1
|
Cerchiara AG, Imbrici P, Quarta R, Cristiano E, Boccanegra B, Caputo E, Wells DJ, Cappellari O, De Luca A. Ion channels as biomarkers of altered myogenesis in myofiber precursors of Duchenne muscular dystrophy. Ann N Y Acad Sci 2024; 1534:130-144. [PMID: 38517756 DOI: 10.1111/nyas.15124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 03/24/2024]
Abstract
Myogenesis is essential for skeletal muscle formation, growth, and regeneration and can be altered in Duchenne muscular dystrophy (DMD), an X-linked disorder due to the absence of the cytoskeletal protein dystrophin. Ion channels play a pivotal role in muscle differentiation and interact with the dystrophin complex. To investigate ion channel involvement in myogenesis in dystrophic settings, we performed electrophysiological characterization of two immortalized mouse cell lines, wild-type (WT) H2K-2B4 and the dystrophic (DYS) H2K-SF1, and measured gene expression of differentiation markers and ion channels. Inward and outward currents/density increased as differentiation progressed in both WT and DYS cells. However, day-11 DYS cells showed higher (27%) inward current density with an increased expression ratio of Scn5a/Scn4a and decreased (48%) barium-sensitive outward current compared to WT. Furthermore, day-11 DYS cells showed more positive resting membrane potential (+10 mV) and lower membrane capacitance (50%) compared to WT. DYS cells also had reduced Myog and Myf5 expression at days 6 and 11. Overall, ion channel profile and myogenesis appeared altered in DYS cells. These results are a first step in validating ion channels as potential drug targets to ameliorate muscle degeneration in DMD settings and as differentiation biomarkers in innovative platforms.
Collapse
Affiliation(s)
| | - Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Quarta
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Enrica Cristiano
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Brigida Boccanegra
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Erika Caputo
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Dominic J Wells
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Ornella Cappellari
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Dong C, Li J, Ding W, Ueda R, Xie X, Wu J, Matsuura H, Horie M. Open channel block of Kv1.5 channels by HMQ1611. Front Pharmacol 2022; 13:965086. [PMID: 36188606 PMCID: PMC9524145 DOI: 10.3389/fphar.2022.965086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Kv1.5 channels conduct the ultra-rapid delayed rectifier potassium current (IKur). Pharmacological blockade of human Kv1.5 (hKv1.5) has been regarded as an effective treatment of re-entrant based atrial fibrillation, because Kv1.5 is highly expressed in human cardiac atria but scarcely in ventricles. The Kv1.5 blockade is also expected to be used in cancer therapeutics since Kv1.5 is overexpressed in some types of human tumors. Here, we investigated the blockade of hKv1.5 channels by HMQ1611, a symmetrical biphenyl derivative. hKv1.5 channels were heterologously expressed in Chinese hamster ovary cells. The effects of HMQ1611 on wild-type and 13 hKv1.5 mutant channels were examined using the whole-cell patch-clamp method, and molecular docking simulation was conducted to predict the docking position of HMQ1611 within Kv1.5 channels. We showed that HMQ1611 reversibly inhibited the hKv1.5 current in a concentration-dependent manner (IC50 = 2.07 μM). HMQ1611 blockade of hKv1.5 current developed with time during depolarizing voltage-clamp steps, and this blockade was also voltage-dependent with a steep increase over the voltage range for channel openings. HMQ1611 inhibition was significantly reduced in the T479A, T480A, V505A, I508A, L510A, V512A, and V516A hKv1.5 mutant channels. Molecular docking analysis predicted that V505, V512, and T480 were involved in the blocking action of HMQ1611 on hKv1.5 channels. These results suggest that HMQ1611 inhibits hKv1.5 currents as an open channel blocker. Amino acid residues located at the base of the selectivity filter (T479 and T480) and in the S6 segment (V505, I508, L510, V512, and V516) of hKv1.5 appear to constitute potential binding sites for HMQ1611.
Collapse
Affiliation(s)
- Chao Dong
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jiawei Li
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
| | - Weiguang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Rika Ueda
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Xiaolu Xie
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jie Wu
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- *Correspondence: Jie Wu,
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
3
|
Capera J, Pérez-Verdaguer M, Navarro-Pérez M, Felipe A. Kv1.3 Controls Mitochondrial Dynamics during Cell Cycle Progression. Cancers (Basel) 2021; 13:cancers13174457. [PMID: 34503267 PMCID: PMC8431373 DOI: 10.3390/cancers13174457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Voltage-dependent potassium channels control the proliferation of mammalian cells. In addition, mitochondria physiology is highly dynamic during the cell cycle. The aim of this work was to investigate whether the Kv1.3 channel participates in the mitochondrial control of cell cycle progression. Our data confirmed that Kv1.3 facilitates the proliferation of preadipocytes through the control of mitochondrial dynamics. In addition, adipogenesis was also dependent on Kv1.3 expression. We shed light on the role of Kv1.3 in mitochondria and adipose tissue metabolism, contributing further to the control of cell proliferation by Kv1.3. Abstract The voltage-gated potassium channel Kv1.3 is a potential therapeutic target for obesity and diabetes. The genetic ablation and pharmacological inhibition of Kv1.3 lead to a lean phenotype in rodents. The mechanism of regulation of body weight and energy homeostasis involves Kv1.3 expression in different organs, including white and brown adipose tissues. Here, we show that Kv1.3 promotes the proliferation of preadipocytes through the control of mitochondrial dynamics. Kv1.3 is expressed in mitochondria exhibiting high affinity for the perinuclear population. The mitochondrial network is highly dynamic during the cell cycle, showing continuous fusion-fission events. The formation of a hyperfused mitochondrial network at the G1/S phase of the cell cycle is dependent on Kv1.3 expression. Our results demonstrate that Kv1.3 promotes preadipocyte proliferation and differentiation by controlling mitochondrial membrane potential and mitochondrial dynamics at the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (J.C.); (M.P.-V.); (M.N.-P.)
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (J.C.); (M.P.-V.); (M.N.-P.)
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (J.C.); (M.P.-V.); (M.N.-P.)
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (J.C.); (M.P.-V.); (M.N.-P.)
- Correspondence:
| |
Collapse
|
4
|
Potassium and Chloride Ion Channels in Cancer: A Novel Paradigm for Cancer Therapeutics. Rev Physiol Biochem Pharmacol 2021; 183:135-155. [PMID: 34291318 DOI: 10.1007/112_2021_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a collection of diseases caused by specific changes at the genomic level that support cell proliferation indefinitely. Traditionally, ion channels are known to control a variety of cellular processes including electrical signal generation and transmission, secretion, and contraction by controlling ionic gradients. However, recent studies had brought to light important facts on ion channels in cancer biology.In this review we discuss the mechanism linking potassium or chloride ion channel activity to biochemical pathways controlling proliferation in cancer cells and the potential advantages of targeting ion channels as an anticancer therapeutic option.
Collapse
|
5
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
6
|
Styles FL, Al-Owais MM, Scragg JL, Chuntharpursat-Bon E, Hettiarachchi NT, Lippiat JD, Minard A, Bon RS, Porter K, Sukumar P, Peers C, Roberts LD. Kv1.3 voltage-gated potassium channels link cellular respiration to proliferation through a non-conducting mechanism. Cell Death Dis 2021; 12:372. [PMID: 33828089 PMCID: PMC8027666 DOI: 10.1038/s41419-021-03627-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023]
Abstract
Cellular energy metabolism is fundamental for all biological functions. Cellular proliferation requires extensive metabolic reprogramming and has a high energy demand. The Kv1.3 voltage-gated potassium channel drives cellular proliferation. Kv1.3 channels localise to mitochondria. Using high-resolution respirometry, we show Kv1.3 channels increase oxidative phosphorylation, independently of redox balance, mitochondrial membrane potential or calcium signalling. Kv1.3-induced respiration increased reactive oxygen species production. Reducing reactive oxygen concentrations inhibited Kv1.3-induced proliferation. Selective Kv1.3 mutation identified that channel-induced respiration required an intact voltage sensor and C-terminal ERK1/2 phosphorylation site, but is channel pore independent. We show Kv1.3 channels regulate respiration through a non-conducting mechanism to generate reactive oxygen species which drive proliferation. This study identifies a Kv1.3-mediated mechanism underlying the metabolic regulation of proliferation, which may provide a therapeutic target for diseases characterised by dysfunctional proliferation and cell growth.
Collapse
Affiliation(s)
- Faye L Styles
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Moza M Al-Owais
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jason L Scragg
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | - Aisling Minard
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Robin S Bon
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Karen Porter
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Chris Peers
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Lee D Roberts
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Miranda DR, Reed E, Jama A, Bottomley M, Ren H, Rich MM, Voss AA. Mechanisms of altered skeletal muscle action potentials in the R6/2 mouse model of Huntington's disease. Am J Physiol Cell Physiol 2020; 319:C218-C232. [PMID: 32432924 DOI: 10.1152/ajpcell.00153.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) patients suffer from progressive and debilitating motor dysfunction for which only palliative treatment is currently available. Previously, we discovered reduced skeletal muscle Cl- channel (ClC-1) and inwardly rectifying K+ channel (Kir) currents in R6/2 HD transgenic mice. To further investigate the role of ClC-1 and Kir currents in HD skeletal muscle pathology, we measured the effect of reduced ClC-1 and Kir currents on action potential (AP) repetitive firing in R6/2 mice using a two-electrode current clamp. We found that R6/2 APs had a significantly lower peak amplitude, depolarized maximum repolarization, and prolonged decay time compared with wild type (WT). Of these differences, only the maximum repolarization was accounted for by the reduction in ClC-1 and Kir currents, indicating the presence of additional ion channel defects. We found that both KV1.5 and KV3.4 mRNA levels were significantly reduced in R6/2 skeletal muscle compared with WT, which explains the prolonged decay time of R6/2 APs. Overall, we found that APs in WT and R6/2 muscle significantly and progressively change during activity to maintain peak amplitude despite buildup of Na+ channel inactivation. Even with this resilience, the persistently reduced peak amplitude of R6/2 APs is expected to result in earlier fatigue and may help explain the motor impersistence experienced by HD patients. This work lays the foundation to link electrical changes to force generation defects in R6/2 HD mice and to examine the regulatory events controlling APs in WT muscle.
Collapse
Affiliation(s)
- Daniel R Miranda
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Eric Reed
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio
| | - Michael Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, Ohio
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| |
Collapse
|
8
|
Implication of Voltage-Gated Potassium Channels in Neoplastic Cell Proliferation. Cancers (Basel) 2019; 11:cancers11030287. [PMID: 30823672 PMCID: PMC6468671 DOI: 10.3390/cancers11030287] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated potassium channels (Kv) are the largest group of ion channels. Kv are involved in controlling the resting potential and action potential duration in the heart and brain. Additionally, these proteins participate in cell cycle progression as well as in several other important features in mammalian cell physiology, such as activation, differentiation, apoptosis, and cell volume control. Therefore, Kv remarkably participate in the cell function by balancing responses. The implication of Kv in physiological and pathophysiological cell growth is the subject of study, as Kv are proposed as therapeutic targets for tumor regression. Though it is widely accepted that Kv channels control proliferation by allowing cell cycle progression, their role is controversial. Kv expression is altered in many cancers, and their participation, as well as their use as tumor markers, is worthy of effort. There is an ever-growing list of Kv that remodel during tumorigenesis. This review focuses on the actual knowledge of Kv channel expression and their relationship with neoplastic proliferation. In this work, we provide an update of what is currently known about these proteins, thereby paving the way for a more precise understanding of the participation of Kv during cancer development.
Collapse
|
9
|
Chapalamadugu KC, Tur J, Badole SL, Kukreja RC, Brotto M, Tipparaju SM. Physiological role of Kvβ2 (AKR6) in murine skeletal muscle growth and regulation. Acta Physiol (Oxf) 2018; 224:e13083. [PMID: 29704886 DOI: 10.1111/apha.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
AIM Potassium channel accessory subunits (Kvβ) play a key role in cardiac electrical activity through ion channel modulation. In this study, we hypothesize that Kvβ2 regulates skeletal muscle growth and fibre phenotype via protein-protein interactions. METHODS Kvβ2 knockout mouse model was used for morphometric, immunohistochemical and biochemical analysis to evaluate the role of Kvβ2 in skeletal muscle physiology. RESULTS Deletion of Kvβ2 gene in mice (Kvβ2 knockout, KO) leads to significant decrease in body weight along with skeletal muscle size. Key hindlimb muscles such as biceps, soleus and gastrocnemius were significantly smaller in size in KO mice compared to that of wild type. Morphometric measurements and histological analysis clearly point that the fibre size is decreased in each of the muscle type in KO compared with wild-type mice. In addition, Kvβ2 deletion contributes to fibre-type switching from fast to slow fibre as indicated by more abundant MHCI-expressing fibres in gastrocnemius and soleus muscles, which may underscore the smaller muscle size alongside increase in U3 ubiquitin ligase; NEDD4 expression. Using targeted siRNA knockdown approach, we identified that Kvβ2 knockdown does not affect the myoblasts proliferation. However, Pax7 expression was significantly decreased in 4-week-old gastrocnemius muscle, suggesting that cellular reserve for growth may be deficient in KO mice. This is further supported by decreased migratory capacity of C2C12 cells upon siRNA-targeted Kvβ2 knockdown. CONCLUSION Overall, this is the first report identifying that genetic deletion of Kvβ2 leads to decreased skeletal muscle size along with isotype switching.
Collapse
Affiliation(s)
- K. C. Chapalamadugu
- Department of Pharmaceutical Sciences; University of South Florida College of Pharmacy; Tampa FL USA
| | - J. Tur
- Department of Pharmaceutical Sciences; University of South Florida College of Pharmacy; Tampa FL USA
| | - S. L. Badole
- Department of Pharmaceutical Sciences; University of South Florida College of Pharmacy; Tampa FL USA
| | - R. C. Kukreja
- Division of Cardiology; Pauley Heart Center; Virginia Commonwealth University; Richmond VA USA
| | - M. Brotto
- Bone-Muscle Collaborative Sciences; College of Nursing and Health Innovation; University of Texas; Arlington TX USA
| | - S. M. Tipparaju
- Department of Pharmaceutical Sciences; University of South Florida College of Pharmacy; Tampa FL USA
| |
Collapse
|
10
|
Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion. Oncotarget 2018; 8:5123-5134. [PMID: 28030826 PMCID: PMC5341750 DOI: 10.18632/oncotarget.14034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Recent studies indicate that the transient receptor potential canonical 6 (TRPC6) channel is highly expressed in several types of cancer cells. However, it remains unclear whether TRPC6 contributes to the malignancy of human non-small cell lung cancer (NSCLC). We used a human NSCLC A549 cell line as a model and found that pharmacological blockade or molecular knockdown of TRPC6 channel inhibited A549 cell proliferation by arresting cell cycle at the S-G2M phase and caused a significant portion of cells detached and rounded-up, but did not induce any types of cell death. Western blot and cell cycle analysis show that the detached round cells at the S-G2M phase expressed more TRPC6 than the still attached polygon cells at the G1 phase. Patch-clamp data also show that TRPC whole-cell currents in the detached cells were significantly higher than in the still attached cells. Inhibition of Ca2+-permeable TRPC6 channels significantly reduced intracellular Ca2+ in A549 cells. Interestingly, either blockade or knockdown of TRPC6 strongly reduced the invasion of this NSCLC cell line and decreased the expression of an adherent protein, fibronectin, and a tight junction protein, zonula occluden protein-1 (ZO-1). These data suggest that TRPC6-mediated elevation of intracellular Ca2+ stimulates NSCLC cell proliferation by promoting cell cycle progression and that inhibition of TRPC6 attenuates cell proliferation and invasion. Therefore, further in vivo studies may lead to a consideration of using a specific TRPC6 blocker as a complement to treat NSCLC.
Collapse
|
11
|
Franklin BM, Voss SR, Osborn JL. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration. Mech Dev 2017; 146:42-54. [PMID: 28603004 PMCID: PMC6386162 DOI: 10.1016/j.mod.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 01/30/2023]
Abstract
Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, KV2.1, KV2.2, L-type CaV channels and H/K ATPases) or completely (GlyR, GABAAR, KV1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K+ channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H+ pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair.
Collapse
Affiliation(s)
- Brandon M Franklin
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - S Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Jeffrey L Osborn
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States.
| |
Collapse
|
12
|
Jaimes-Hoy L, Gurrola GB, Cisneros M, Joseph-Bravo P, Possani LD, Charli JL. The Kv1.3 channel blocker Vm24 enhances muscle glucose transporter 4 mobilization but does not reduce body-weight gain in diet-induced obese male rats. Life Sci 2017; 181:23-30. [PMID: 28549558 DOI: 10.1016/j.lfs.2017.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/14/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022]
Abstract
AIMS Voltage-gated potassium channels 1.3 (Kv1.3) can be targeted to reduce diet-induced obesity and insulin resistance in mice. Since species-specific differences in Kv1.3 expression and pharmacology have been observed, we tested the effect of Vm24, a high-affinity specific blocker of Kv1.3 channels from Vaejovis mexicanus smithi, on body weight (BW), glucose tolerance and insulin resistance in diet-induced obese rats. MATERIALS AND METHODS Young adult male Wistar rats were switched to a high-fat/high-fructose (HFF) diet. Eighteen days later animals were divided in two groups: vehicle and Vm24 group. Subcutaneous injections were applied every other day until sacrifice 2months later. An additional cohort was maintained on standard chow. KEY FINDINGS The HFF diet promoted obesity. Treatment with Vm24 did not alter various metabolic parameters such as food intake, BW gain, visceral white adipose tissue mass, adipocyte diameter, serum glucose, leptin and thyroid hormone concentrations, brown adipose tissue mass or uncoupling protein-1 expression, and insulin tolerance. Vm24 did reduce basal and glucose-stimulated serum insulin concentrations, serum C-peptide concentration, increased QUICKI, and tended to lower HOMA-IR. Vm24 treatment did not change the activation of insulin receptor substrate-1, but enhanced protein-kinase B activation and membrane glucose-transporter 4 (GLUT4) protein levels in skeletal muscle. SIGNIFICANCE In conclusion, in male rats, long-term blockade of Kv1.3 channels with Vm24 does not reduce weight gain and visceral adiposity induced by HFF diet; instead, it reduces serum insulin concentration, and enhances GLUT4 mobilization in skeletal muscle.
Collapse
Affiliation(s)
- Lorraine Jaimes-Hoy
- Departamento de Fisiología Molecular y Biología del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Georgina B Gurrola
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel Cisneros
- Departamento de Fisiología Molecular y Biología del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Fisiología Molecular y Biología del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jean-Louis Charli
- Departamento de Fisiología Molecular y Biología del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
13
|
Caveolin interaction governs Kv1.3 lipid raft targeting. Sci Rep 2016; 6:22453. [PMID: 26931497 PMCID: PMC4773814 DOI: 10.1038/srep22453] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The spatial localization of ion channels at the cell surface is crucial for their functional role. Many channels localize in lipid raft microdomains, which are enriched in cholesterol and sphingolipids. Caveolae, specific lipid rafts which concentrate caveolins, harbor signaling molecules and their targets becoming signaling platforms crucial in cell physiology. However, the molecular mechanisms involved in such spatial localization are under debate. Kv1.3 localizes in lipid rafts and participates in the immunological response. We sought to elucidate the mechanisms of Kv1.3 surface targeting, which govern leukocyte physiology. Kv1 channels share a putative caveolin-binding domain located at the intracellular N-terminal of the channel. This motif, lying close to the S1 transmembrane segment, is situated near the T1 tetramerization domain and the determinants involved in the Kvβ subunit association. The highly hydrophobic domain (FQRQVWLLF) interacts with caveolin 1 targeting Kv1.3 to caveolar rafts. However, subtle variations of this cluster, putative ancillary associations and different structural conformations can impair the caveolin recognition, thereby altering channel’s spatial localization. Our results identify a caveolin-binding domain in Kv1 channels and highlight the mechanisms that govern the regulation of channel surface localization during cellular processes.
Collapse
|
14
|
Pérez-Verdaguer M, Capera J, Serrano-Novillo C, Estadella I, Sastre D, Felipe A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Expert Opin Ther Targets 2015; 20:577-91. [DOI: 10.1517/14728222.2016.1112792] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Ryland KE, Hawkins AG, Weisenberger DJ, Punj V, Borinstein SC, Laird PW, Martens JR, Lawlor ER. Promoter Methylation Analysis Reveals That KCNA5 Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation. Mol Cancer Res 2015; 14:26-34. [PMID: 26573141 DOI: 10.1158/1541-7786.mcr-15-0343] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Polycomb proteins are essential regulators of gene expression in stem cells and development. They function to reversibly repress gene transcription via posttranslational modification of histones and chromatin compaction. In many human cancers, genes that are repressed by polycomb in stem cells are subject to more stable silencing via DNA methylation of promoter CpG islands. Ewing sarcoma is an aggressive bone and soft-tissue tumor that is characterized by overexpression of polycomb proteins. This study investigates the DNA methylation status of polycomb target gene promoters in Ewing sarcoma tumors and cell lines and observes that the promoters of differentiation genes are frequent targets of CpG-island DNA methylation. In addition, the promoters of ion channel genes are highly differentially methylated in Ewing sarcoma compared with nonmalignant adult tissues. Ion channels regulate a variety of biologic processes, including proliferation, and dysfunction of these channels contributes to tumor pathogenesis. In particular, reduced expression of the voltage-gated Kv1.5 channel has been implicated in tumor progression. These data show that DNA methylation of the KCNA5 promoter contributes to stable epigenetic silencing of the Kv1.5 channel. This epigenetic repression is reversed by exposure to the DNA methylation inhibitor decitabine, which inhibits Ewing sarcoma cell proliferation through mechanisms that include restoration of the Kv1.5 channel function. IMPLICATIONS This study demonstrates that promoters of ion channels are aberrantly methylated in Ewing sarcoma and that epigenetic silencing of KCNA5 contributes to tumor cell proliferation, thus providing further evidence of the importance of ion channel dysregulation to tumorigenesis.
Collapse
Affiliation(s)
- Katherine E Ryland
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan. Translational Oncology Program, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Allegra G Hawkins
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California. Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Peter W Laird
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Elizabeth R Lawlor
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, University of Michigan, Ann Arbor, Michigan. Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
16
|
Silencing of Kv1.5 Gene Inhibits Proliferation and Induces Apoptosis of Osteosarcoma Cells. Int J Mol Sci 2015; 16:26914-26. [PMID: 26569226 PMCID: PMC4661860 DOI: 10.3390/ijms161126002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/08/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022] Open
Abstract
Kv1.5 (also known as KCNA5) is a protein encoded by the KCNA5 gene, which belongs to the voltage-gated potassium channel, shaker-related subfamily. Recently, a number of studies have suggested that Kv1.5 is overexpressed in numerous cancers and plays crucial roles in cancer development. However, until now, the expression and functions of Kv1.5 in osteosarcoma are still unclear. To characterize the potential biological functions of Kv1.5 in osteosarcoma, herein, we examined the expression levels of Kv1.5 in osteosarcoma cells and tissues using quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunohistochemistry assays. Four short hairpin RNAs (shRNAs) targeting Kv1.5 were designed and homologous recombination technology was used to construct pGeneSil-Kv1.5 vectors. In addition, the vectors were transfected into osteosarcoma MG63 cells and Kv1.5 mRNA level was measured by qRT-PCR and the Kv1.5 protein level was examined by western blot. We also examined the effects of Kv1.5 silencing on proliferation, cell cycle and apoptosis of the osteosarcoma cells using CCK-8, colony formation, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. Our results showed that Kv1.5 was aberrantly expressed in osteosarcoma and that the synthesized shRNA targeting Kv1.5 reduced Kv1.5 mRNA and protein expression effectively. Silencing Kv1.5 expression in the osteosarcoma cells significantly inhibited the proliferation of osteosarcoma cells, induced cell cycle arrest at G0/G1 phase, and induced cell apoptosis through up-regulation of p21, p27, Bax, Bcl-XL and caspase-3 and down-regulation of cyclins A, cyclins D1, cyclins E, Bcl-2 and Bik. In summary, our results indicate that Kv1.5 silencing could suppress osteosarcoma progression through multiple signaling pathways and suggest that Kv1.5 may be a novel target for osteosarcoma therapeutics.
Collapse
|
17
|
Rao VR, Perez-Neut M, Kaja S, Gentile S. Voltage-gated ion channels in cancer cell proliferation. Cancers (Basel) 2015; 7:849-75. [PMID: 26010603 PMCID: PMC4491688 DOI: 10.3390/cancers7020813] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K+, Ca++, Cl.
Collapse
Affiliation(s)
- Vidhya R Rao
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1s tAve, Maywood, IL 60153, USA.
| | - Mathew Perez-Neut
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1s tAve, Maywood, IL 60153, USA.
| | - Simon Kaja
- Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Saverio Gentile
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1s tAve, Maywood, IL 60153, USA.
| |
Collapse
|
18
|
Involvement of potassium channels in the progression of cancer to a more malignant phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2477-92. [PMID: 25517985 DOI: 10.1016/j.bbamem.2014.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022]
Abstract
Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
19
|
Xiao LJ, Zhao S, Zhao EH, Zheng X, Gou WF, Xing YN, Takano Y, Zheng HC. Clinicopathological and prognostic significance of MUC-2, MUC-4 and MUC-5AC expression in japanese gastric carcinomas. Asian Pac J Cancer Prev 2014; 13:6447-53. [PMID: 23464473 DOI: 10.7314/apjcp.2012.13.12.6447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mucin components of the gastric gel layer function as a protective and lubricating factor against luminal acid and proteolytic enzymes. Alteration of mucin expression in gastric preneoplastic and neoplastic lesions has suggested potential roles in neoplastic processes. This study aimed to assess the clinicopathological and prognostic significance of MUC-2, MUC-4 and MUC-5AC in Japanese gastric cancer. METHODS Expression of MUC-2, -4 and -5AC was evaluated on tissue microarrays of gastric carcinomas and adjacent non-cancerous mucosa specimens by immunohistochemistry and compared with clinicopathological parameters and survival time of the patients. RESULTS The three mucins were found to be expressed to a lesser extent in gastric carcinomas in comparison with non-cancerous mucosa (p<0.05). MUC-2 expression was negatively correlated with tumor size, depth of invasion, and TNM staging of gastric cancer (p<0.05), while that of MUC-5AC was negatively associated with the depth of invasion, venous invasion, lymph node metastasis and TNM staging (p<0.05), but positively with MUC-4 and MUC-2 expression (p<0.05). There was higher MUC-2 expression in intestinal- than diffuse-type carcinomas (p<0.05). Kaplan-Meier analysis indicated no relationship between expression of the three mucins and the cumulative survival rate of patients, even stratified according to the depth of invasion (p>0.05). CONCLUSION Down-regulated expression of MUC-2, -4 and -5AC may be involved in pathogenesis, invasion, metastasis or differentiation of gastric carcinoma. Their altered expression might therefore be employed as an indicator of pathobiological behavior.
Collapse
Affiliation(s)
- Li-Jun Xiao
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Venglovecz V, Rakonczay Z, Gray MA, Hegyi P. Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Arch 2014; 467:625-40. [PMID: 25074489 DOI: 10.1007/s00424-014-1585-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/09/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal epithelial cells play a fundamental role in HCO3 (-) secretion, a process which is essential for maintaining the integrity of the pancreas. Although several studies have implicated impaired HCO3 (-) and fluid secretion as a triggering factor in the development of pancreatitis, the mechanism and regulation of HCO3 (-) secretion is still not completely understood. To date, most studies on the ion transporters that orchestrate ductal HCO3 (-) secretion have focussed on the role of Cl(-)/HCO3 (-) exchangers and Cl(-) channels, whereas much less is known about the role of K(+) channels. However, there is growing evidence that many types of K(+) channels are present in ductal cells where they have an essential role in establishing and maintaining the electrochemical driving force for anion secretion. For this reason, strategies that increase K(+) channel function may help to restore impaired HCO3 (-) and fluid secretion, such as in pancreatitis, and therefore provide novel directions for future pancreatic therapy. In this review, our aims are to summarize the types of K(+) channels found in pancreatic ductal cells and to discuss their individual roles in ductal HCO3 (-) secretion. We will also describe how K(+) channels are involved in pathophysiological conditions and discuss how they could act as new molecular targets for the development of therapeutic approaches to treat pancreatic diseases.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary,
| | | | | | | |
Collapse
|
21
|
Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarrás A, Marruecos L, Gómez D, Soler C, Condom E, Ramón Y Cajal S, Hernández-Losa J, Ferreres JC, Felipe A. The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol 2013; 4:283. [PMID: 24133455 PMCID: PMC3794381 DOI: 10.3389/fphys.2013.00283] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/18/2013] [Indexed: 11/20/2022] Open
Abstract
Voltage-dependent K+ channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found in several types of tumors and cancer cells. In general, while the expression of Kv1.3 apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in tumor growth and their importance as potential tumor markers. However, despite of this increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral markers, further research must be performed to reach any conclusion. In this review, we summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human cancer.
Collapse
Affiliation(s)
- Núria Comes
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vallejo-Gracia A, Bielanska J, Hernández-Losa J, Castellví J, Ruiz-Marcellan MC, Ramón y Cajal S, Condom E, Manils J, Soler C, Comes N, Ferreres JC, Felipe A. Emerging role for the voltage-dependent K+channel Kv1.5 in B-lymphocyte physiology: expression associated with human lymphoma malignancy. J Leukoc Biol 2013; 94:779-89. [DOI: 10.1189/jlb.0213094] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Solé L, Vallejo-Gracia A, Roig SR, Serrano-Albarrás A, Marruecos L, Manils J, Gómez D, Soler C, Felipe A. KCNE gene expression is dependent on the proliferation and mode of activation of leukocytes. Channels (Austin) 2013; 7:85-96. [PMID: 23327879 DOI: 10.4161/chan.23258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Voltage-dependent K (+) (Kv) channels are tightly regulated during the immune system response. Leukocytes have a limited repertoire of Kv channels, whose physiological role is under intense investigation. A functional Kv channel is an oligomeric complex composed of pore-forming and ancillary subunits. The KCNE gene family is a novel group of modulatory Kv channel elements in leukocytes. Here, we characterized the gene expression of KCNEs (1-5) in leukocytes and investigated their regulation during leukocyte proliferation and mode of activation. Murine bone-marrow-derived macrophages, human Jurkat T-lymphocytes and human Raji B-cells were analyzed. KCNEs (1-5) are expressed in all leukocytes lineages. Most KCNE mRNAs show cell cycle-dependent regulation and are differentially regulated under specific insults. Our results further suggest a new and yet undefined physiological role for KCNE subunits in the immune system. Putative associations of these ancillary proteins with Kv channels would yield a wide variety of biophysically and pharmacologically distinct channels that fine-tune the immunological response.
Collapse
Affiliation(s)
- Laura Solé
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Iannotti FA, Barrese V, Formisano L, Miceli F, Taglialatela M. Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)-regulated Kv7.4 potassium channels. Mol Biol Cell 2012; 24:274-84. [PMID: 23242999 PMCID: PMC3564528 DOI: 10.1091/mbc.e11-12-1044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Kv7.4-potassium channel expression plays a permissive role in skeletal muscle differentiation. The transcriptional repressor REST controls the changes in Kv7.4 levels during myogenesis by binding to regulatory regions in the Kv7.4 gene. This mechanism may be a target for intervention against abnormal repair and differentiation of skeletal muscle. Changes in the expression of potassium (K+) channels is a pivotal event during skeletal muscle differentiation. In mouse C2C12 cells, similarly to human skeletal muscle cells, myotube formation increased the expression of Kv7.1, Kv7.3, and Kv7.4, the last showing the highest degree of regulation. In C2C12 cells, Kv7.4 silencing by RNA interference reduced the expression levels of differentiation markers (myogenin, myosin heavy chain, troponinT-1, and Pax3) and impaired myotube formation and multinucleation. In Kv7.4-silenced cells, the differentiation-promoting effect of the Kv7 activator N-(2-amino-4-(4-fluorobenzylamino)-phenyl)-carbamic acid ethyl ester (retigabine) was abrogated. Expression levels for the repressor element-1 silencing transcription factor (REST) declined during myotube formation. Transcript levels for Kv7.4, as well as for myogenin, troponinT-1, and Pax3, were reduced by REST overexpression and enhanced upon REST suppression by RNA interference. Four regions containing potential REST-binding sites in the 5′ untranslated region and in the first intron of the Kv7.4 gene were identified by bioinformatic analysis. Chromatin immunoprecipitation assays showed that REST binds to these regions, exhibiting a higher efficiency in myoblasts than in myotubes. These data suggest that Kv7.4 plays a permissive role in skeletal muscle differentiation and highlight REST as a crucial transcriptional regulator for this K+ channel subunit.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Division of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
25
|
Bielanska J, Hernández-Losa J, Moline T, Somoza R, Ramón y Cajal S, Condom E, Ferreres JC, Felipe A. Differential Expression of Kv1.3 and Kv1.5 Voltage-Dependent K+Channels in Human Skeletal Muscle Sarcomas. Cancer Invest 2012; 30:203-8. [DOI: 10.3109/07357907.2012.654872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Bielanska J, Hernández-Losa J, Moline T, Somoza R, Ramón Y Cajal S, Condom E, Ferreres JC, Felipe A. Increased voltage-dependent K + channel Kv1.3 and Kv1.5 expression correlates with leiomyosarcoma aggressiveness. Oncol Lett 2012; 4:227-230. [PMID: 22844358 DOI: 10.3892/ol.2012.718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/04/2012] [Indexed: 01/07/2023] Open
Abstract
Voltage-dependent K+ channels (Kv) are involved in the proliferation and differentiation of mammalian cells, since Kv antagonists impair cell cycle progression. Although myofibers are terminally differentiated, some myoblasts may re-enter the cell cycle and proliferate. Since Kv1.3 and Kv1.5 expression is remodeled during tumorigenesis and is involved in smooth muscle proliferation, the purpose of this study was to analyze the expression of Kv1.3 and Kv1.5 in smooth muscle neoplasms. In the present study, we examined human samples of smooth muscle tumors together with healthy specimens. Thus, leiomyoma (LM) and leiomyosarcoma (LMS) tumors were analyzed. Results showed that Kv1.3 was poorly expressed in the healthy muscle and indolent LM specimens, whereas aggressive LMS showed high levels of Kv1.3 expression. Kv1.5 staining was correlated with malignancy. The findings show a remodeling of Kv1.3 and Kv1.5 in human smooth muscle sarcoma. A correlation of Kv1.3 and Kv1.5 expression with tumor aggressiveness was observed. Thus, our results indicate Kv1.5 and Kv1.3 as potential tumorigenic targets for aggressive human LMS.
Collapse
Affiliation(s)
- Joanna Bielanska
- Molecular Physiology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, E-08028 Barcelona
| | - Javier Hernández-Losa
- Department of Pathology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, E-08035 Barcelona
| | - Teresa Moline
- Department of Pathology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, E-08035 Barcelona
| | - Rosa Somoza
- Department of Pathology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, E-08035 Barcelona
| | - Santiago Ramón Y Cajal
- Department of Pathology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, E-08035 Barcelona
| | - Enric Condom
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | - Joan Carles Ferreres
- Department of Pathology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, E-08035 Barcelona
| | - Antonio Felipe
- Molecular Physiology Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, E-08028 Barcelona
| |
Collapse
|
27
|
Kim BS, Im YB, Jung SJ, Park CH, Kang SK. Argonaute2 regulation for K+ channel-mediated human adipose tissue-derived stromal cells self-renewal and survival in nucleus. Stem Cells Dev 2012; 21:1736-48. [PMID: 22014067 DOI: 10.1089/scd.2011.0388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Argonaute2 (Ago2) is a well-known factor that has intrinsic endonuclease activity and is a part of the fundamental gene regulatory machinery. Recently, we showed that nuclear Ago2 regulates voltage-gated potassium (Kv) channels and that Ago2/Kv1.3 has crucial functions in the self-renewal and cell de-aging processes in adipose tissue-derived stromal cells (ATSCs). In the nucleus, Ago2 bound to the promoter regions of calcium-activated potassium channel 3, potassium channel subfamily K member 1 (KCNK1), and voltage-gated potassium channel 2, and the expression of these genes was significantly upregulated at the level of transcription. We detected an active K+ channel that plays a critical role in Ago2-mediated ATSC self-renewal through the control of membrane potential during cell self-renewal and differentiation. Among the several regulatory subunits of voltage-dependent K+ (Kv) channels, Kv1.3 and Kv1.5 have been shown to impact tissue differentiation and cell growth in cultured ATSCs following their direct binding to the regulatory region of the Kv channel gene. In ATSCs, interference with Ago2 or K+ channel gene expression or treatment with tetraethylammonium significantly downregulated stemness gene expression, induced cell cycle arrest, and inhibited the ability of cells to transdifferentiate into neurons or β-cells via Oct4 knockdown. Blockage of the K+ channel significantly induced protein kinase C (PKC) α, β, and δ phosphorylation and negatively affected Ago2 and Oct4 expression. This K+ channel blockage also resulted in the upregulation of p53 and p21 expression and the inactivation of mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase 1/2 (ERK 1/2), AKT, β-catenin, and STAT3. Our results suggest that the nuclear Ago2 regulation of the K+ channel or stemness-related gene expression plays a critical role in adult stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Bong Sun Kim
- Department of Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Four and a half LIM protein 1C (FHL1C): a binding partner for voltage-gated potassium channel K(v1.5). PLoS One 2011; 6:e26524. [PMID: 22053194 PMCID: PMC3203871 DOI: 10.1371/journal.pone.0026524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/27/2011] [Indexed: 12/19/2022] Open
Abstract
Four-and-a-half LIM domain protein 1 isoform A (FHL1A) is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA). We here studied myoblasts from XMPMA patients. We found that functional FHL1A protein is completely absent in patient myoblasts. In parallel, expression of FHL1C is either unaffected or increased. Furthermore, a decreased proliferation rate of XMPMA myoblasts compared to controls was observed but an increased number of XMPMA myoblasts was found in the G0/G1 phase. Furthermore, low expression of Kv1.5, a voltage-gated potassium channel known to alter myoblast proliferation during the G1 phase and to control repolarization of action potential, was detected. In order to substantiate a possible relation between Kv1.5 and FHL1C, a pull-down assay was performed. A physical and direct interaction of both proteins was observed in vitro. In addition, confocal microscopy revealed substantial colocalization of FHL1C and Kv1.5 within atrial cells, supporting a possible interaction between both proteins in vivo. Two-electrode voltage clamp experiments demonstrated that coexpression of Kv1.5 with FHL1C in Xenopus laevis oocytes markedly reduced K+ currents when compared to oocytes expressing Kv1.5 only. We here present the first evidence on a biological relevance of FHL1C.
Collapse
|
29
|
Jang SH, Ryu PD, Lee SY. Dendrotoxin-κ suppresses tumor growth induced by human lung adenocarcinoma A549 cells in nude mice. J Vet Sci 2011; 12:35-40. [PMID: 21368561 PMCID: PMC3053465 DOI: 10.4142/jvs.2011.12.1.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Voltage-gated K(+) (Kv) channels have been considered to be a regulator of membrane potential and neuronal excitability. Recently, accumulated evidence has indicated that several Kv channel subtypes contribute to the control of cell proliferation in various types of cells and are worth noting as potential emerging molecular targets of cancer therapy. In the present study, we investigated the effects of the Kv1.1-specific blocker, dendrotoxin-κ (DTX-κ, on tumor formation induced by the human lung adenocarcinoma cell line A549 in a xenograft model. Kv1.1 mRNA and protein was expressed in A549 cells and the blockade of Kv1.1 by DTX-κ, reduced tumor formation in nude mice. Furthermore, treatment with DTX-κ significantly increased protein expression of p21(Waf1/Cip1), p27(Kip1), and p15(INK4B) and significantly decreased protein expression of cyclin D3 in tumor tissues compared to the control. These results suggest that DTX-κ has anti-tumor effects in A549 cells through the pathway governing G1-S transition.
Collapse
Affiliation(s)
- Soo Hwa Jang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
30
|
Kim HJ, Jang SH, Jeong YA, Ryu PD, Kim DY, Lee SY. Involvement of Kv4.1 K(+) channels in gastric cancer cell proliferation. Biol Pharm Bull 2011; 33:1754-7. [PMID: 20930388 DOI: 10.1248/bpb.33.1754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Voltage-gated potassium (Kv) channels are expressed not only in excitable cells but also in non-excitable cells such as epithelial cells. Recent studies have demonstrated that several subtypes of Kv channels are expressed in epithelial tumor cells, including human gastric cancer cells, and are associated with cell proliferation. In the present study, we examined the expression of Kv4.1 in human gastric cancer cell lines and the effects of suppressed expression of Kv4.1 on cell proliferation and cell cycle distribution. We found that Kv4.1 mRNA and protein are expressed in the human gastric cancer cell lines MKN-45 and SNU-638. Moreover, Kv4.1-targeted small interference RNA (siRNA) treatment inhibited gastric cancer cell proliferation. Flow cytometric analysis revealed that suppressed expression of Kv4.1 induced a G1-S transition block of cell cycle progression. These results reveal that Kv4.1 plays a role in the proliferation of the human gastric cancer cell lines MKN-45 and SNU-638 and can be considered as a therapeutic target for human gastric cancer.
Collapse
Affiliation(s)
- Hyung-Jin Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. Eur J Pharmacol 2011; 651:26-32. [DOI: 10.1016/j.ejphar.2010.10.066] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 10/07/2010] [Accepted: 10/29/2010] [Indexed: 01/05/2023]
|
32
|
Felipe A, Soler C, Comes N. Kv1.5 in the immune system: the good, the bad, or the ugly? Front Physiol 2010; 1:152. [PMID: 21423392 PMCID: PMC3059964 DOI: 10.3389/fphys.2010.00152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/28/2010] [Indexed: 11/13/2022] Open
Abstract
For the last 20 years, knowledge of the physiological role of voltage-dependent potassium channels (Kv) in the immune system has grown exponentially. Leukocytes express a limited repertoire of Kv channels, which contribute to the membrane potential. These proteins are involved in the immune response and are therefore considered good pharmacological targets. Although there is a clear consensus about the physiological relevance of Kv1.3, the expression and the role of Kv1.5 are controversial. However, recent reports indicate that certain heteromeric Kv1.3/Kv1.5 associations may provide insight on Kv1.5. Here, we summarize what is known about this issue and highlight the role of Kv1.5 partnership interactions that could be responsible for this debate. The Kv1.3/Kv1.5 heterotetrameric composition of the channel and their possible differential associations with accessory regulatory proteins warrant further investigation.
Collapse
Affiliation(s)
- Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona Barcelona, Spain.
| | | | | |
Collapse
|
33
|
Villalonga N, David M, Bielanska J, Vicente R, Comes N, Valenzuela C, Felipe A. Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. ACTA ACUST UNITED AC 2010; 135:135-47. [PMID: 20100893 PMCID: PMC2812499 DOI: 10.1085/jgp.200910334] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Voltage-dependent potassium (Kv) channels play a pivotal role in the modulation of macrophage physiology. Macrophages are professional antigen-presenting cells and produce inflammatory and immunoactive substances that modulate the immune response. Blockage of Kv channels by specific antagonists decreases macrophage cytokine production and inhibits proliferation. Numerous pharmacological agents exert their effects on specific target cells by modifying the activity of their plasma membrane ion channels. Investigation of the mechanisms involved in the regulation of potassium ion conduction is, therefore, essential to the understanding of potassium channel functions in the immune response to infection and inflammation. Here, we demonstrate that the biophysical properties of voltage-dependent K+ currents are modified upon activation or immunosuppression in macrophages. This regulation is in accordance with changes in the molecular characteristics of the heterotetrameric Kv1.3/Kv1.5 channels, which generate the main Kv in macrophages. An increase in K+ current amplitude in lipopolysaccharide-activated macrophages is characterized by a faster C-type inactivation, a greater percentage of cumulative inactivation, and a more effective margatoxin (MgTx) inhibition than control cells. These biophysical parameters are related to an increase in Kv1.3 subunits in the Kv1.3/Kv1.5 hybrid channel. In contrast, dexamethasone decreased the C-type inactivation, the cumulative inactivation, and the sensitivity to MgTx concomitantly with a decrease in Kv1.3 expression. Neither of these treatments apparently altered the expression of Kv1.5. Our results demonstrate that the immunomodulation of macrophages triggers molecular and biophysical consequences in Kv1.3/Kv1.5 hybrid channels by altering the subunit stoichiometry.
Collapse
Affiliation(s)
- Núria Villalonga
- Molecular Physiology Laboratory, Departament de Bioquímica i Biología Molecular, Institut de Biomedicina, Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Martínez-Mármol R, Villalonga N, Solé L, Vicente R, Tamkun MM, Soler C, Felipe A. Multiple Kv1.5 targeting to membrane surface microdomains. J Cell Physiol 2008; 217:667-73. [PMID: 18668522 DOI: 10.1002/jcp.21538] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Surface expression of voltage-dependent K(+) channels (Kv) has a pivotal role in leukocyte physiology. Although little is known about the physiological role of lipid rafts, these microdomains concentrate signaling molecules and their ion channel substrates. Kv1.3 associates with Kv1.5 to form functional channels in macrophages. Different isoform stoichiometries lead to distinct heteromeric channels which may be further modulated by targeting the complex to different membrane surface microdomains. Kv1.3 targets to lipid rafts, whereas Kv1.5 localization is under debate. With this in mind, we wanted to study whether heterotetrameric Kv1.5-containing channels target to lipid rafts. While in transfected HEK-293 cells, homo- and heterotetrameric channels targeted to rafts, Kv1.5 did not target to rafts in macrophages. Therefore, Kv1.3/Kv1.5 hybrid channels are mostly concentrated in non-raft microdomains. However, LPS-induced activation, which increases the Kv1.3/Kv1.5 ratio and caveolin, targeted Kv1.5 back to lipid rafts. Moreover, Kv1.5 did not localize to low-buoyancy fractions in L6E9 skeletal myoblasts, which also coexpress both channels, heart membranes or cardiomyocyes. Coexpression of a Cav3(DGV)-mutant confined Kv1.5 to Cav3(DGV)-vesicles of HEK cells. Contrarily, coexpression of Kvbeta2.1 impaired the Kv1.5 targeting to raft microdomains in HEK cells. Our results indicate that Kv1.5 partnership interactions are underlying mechanisms governing channel targeting to lipid rafts.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Roura-Ferrer M, Solé L, Martínez-Mármol R, Villalonga N, Felipe A. Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation. Biochem Biophys Res Commun 2008; 369:1094-7. [PMID: 18331828 DOI: 10.1016/j.bbrc.2008.02.152] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
Voltage-dependent K(+) channels (Kv) are involved in myocyte proliferation and differentiation by triggering changes in membrane potential and regulating cell volume. Since Kv7 channels may participate in these events, the purpose of this study was to investigate whether skeletal muscle Kv7.1 and Kv7.5 were involved during proliferation and myogenesis. Here we report that, while myotube formation did not regulate Kv7 channels, Kv7.5 was up-regulated during cell cycle progression. Although, Kv7.1 mRNA also increased during the G(1)-phase, pharmacological evidence mainly involves Kv7.5 in myoblast growth. Our results indicate that the cell cycle-dependent expression of Kv7.5 is involved in skeletal muscle cell proliferation.
Collapse
Affiliation(s)
- Meritxell Roura-Ferrer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Avda. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|