1
|
Ranasinghe ADCU, Holohan M, Borger KM, Donahue DL, Kuc RD, Gerig M, Kim A, Ploplis VA, Castellino FJ, Schwarz MA. Altered Smooth Muscle Cell Histone Acetylome by the SPHK2/S1P Axis Promotes Pulmonary Hypertension. Circ Res 2023; 133:704-719. [PMID: 37698017 PMCID: PMC10543610 DOI: 10.1161/circresaha.123.322740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Epigenetic regulation of vascular remodeling in pulmonary hypertension (PH) is poorly understood. Transcription regulating, histone acetylation code alters chromatin accessibility to promote transcriptional activation. Our goal was to identify upstream mechanisms that disrupt epigenetic equilibrium in PH. METHODS Human pulmonary artery smooth muscle cells (PASMCs), human idiopathic pulmonary arterial hypertension (iPAH):human PASMCs, iPAH lung tissue, failed donor lung tissue, human pulmonary microvascular endothelial cells, iPAH:PASMC and non-iPAH:PASMC RNA-seq databases, NanoString nCounter, and cleavage under targets and release using nuclease were utilized to investigate histone acetylation, hyperacetylation targets, protein and gene expression, sphingolipid activation, cell proliferation, and gene target identification. SPHK2 (sphingosine kinase 2) knockout was compared with control C57BL/6NJ mice after 3 weeks of hypoxia and assessed for indices of PH. RESULTS We identified that Human PASMCs are vulnerable to the transcription-promoting epigenetic mediator histone acetylation resulting in alterations in transcription machinery and confirmed its pathological existence in PH:PASMC cells. We report that SPHK2 is elevated as much as 20-fold in iPAH lung tissue and is elevated in iPAH:PASMC cells. During PH pathogenesis, nuclear SPHK2 activates nuclear bioactive lipid S1P (sphingosine 1-phosphate) catalyzing enzyme and mediates transcription regulating histone H3K9 acetylation (acetyl histone H3 lysine 9 [Ac-H3K9]) through EMAP (endothelial monocyte activating polypeptide) II. In iPAH lungs, we identified a 4-fold elevation of the reversible epigenetic transcription modulator Ac-H3K9:H3 ratio. Loss of SPHK2 inhibited hypoxic-induced PH and Ac-H3K9 in mice. We discovered that pulmonary vascular endothelial cells are a priming factor of the EMAP II/SPHK2/S1P axis that alters the acetylome with a specificity for PASMC, through hyperacetylation of histone H3K9. Using cleavage under targets and release using nuclease, we further show that EMAP II-mediated SPHK2 has the potential to modify the local transcription machinery of pluripotency factor KLF4 (Krüppel-like factor 4) by hyperacetylating KLF4 Cis-regulatory elements while deletion and targeted inhibition of SPHK2 rescues transcription altering Ac-H3K9. CONCLUSIONS SPHK2 expression and its activation of the reversible histone H3K9 acetylation in human pulmonary artery smooth muscle cell represent new therapeutic targets that could mitigate PH vascular remodeling.
Collapse
Affiliation(s)
| | - Maggie Holohan
- Departments of Pediatrics and Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, South Bend, IN, United States
| | | | | | | | - Martin Gerig
- Departments of Pediatrics and Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, South Bend, IN, United States
| | - Andrew Kim
- Department of Chemistry and Biochemistry, University of Notre Dame
| | - Victoria A. Ploplis
- Harper Cancer Research Institute
- Department of Chemistry and Biochemistry, University of Notre Dame
- W. M. Keck Center for Transgene Research, University of Notre Dame
| | - Francis J. Castellino
- Harper Cancer Research Institute
- Department of Chemistry and Biochemistry, University of Notre Dame
- W. M. Keck Center for Transgene Research, University of Notre Dame
| | - Margaret A. Schwarz
- Harper Cancer Research Institute
- Department of Chemistry and Biochemistry, University of Notre Dame
- Departments of Pediatrics and Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, South Bend, IN, United States
| |
Collapse
|
2
|
Zhang MQ, Wang CC, Pang XB, Shi JZ, Li HR, Xie XM, Wang Z, Zhang HD, Zhou YF, Chen JW, Han ZY, Zhao LL, He YY. Role of macrophages in pulmonary arterial hypertension. Front Immunol 2023; 14:1152881. [PMID: 37153557 PMCID: PMC10154553 DOI: 10.3389/fimmu.2023.1152881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Chen-Chen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hao-Ran Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Zhe Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Feng Zhou
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ji-Wang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| |
Collapse
|
3
|
Integrating epigenetics and metabolomics to advance treatments for pulmonary arterial hypertension. Biochem Pharmacol 2022; 204:115245. [PMID: 36096239 DOI: 10.1016/j.bcp.2022.115245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating vascular disease with multiple etiologies. Emerging evidence supports a fundamental role for epigenetic machinery and metabolism in the initiation and progression of PAH. Here, we summarize emerging epigenetic mechanisms that have been identified as contributors to PAH evolution, specifically, DNA methylation, histone modifications, and microRNAs. Furthermore, the interplay between epigenetics with metabolism is explored while new crosstalk targets to be investigated in PAH are proposed that highlight multi-omics strategies including integrated epigenomics and metabolomics. Therapeutic opportunities and challenges associated with epigenetics and metabolomics in PAH are examined, highlighting the role that epigenetics and metabolomics have in facilitating early detection, personalized dietary plans, and advanced drug therapy for PAH.
Collapse
|
4
|
Immunolocalization of zinc transporters and metallothioneins reveals links to microvascular morphology and functions. Histochem Cell Biol 2022; 158:485-496. [PMID: 35849202 PMCID: PMC9630201 DOI: 10.1007/s00418-022-02138-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Zinc homeostasis is vital to immune and other organ system functions, yet over a quarter of the world’s population is zinc deficient. Abnormal zinc transport or storage protein expression has been linked to diseases, such as cancer and chronic obstructive pulmonary disorder. Although recent studies indicate a role for zinc regulation in vascular functions and diseases, detailed knowledge of the mechanisms involved remains unknown. This study aimed to assess protein expression and localization of zinc transporters of the SLC39A/ZIP family (ZIPs) and metallothioneins (MTs) in human subcutaneous microvessels and to relate them to morphological features and expression of function-related molecules in the microvasculature. Microvessels in paraffin biopsies of subcutaneous adipose tissues from 14 patients undergoing hernia reconstruction surgery were analysed for 9 ZIPs and 3 MT proteins by MQCM (multifluorescence quantitative confocal microscopy). Zinc regulation proteins detected in human microvasculature included ZIP1, ZIP2, ZIP8, ZIP10, ZIP12, ZIP14 and MT1-3, which showed differential localization among endothelial and smooth muscle cells. ZIP1, ZIP2, ZIP12 and MT3 showed significantly (p < 0.05) increased immunoreactivities, in association with increased microvascular muscularization, and upregulated ET-1, α-SMA and the active form of p38 MAPK (Thr180/Tyr182 phosphorylated, p38 MAPK-P). These findings support roles of the zinc regulation system in microvascular physiology and diseases.
Collapse
|
5
|
Deng R, Bu Y, Li F, Wu H, Wang Y, Wei W. The interplay between fibroblast-like synovial and vascular endothelial cells leads to angiogenesis via the sphingosine-1-phosphate-induced RhoA-F-Actin and Ras-Erk1/2 pathways and the intervention of geniposide. Phytother Res 2021; 35:5305-5317. [PMID: 34327764 DOI: 10.1002/ptr.7211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
The changes of fibroblast-like synoviocytes (FLSs) and vascular endothelial cells (VECs) biological functions are closely related to angiogenesis in rheumatoid arthritis (RA). Nevertheless, how the crosstalk between FLSs and VECs interferes with RA is far from being clarified. Herein, we studied the effect of the reciprocal interactions between FLSs and VECs on angiogenesis and mechanism of geniposide (GE). After administration of GE, improvement of synovial hyperplasia in adjuvant arthritis rats was accompanied by downregulation of SphK1 and p-Erk1/2. The dynamic interaction between FLSs and VECs triggers the release of S1P by activating p-Erk1/2 and SphK1, then activating RhoA-F-actin and Ras-Erk1/2 pathways. When exposed to the inflammatory microenvironment mediated by FLSs-VECs crosstalk, proliferation, migration, and permeability of VECs were enhanced, the angiogenic factors were imbalanced. Meanwhile, the proliferation and secretory ability of FLSs increased. Interestingly, depletion of S1P or blocking of the activation of SphK1 by GE and PF-543 prevented the changes. In conclusion, S1P released during FLSs-VECs crosstalk changed their biological functions by activating RhoA-F-actin and Ras-Erk1/2 pathways. GE acted on p-Erk1/2 and SphK1, inhibited the secretion of S1P, and blocked the interplay between FLSs and VECs. These results provide new insights into the mechanism of angiogenesis in RA.
Collapse
Affiliation(s)
- Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Wei
- Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Institute of Clinical Pharmacology, Antiinflammatory Immune Drugs Collaborative Innovation Center, Hefei, China
| |
Collapse
|