addition, exposure to PM2.5 led to enhanced hepatic ApoB and microsomal triglyceride transport protein expression in female mice. Finally, PM2.5 exposure inhibited hypothalamus-pituitary-adrenal (HPA) axis and decreased glucocorticoids levels, which may contribute to the vulnerability in PM2.5-induced metabolic dysfunction. Conclusions Ambient PM2.5 exposure inhibited HPA axis and demonstrated sex-associated differences in its effects on IR and disorder of hepatic lipid metabolism. These findings provide new mechanistic evidence of hormone regulation in air pollution-mediated metabolic abnormalities of lipids and more personalized care should be considered in terms of sex-specific risk factors.
Collapse
Affiliation(s)
- Ran Li
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Sun
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Rd, Building 2, Room 306, Beijing, 100101, China
| | - Rucheng Chen
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyao Zhu
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China
| | - Weijia Gu
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Rd, Building 2, Room 306, Beijing, 100101, China
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University of School of Medicine, New York, USA
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Rd, Building 2, Room 306, Beijing, 100101, China.
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China. .,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
6
|
Turki T, Taguchi YH. SCGRNs: Novel supervised inference of single-cell gene regulatory networks of complex diseases. Comput Biol Med 2020; 118:103656. [PMID: 32174324 DOI: 10.1016/j.compbiomed.2020.103656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
|
7
|
Tong J, Liu Q, Wu J, Jiang Y, Takiff HE, Gao Q. Mycobacterium tuberculosis strains of the modern Beijing sublineage excessively accumulate triacylglycerols in vitro. Tuberculosis (Edinb) 2019; 120:101892. [PMID: 31783320 DOI: 10.1016/j.tube.2019.101892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) strains of modern Beijing sublineage appear to be more transmissible and cause more severe disease than strains of other sublineages, but the responsible pathogenic mechanisms remain unclear. We previously identified genetic changes that are specific for the modern Beijing sublineage, and here we characterize the lipidome and transcriptome differences between modern and ancient Beijing sublineages. We report that modern Beijing strains accumulated 2.89 (95%CI: 2.05-3.73) times more triacylglycerol (TAG) than ancient Beijing strains in vitro. We also observed that modern Beijing strains had a 2.64-fold (95%CI: 1.29-4.00) upregulation of tgs2 (annotated as TAG synthetase 2), whose role in TAG accumulation was further confirmed in Mycobacterium marinum (Mm). Because TAG serves as a crucial carbon source and reservoir of free fatty acids, the results suggest that the excessive accumulation of TAG might fuel the growth of modern Beijing strains after infection and lead to rapid development of disease.
Collapse
Affiliation(s)
- Jingfeng Tong
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China
| | - Qingyun Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China
| | - Jie Wu
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Yuan Jiang
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Howard E Takiff
- Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France; Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Yang R, Zhang Y, Qian W, Peng L, Lin L, Xu J, Xie T, Ji J, Zhan X, Shan J. Surfactant Lipidomics of Alveolar Lavage Fluid in Mice Based on Ultra-High-Performance Liquid Chromatography Coupled to Hybrid Quadrupole-Exactive Orbitrap Mass Spectrometry. Metabolites 2019; 9:E80. [PMID: 31027159 PMCID: PMC6523637 DOI: 10.3390/metabo9040080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/08/2023] Open
Abstract
Surfactant lipid metabolism is closely related to pulmonary diseases. Lipid metabolism disorder can cause lung diseases, vice versa. With this rationale, a useful method was established in this study to determine the lipidome in bronchoalveolar lavage fluid (BALF) of mice. The lipid components in BALF were extracted by liquid-liquid extraction (methanol and methyl tert-butyl ether, and water). Ultra-high-performance liquid chromatography coupled to hybrid Quadrupole-Exactive Orbitrap mass spectrometry was used to analyze the extracted samples, which showed a broad scanning range of 215-1800 m/z. With MS-DIAL software and built-in LipidBlast database, we identified 38 lipids in positive, and 31 lipids in negative, ion mode, including lysophosphatidylcholine (lysoPC), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), etc. Then, the changes of lipids in BALF of mice with acute lung injury (ALI) induced by lipopolysaccharide (LPS) was investigated, which may contribute to further exploration of the pathogenesis of ALI.
Collapse
Affiliation(s)
- Rui Yang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ying Zhang
- Genome Center of UC Davis, NIH West Coast Metabolomics Center, Davis, CA 95616, USA.
| | - Wenjuan Qian
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Linxiu Peng
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lili Lin
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jia Xu
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tong Xie
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jianjian Ji
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiuqin Zhan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|