1
|
GLI1, a novel target of the ER stress regulator p97/VCP, promotes ATF6f-mediated activation of XBP1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194924. [PMID: 36842643 DOI: 10.1016/j.bbagrm.2023.194924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Upon accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER), the Unfolded Protein Response (UPR) is triggered to restore ER homeostasis. The induction of stress genes is a sine qua non condition for effective adaptive UPR. Although this requirement has been extensively described, the mechanisms underlying this process remain in part uncharacterized. Here, we show that p97/VCP, an AAA+ ATPase known to contribute to ER stress-induced gene expression, regulates the transcription factor GLI1, a primary effector of Hedgehog (Hh) signaling. Under basal (non-ER stress) conditions, GLI1 is repressed by a p97/VCP-HDAC1 complex while upon ER stress GLI1 is induced through a mechanism requiring both USF2 binding and increase histone acetylation at its promoter. Interestingly, the induction of GLI1 was independent of ligand-regulated Hh signaling. Further analysis showed that GLI1 cooperates with ATF6f to induce promoter activity and expression of XBP1, a key transcription factor driving UPR. Overall, our work demonstrates a novel role for GLI1 in the regulation of ER stress gene expression and defines the interplay between p97/VCP, HDAC1 and USF2 as essential players in this process.
Collapse
|
2
|
Kawarasaki T, Nakatsukasa K. Metabolomics analysis of an AAA-ATPase Cdc48-deficient yeast strain. Heliyon 2023; 9:e13219. [PMID: 36761826 PMCID: PMC9905943 DOI: 10.1016/j.heliyon.2023.e13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
The ubiquitin-specific chaperone AAA-ATPase Cdc48 and its orthologs p97/valosin-containing protein (VCP) in mammals play crucial roles in regulating numerous intracellular pathways via segregase activity, which separates polyubiquitinated targets from membranes or binding partners. Interestingly, high-throughput experiments show that a vast number of metabolic enzymes are modified with ubiquitin. Therefore, Cdc48 may regulate metabolic pathways, for example by acting on the polyubiquitin chains of metabolic enzymes; however, the role of Cdc48 in metabolic regulation remains largely unknown. To begin to analyze the role of Cdc48 in metabolic regulation in yeast, we performed a metabolomics analysis of temperature-sensitive cdc48-3 mutant cells. We found that the amount of metabolites in the glycolytic pathway was altered. Moreover, the pool of nucleotides, as well as the levels of metabolites involved in the tricarboxylic acid cycle and oxidative phosphorylation, increased, whereas the pool of amino acids decreased. These results suggest the involvement of Cdc48 in metabolic regulation in yeast. In addition, because of the roles of p97/VCP in regulating multiple cellular pathways, its inhibition is being considered as a promising anticancer drug target. We propose that the metabolomics study of Cdc48-deficient yeast will be useful as a complement to p97/VCP-related pathological and therapeutic studies.
Collapse
|
3
|
Dieriks BV, Highet B, Alik A, Bellande T, Stevenson TJ, Low V, Park TIH, Correia J, Schweder P, Faull RLM, Melki R, Curtis MA, Dragunow M. Human pericytes degrade diverse α-synuclein aggregates. PLoS One 2022; 17:e0277658. [PMID: 36399706 PMCID: PMC9674377 DOI: 10.1371/journal.pone.0277658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterised by the abnormal accumulation of α-synuclein (α-syn) aggregates. Central to disease progression is the gradual spread of pathological α-syn. α-syn aggregation is closely linked to progressive neuron loss. As such, clearance of α-syn aggregates may slow the progression of PD and lead to less severe symptoms. Evidence is increasing that non-neuronal cells play a role in PD and other synucleinopathies such as Lewy body dementia and multiple system atrophy. Our previous work has shown that pericytes-vascular mural cells that regulate the blood-brain barrier-contain α-syn aggregates in human PD brains. Here, we demonstrate that pericytes efficiently internalise fibrillar α-syn irrespective of being in a monoculture or mixed neuronal cell culture. Pericytes cleave fibrillar α-syn aggregates (Fibrils, Ribbons, fibrils65, fibrils91 and fibrils110), with cleaved α-syn remaining present for up to 21 days. The number of α-syn aggregates/cell and average aggregate size depends on the type of strain, but differences disappear within 5 five hours of treatment. Our results highlight the role brain vasculature may play in reducing α-syn aggregate burden in PD.
Collapse
Affiliation(s)
- Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- * E-mail: (BVD); (MD)
| | - Blake Highet
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ania Alik
- Molecular Imaging Research Center, Francois Jacob Institute, Alternative Energies and Atomic Energy Commission, and Laboratory of Neurodegenerative Diseases, National Center for Scientific Research, Fontenay‐ Aux‐Roses, France
| | - Tracy Bellande
- Molecular Imaging Research Center, Francois Jacob Institute, Alternative Energies and Atomic Energy Commission, and Laboratory of Neurodegenerative Diseases, National Center for Scientific Research, Fontenay‐ Aux‐Roses, France
| | - Taylor J. Stevenson
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Victoria Low
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Jason Correia
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland, New Zealand
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ronald Melki
- Molecular Imaging Research Center, Francois Jacob Institute, Alternative Energies and Atomic Energy Commission, and Laboratory of Neurodegenerative Diseases, National Center for Scientific Research, Fontenay‐ Aux‐Roses, France
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
- * E-mail: (BVD); (MD)
| |
Collapse
|
4
|
Ohkuni K, Gliford L, Au WC, Suva E, Kaiser P, Basrai M. Cdc48Ufd1/Npl4 segregase removes mislocalized centromeric histone H3 variant CENP-A from non-centromeric chromatin. Nucleic Acids Res 2022; 50:3276-3291. [PMID: 35234920 PMCID: PMC8989521 DOI: 10.1093/nar/gkac135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2023] Open
Abstract
Restricting the localization of CENP-A (Cse4 in Saccharomyces cerevisiae) to centromeres prevents chromosomal instability (CIN). Mislocalization of overexpressed CENP-A to non-centromeric chromatin contributes to CIN in budding and fission yeasts, flies, and humans. Overexpression and mislocalization of CENP-A is observed in cancers and is associated with increased invasiveness. Mechanisms that remove mislocalized CENP-A and target it for degradation have not been defined. Here, we report that Cdc48 and its cofactors Ufd1 and Npl4 facilitate the removal of mislocalized Cse4 from non-centromeric chromatin. Defects in removal of mislocalized Cse4 contribute to lethality of overexpressed Cse4 in cdc48,ufd1 andnpl4 mutants. High levels of polyubiquitinated Cse4 and mislocalization of Cse4 are observed in cdc48-3, ufd1-2 and npl4-1mutants even under normal physiological conditions, thereby defining polyubiquitinated Cse4 as the substrate of the ubiquitin directed segregase Cdc48Ufd1/Npl4. Accordingly, Npl4, the ubiquitin binding receptor, associates with mislocalized Cse4, and this interaction is dependent on Psh1-mediated polyubiquitination of Cse4. In summary, we provide the first evidence for a mechanism that facilitates the removal of polyubiquitinated and mislocalized Cse4 from non-centromeric chromatin. Given the conservation of Cdc48Ufd1/Npl4 in humans, it is likely that defects in such pathways may contribute to CIN in human cancers.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Loran Gliford
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evelyn Suva
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Yang L, Zhu M, Yang Y, Wang K, Che Y, Yang S, Wang J, Yu X, Li L, Wu S, Palme K, Li X. CDC48B facilitates the intercellular trafficking of SHORT-ROOT during radial patterning in roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:843-858. [PMID: 35088574 DOI: 10.1111/jipb.13231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
CELL DIVISION CONTROL PROTEIN48 (CDC48) is essential for membrane fusion, protein degradation, and other cellular processes. Here, we revealed the crucial role of CDC48B in regulating periclinal cell division in roots by analyzing the recessive gen1 mutant. We identified the GEN1 gene through map-based cloning and verified that GEN1 encodes CDC48B. gen1 showed severely inhibited root growth, increased periclinal cell division in the endodermis, defective middle cortex (MC) formation, and altered ground tissue patterning in roots. Consistent with these phenotypes, CYCLIND 6;1(CYCD6;1), a periclinal cell division marker, was upregulated in gen1 compared to Col-0. The ratio of SHRpro :SHR-GFP fluorescence in pre-dividing nuclei versus the adjacent stele decreased by 33% in gen1, indicating that the trafficking of SHORT-ROOT (SHR) decreased in gen1 when endodermal cells started to divide. These findings suggest that the loss of function of CDC48B inhibits the intercellular trafficking of SHR from the stele to the endodermis, thereby decreasing SHR accumulation in the endodermis. These findings shed light on the crucial role of CDC48B in regulating periclinal cell division in roots.
Collapse
Affiliation(s)
- Lihui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
- Department of Genetics, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Mingyue Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Ke Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yulei Che
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Shurui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China
| | - Xin Yu
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Wu
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Klaus Palme
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| |
Collapse
|
6
|
Huang ZY, Feng L, Fu MJ, Zhang DD. Differential ubiquitome analysis of Cordyceps militaris lysine-ubiquitinated proteins affected by blue light. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Vijayakumari D, Müller J, Hauf S. Cdc48 influence on separase levels is independent of mitosis and suggests translational sensitivity of separase. Cell Rep 2022; 38:110554. [PMID: 35320724 PMCID: PMC8995007 DOI: 10.1016/j.celrep.2022.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Cdc48 (p97/VCP) is a AAA-ATPase that can extract ubiquitinated proteins from their binding partners and can cooperate with the proteasome for their degradation. A fission yeast cdc48 mutant (cdc48-353) shows low levels of the cohesin protease, separase, and pronounced chromosome segregation defects in mitosis. Separase initiates chromosome segregation when its binding partner securin is ubiquitinated and degraded. The low separase levels in the cdc48-353 mutant have been attributed to a failure to extract ubiquitinated securin from separase, resulting in co-degradation of separase along with securin. If true, Cdc48 would be important in mitosis. In contrast, we show here that low separase levels in the cdc48-353 mutant are independent of mitosis. Moreover, we find no evidence of enhanced separase degradation in the mutant. Instead, we suggest that the cdc48-353 mutant uncovers specific requirements for separase translation. Our results highlight a need to better understand how this key mitotic enzyme is synthesized.
Collapse
Affiliation(s)
- Drisya Vijayakumari
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Janina Müller
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Silke Hauf
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
8
|
Abstract
TEX264 (testes expressed gene 264) is a single-pass transmembrane protein, consisting of an N-terminal hydrophobic region, a gyrase inhibitory (GyrI)-like domain, and a loosely structured C terminus. TEX264 was first identified as an endoplasmic reticulum (ER)-resident Atg8-family-binding protein that mediates the degradation of portions of the ER during starvation (i.e., reticulophagy). More recently, TEX264 was identified as a cofactor of VCP/p97 ATPase that promotes the repair of covalently trapped TOP1 (DNA topoisomerase 1)-DNA crosslinks. This review summarizes the current knowledge of TEX264 as a protein with roles in both autophagy and DNA repair and provides an evolutionary and structural analysis of GyrI proteins. Based on our phylogenetic analysis, we provide evidence that TEX264 is a member of a large superfamily of GyrI-like proteins that evolved in bacteria and are present in metazoans, including invertebrates and chordates.Abbreviations: Atg8: autophagy related 8; Atg39: autophagy related 39; Cdc48: cell division cycle 48; CGAS: cyclic GMP-AMP synthase; DPC: DNA-protein crosslinks; DSB: DNA double-strand break; ER: endoplasmic reticulum; GyrI: gyrase inhibitory domain; LRR: leucine-rich repeat; MAFFT: multiple alignment using fast Fourier transform; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; STUBL: SUMO targeted ubiquitin ligase; SUMO: small ubiquitin-like modifier; TEX264: testis expressed gene 264; TOP1cc: topoisomerase 1-cleavage complex; UBZ: ubiquitin binding Zn finger domain; VCP: valosin containing protein.
Collapse
Affiliation(s)
- John Fielden
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Marta Popović
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Kristijan Ramadan
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- CONTACT Kristijan Ramadan Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Conserved L464 in p97 D1-D2 linker is critical for p97 cofactor regulated ATPase activity. Biochem J 2021; 478:3185-3204. [PMID: 34405853 DOI: 10.1042/bcj20210288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022]
Abstract
p97 protein is a highly conserved, abundant, functionally diverse, structurally dynamic homohexameric AAA enzyme-containing N, D1, and D2 domains. A truncated p97 protein containing the N and D1 domains and the D1-D2 linker (ND1L) exhibits 79% of wild-type (WT) ATPase activity whereas the ND1 domain alone without the linker only has 2% of WT activity. To investigate the relationship between the D1-D2 linker and the D1 domain, we produced p97 ND1L mutants and demonstrated that this 22-residue linker region is essential for D1 ATPase activity. The conserved amino acid leucine 464 (L464) is critical for regulating D1 and D2 ATPase activity by p97 cofactors p37, p47, and Npl4-Ufd1 (NU). Changing leucine to alanine, proline, or glutamate increased the maximum rate of ATP turnover (kcat) of p47-regulated ATPase activities for these mutants, but not for WT. p37 and p47 increased the kcat of the proline substituted linker, suggesting that they induced linker conformations facilitating ATP hydrolysis. NU inhibited D1 ATPase activities of WT and mutant ND1L proteins, but activated D2 ATPase activity of full-length p97. To further understand the mutant mechanism, we used single-particle cryo-EM to visualize the full-length p97L464P and revealed the conformational change of the D1-D2 linker, resulting in a movement of the helix-turn-helix motif (543-569). Taken together with the biochemical and structural results we conclude that the linker helps maintain D1 in a competent conformation and relays the communication to/from the N-domain to the D1 and D2 ATPase domains, which are ∼50 Å away.
Collapse
|
10
|
Valosin-containing protein/p97 plays critical roles in the Japanese encephalitis virus life cycle. J Virol 2021; 95:JVI.02336-20. [PMID: 33731458 PMCID: PMC8139707 DOI: 10.1128/jvi.02336-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Host factors provide critical support for every aspect of the virus life cycle. We recently identified the valosin-containing protein (VCP)/p97, an abundant cellular ATPase with diverse cellular functions, as a host factor important for Japanese encephalitis virus (JEV) replication. In cultured cells, using siRNA-mediated protein depletion and pharmacological inhibitors, we show that VCP is crucial for replication of three flaviviruses: JEV, Dengue, and West Nile viruses. An FDA-approved VCP inhibitor, CB-5083, extended survival of mice in the animal model of JEV infection. While VCP depletion did not inhibit JEV attachment on cells, it delayed capsid degradation, potentially through the entrapment of the endocytosed virus in clathrin-coated vesicles (CCVs). Early during infection, VCP-depleted cells showed an increased colocalization of JEV capsid with clathrin, and also higher viral RNA levels in purified CCVs. We show that VCP interacts with the JEV nonstructural protein NS5 and is an essential component of the virus replication complex. The depletion of the major VCP cofactor UFD-1 also significantly inhibited JEV replication. Mechanistically, thus, VCP affected two crucial steps of the JEV life cycle - nucleocapsid release and RNA replication. Our study establishes VCP as a common host factor with a broad antiviral potential against flaviviruses.ImportanceJEV is the leading cause of viral encephalitis epidemics in South-east Asia, affecting majorly children with high morbidity and mortality. Identification of host factors is thus essential for the rational design of anti-virals that are urgently need as therapeutics. Here we have identified the VCP protein as one such host-factor. This protein is highly abundant in cells and engages in diverse functions and cellular pathways by its ability to interact with different co-factors. Using siRNA mediated protein knockdown, we show that this protein is essential for release of the viral RNA into the cell so that it can initiate replication. The protein plays a second crucial role for the formation of the JEV replication complex. FDA-approved drugs targeting VCP show enhanced mouse survival in JE model of disease, suggesting that this could be a druggable target for flavivirus infections.
Collapse
|
11
|
Zhang C, Li Y, Li J. Dysregulated autophagy contributes to the pathogenesis of enterovirus A71 infection. Cell Biosci 2020; 10:142. [PMID: 33298183 PMCID: PMC7724827 DOI: 10.1186/s13578-020-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Enterovirus A71 (EVA71) infection continues to remain a vital threat to global public health, especially in the Asia–Pacific region. It is one of the most predominant pathogens that cause hand, foot, and mouth disease (HFMD), which occurs mainly in children below 5 years old. Although EVA71 prevalence has decreased sharply in China with the use of vaccines, epidemiological studies still indicate that EVA71 infection involves severe and even fatal HFMD cases. As a result, it remains more fundamental research into the pathogenesis of EVA71 as well as to develop specific anti-viral therapy. Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis. It involves a variety of biological functions, such as development, cellular differentiation, nutritional starvation, and defense against pathogens. However, accumulating evidence has indicated that EVA71 induces autophagy and hijacks the process of autophagy for their optimal infection during the different stages of life cycle. This review provides a perspective on the emerging evidence that the “positive feedback” between autophagy induction and EVA71 infection, as well as its potential mechanisms. Furthermore, autophagy may be involved in EVA71-induced nervous system impairment through mediating intracranial viral spread and dysregulating host regulator involved self-damage. Autophagy is a promising therapeutic target in EVA71 infection.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Yawei Li
- Department of Health Services, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Jingfeng Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
12
|
The Roles of Ubiquitin in Mediating Autophagy. Cells 2020; 9:cells9092025. [PMID: 32887506 PMCID: PMC7564124 DOI: 10.3390/cells9092025] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Ubiquitination, the post-translational modification essential for various intracellular processes, is implicated in multiple aspects of autophagy, the major lysosome/vacuole-dependent degradation pathway. The autophagy machinery adopted the structural architecture of ubiquitin and employs two ubiquitin-like protein conjugation systems for autophagosome biogenesis. Ubiquitin chains that are attached as labels to protein aggregates or subcellular organelles confer selectivity, allowing autophagy receptors to simultaneously bind ubiquitinated cargos and autophagy-specific ubiquitin-like modifiers (Atg8-family proteins). Moreover, there is tremendous crosstalk between autophagy and the ubiquitin-proteasome system. Ubiquitination of autophagy-related proteins or regulatory components plays significant roles in the precise control of the autophagy pathway. In this review, we summarize and discuss the molecular mechanisms and functions of ubiquitin and ubiquitination, in the process and regulation of autophagy.
Collapse
|
13
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
14
|
Islam MT, Ogura T, Esaki M. The Cdc48-20S proteasome degrades a class of endogenous proteins in a ubiquitin-independent manner. Biochem Biophys Res Commun 2020; 523:835-840. [PMID: 31954512 DOI: 10.1016/j.bbrc.2020.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/05/2020] [Indexed: 11/28/2022]
Abstract
The 26S proteasome is the major degradation machinery for soluble proteins in eukaryotes. Recent evidence reveals the existence of an alternative ATP-powered protein degradation complex, the Cdc48-20S proteasome complex, and we have identified yeast Sod1, a copper-zinc superoxide dismutase, as an endogenous substrate protein. Here, we identified yeast Ths1, an essential threonyl tRNA synthetase, as another endogenous substrate protein of the Cdc48-20S proteasome. In order to analyze the degradation mechanism in more details, we established an in vitro degradation system reconstituted using purified yeast components. Recombinant Sod1 and Ths1 directly interacted with Cdc48, and were degraded in a Cdc48-20S proteasome-dependent manner. Because the substrate proteins were purified from E. coli cells, no eukaryotic modifications including ubiquitination and phosphorylation exist. Therefore, although the 26S proteasome requires ubiquitination for specific recognition of the substrate proteins, the Cdc48-20S proteasome can degrade a class of substrate proteins without any modifications.
Collapse
Affiliation(s)
- Md Tanvir Islam
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan; Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masatoshi Esaki
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
15
|
Wang X, Bai E, Zhou H, Sha S, Miao H, Qin Y, Liu Z, Wang J, Zhang H, Lei M, Liu J, Hai O, Zhu Y. Discovery of a new class of valosine containing protein (VCP/P97) inhibitors for the treatment of non-small cell lung cancer. Bioorg Med Chem 2018; 27:533-544. [PMID: 30606672 DOI: 10.1016/j.bmc.2018.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
Valosine containing protein (VCP/p97) is a member of the AAA ATPase family involved in several essential cellular functions and plays an important role in the ubiquitin-mediated degradation of misfolded proteins. P97 has a significant role in maintaining the cellular protein homeostasis for tumor cell growth and survival and has been found overexpressed in many tumor types. No new molecule entities based on p97 target were approved in clinic. Herein, a series of novel pyrimidine structures as p97 inhibitors were designed and synthesized. After enzymatic evaluations, structure-activity relationships (SAR) were discussed in detailed. Among the screened compounds, derivative 35 showed excellent enzymatic inhibitory activity (IC50, 36 nM). The cellular inhibition results showed that compound 35 had good antiproliferative activity against the non-small cell lung cancer A549 cells (IC50, 1.61 μM). Liver microsome stability showed that the half-life of compound 35 in human liver microsome was 42.3 min, which was more stable than the control CB-5083 (25.8 min). The in vivo pharmacokinetic results showed that the elimination phase half-lives of compound 35 were 4.57 h for ig and 3.64 h for iv, respectively and the oral bioavailability was only 4.5%. These results indicated that compound 35 could be effective for intravenous treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Xueyuan Wang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Enhe Bai
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Hui Zhou
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Sijia Sha
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Hang Miao
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Yanru Qin
- School of Bio-engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Rd. Changqing District, Jinan 250353, PR China
| | - Zhaogang Liu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No. 9 Weidi Road, Nanjing 210046, PR China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No. 9 Weidi Road, Nanjing 210046, PR China
| | - Haoyang Zhang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Meng Lei
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China.
| | - Jia Liu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No. 9 Weidi Road, Nanjing 210046, PR China
| | - Ou Hai
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No. 9 Weidi Road, Nanjing 210046, PR China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China.
| |
Collapse
|
16
|
Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and MARCH6-dependent ERAD. Nat Commun 2018; 9:3671. [PMID: 30202070 PMCID: PMC6131187 DOI: 10.1038/s41467-018-06115-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
Niemann–Pick type C disease is a fatal, progressive neurodegenerative disorder caused by loss-of-function mutations in NPC1, a multipass transmembrane glycoprotein essential for intracellular lipid trafficking. We sought to define the cellular machinery controlling degradation of the most common disease-causing mutant, I1061T NPC1. We show that this mutant is degraded, in part, by the proteasome following MARCH6-dependent ERAD. Unexpectedly, we demonstrate that I1061T NPC1 is also degraded by a recently described autophagic pathway called selective ER autophagy (ER-phagy). We establish the importance of ER-phagy both in vitro and in vivo, and identify I1061T as a misfolded endogenous substrate for this FAM134B-dependent process. Subcellular fractionation of I1061T Npc1 mouse tissues and analysis of human samples show alterations of key components of ER-phagy, including FAM134B. Our data establish that I1061T NPC1 is recognized in the ER and degraded by two different pathways that function in a complementary fashion to regulate protein turnover. Niemann-Pick type C1 disease is most commonly caused by the allele NPC1 I1061T, which is misfolded in the ER and rapidly degraded by the ubiquitin proteasome system. Here the authors show that the I1061T mutant is also degraded by ER-phagy.
Collapse
|
17
|
Liu Y, Zou W, Yang P, Wang L, Ma Y, Zhang H, Wang X. Autophagy-dependent ribosomal RNA degradation is essential for maintaining nucleotide homeostasis during C. elegans development. eLife 2018; 7:36588. [PMID: 30102152 PMCID: PMC6101943 DOI: 10.7554/elife.36588] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/12/2018] [Indexed: 12/24/2022] Open
Abstract
Ribosome degradation through the autophagy-lysosome pathway is crucial for cell survival during nutrient starvation, but whether it occurs under normal growth conditions and contributes to animal physiology remains unaddressed. In this study, we identified RNST-2, a C. elegans T2 family endoribonuclease, as the key enzyme that degrades ribosomal RNA in lysosomes. We found that loss of rnst-2 causes accumulation of rRNA and ribosomal proteins in enlarged lysosomes and both phenotypes are suppressed by blocking autophagy, which indicates that RNST-2 mediates autophagic degradation of ribosomal RNA in lysosomes. rnst-2(lf) mutants are defective in embryonic and larval development and are short-lived. Remarkably, simultaneous loss of RNST-2 and de novo synthesis of pyrimidine nucleotides leads to complete embryonic lethality, which is suppressed by supplements of uridine or cytidine. Our study reveals an essential role of autophagy-dependent degradation of ribosomal RNA in maintaining nucleotide homeostasis during animal development.
Collapse
Affiliation(s)
- Yubing Liu
- Peking University-Tsinghua University-National Institute of Biological Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Science, Beijing, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Zou
- National Institute of Biological Science, Beijing, China
| | - Peiguo Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Ma
- National Institute of Biological Science, Beijing, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Parisi E, Yahya G, Flores A, Aldea M. Cdc48/p97 segregase is modulated by cyclin-dependent kinase to determine cyclin fate during G1 progression. EMBO J 2018; 37:embj.201798724. [PMID: 29950310 DOI: 10.15252/embj.201798724] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 01/26/2023] Open
Abstract
Cells sense myriad signals during G1, and a rapid response to prevent cell cycle entry is of crucial importance for proper development and adaptation. Cln3, the most upstream G1 cyclin in budding yeast, is an extremely short-lived protein subject to ubiquitination and proteasomal degradation. On the other hand, nuclear accumulation of Cln3 depends on chaperones that are also important for its degradation. However, how these processes are intertwined to control G1-cyclin fate is not well understood. Here, we show that Cln3 undergoes a challenging ubiquitination step required for both degradation and full activation. Segregase Cdc48/p97 prevents degradation of ubiquitinated Cln3, and concurrently stimulates its ER release and nuclear accumulation to trigger Start. Cdc48/p97 phosphorylation at conserved Cdk-target sites is important for recruitment of specific cofactors and, in both yeast and mammalian cells, to attain proper G1-cyclin levels and activity. Cdk-dependent modulation of Cdc48 would subjugate G1 cyclins to fast and reversible state switching, thus arresting cells promptly in G1 at developmental or environmental checkpoints, but also resuming G1 progression immediately after proliferative signals reappear.
Collapse
Affiliation(s)
- Eva Parisi
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Galal Yahya
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain.,Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Alba Flores
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain .,Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Huiting LN, Samaha Y, Zhang GL, Roderick JE, Li B, Anderson NM, Wang YW, Wang L, Laroche F, Choi JW, Liu CT, Kelliher MA, Feng H. UFD1 contributes to MYC-mediated leukemia aggressiveness through suppression of the proapoptotic unfolded protein response. Leukemia 2018; 32:2339-2351. [PMID: 29743725 PMCID: PMC6202254 DOI: 10.1038/s41375-018-0141-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Despite the pivotal role of MYC in tumorigenesis, the mechanisms by which it promotes cancer aggressiveness remain incompletely understood. Here we show that MYC transcriptionally upregulates the ubiquitin fusion degradation 1 (UFD1) gene in T-cell acute lymphoblastic leukemia (T-ALL). Allelic loss of ufd1 in zebrafish induces tumor-cell apoptosis and impairs MYC-driven T-ALL progression but does not affect general health. As the E2 component of an endoplasmic reticulum (ER)-associated degradation (ERAD) complex, UFD1 facilitates the elimination of misfolded/unfolded proteins from the ER. We found that UFD1 inactivation in human T-ALL cells impairs ERAD, exacerbates ER stress, and induces apoptosis. Moreover, we show that UFD1 inactivation promotes the proapoptotic unfolded protein response (UPR) mediated by protein kinase RNA-like ER kinase (PERK). This effect is demonstrated by an upregulation of PERK and its downstream effector C/EBP homologous protein (CHOP), as well as a downregulation of BCL2 and BCLxL. Indeed, CHOP inactivation or BCL2 overexpression is sufficient to rescue tumor-cell apoptosis induced by UFD1 knockdown. Together, our studies identify UFD1 as a critical regulator of the ER stress response and a novel contributor to MYC-mediated leukemia aggressiveness, with implications for targeted therapy in T-ALL and likely other MYC-driven cancers.
Collapse
Affiliation(s)
- L N Huiting
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Y Samaha
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - G L Zhang
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - J E Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - B Li
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - N M Anderson
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Y W Wang
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA.,Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, P. R. China
| | - L Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Fjf Laroche
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - J W Choi
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - C T Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - M A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - H Feng
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
20
|
Grozdanov V, Danzer KM. Release and uptake of pathologic alpha-synuclein. Cell Tissue Res 2018; 373:175-182. [PMID: 29411106 DOI: 10.1007/s00441-017-2775-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease, which is characterized by severe loss of dopaminergic neurons and formation of Lewy bodies, which are rich in aggregated alpha-synuclein (α-syn). Two decades of intensive research have compiled a massive body of evidence that aggregation of α-syn is a critical process in PD and other synucleinopathies. The dissemination of Lewy body pathology throughout the central nervous system strongly suggests a cell-to-cell transmission of α-syn. Although in vitro and in vivo evidence has convincingly demonstrated that aggregation-prone α-syn can spread from cell to cell, the exact mechanisms and the role for the disease pathology remain elusive. Except for cases of direct contact, the transmission of α-syn from cell to cell requires that α-syn is released to the extracellular space and taken up by recipient cells. Furthermore, internalized α-syn needs to gain access to the cytoplasm and/or target organelles of the recipient cell. Here, we review the current state of knowledge about release and uptake of α-syn and discuss the key questions that remain unanswered.
Collapse
|
21
|
Deng Z, Sheehan P, Chen S, Yue Z. Is amyotrophic lateral sclerosis/frontotemporal dementia an autophagy disease? Mol Neurodegener 2017; 12:90. [PMID: 29282133 PMCID: PMC5746010 DOI: 10.1186/s13024-017-0232-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that share genetic risk factors and pathological hallmarks. Intriguingly, these shared factors result in a high rate of comorbidity of these diseases in patients. Intracellular protein aggregates are a common pathological hallmark of both diseases. Emerging evidence suggests that impaired RNA processing and disrupted protein homeostasis are two major pathogenic pathways for these diseases. Indeed, recent evidence from genetic and cellular studies of the etiology and pathogenesis of ALS-FTD has suggested that defects in autophagy may underlie various aspects of these diseases. In this review, we discuss the link between genetic mutations, autophagy dysfunction, and the pathogenesis of ALS-FTD. Although dysfunction in a variety of cellular pathways can lead to these diseases, we provide evidence that ALS-FTD is, in many cases, an autophagy disease.
Collapse
Affiliation(s)
- Zhiqiang Deng
- Brain center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.,Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Patricia Sheehan
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Shi Chen
- Brain center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China. .,Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| |
Collapse
|
22
|
Abstract
The efficient production, folding, and secretion of proteins is critical for cancer cell survival. However, cancer cells thrive under stress conditions that damage proteins, so many cancer cells overexpress molecular chaperones that facilitate protein folding and target misfolded proteins for degradation via the ubiquitin-proteasome or autophagy pathway. Stress response pathway induction is also important for cancer cell survival. Indeed, validated targets for anti-cancer treatments include molecular chaperones, components of the unfolded protein response, the ubiquitin-proteasome system, and autophagy. We will focus on links between breast cancer and these processes, as well as the development of drug resistance, relapse, and treatment.
Collapse
Affiliation(s)
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, 4249 Fifth Ave, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
23
|
VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. Mol Cell 2017; 69:182-194. [PMID: 29153394 DOI: 10.1016/j.molcel.2017.10.028] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
The AAA+-type ATPase p97 governs an ever-expanding number of cellular processes reaching from degradation of damaged proteins and organelles to key signaling events and chromatin regulation with thousands of client proteins. With its relevance for cellular homeostasis and genome stability, it is linked to muscular and neuronal degeneration and, conversely, constitutes an attractive anti-cancer drug target. Its molecular function is ATP-driven protein unfolding, which is directed by ubiquitin and assisted by a host of cofactor proteins. This activity underlies p97's diverse ability to pull proteins out of membranes, unfold proteins for proteasomal degradation, or segregate proteins from partners for downstream activity. Recent advances in structural analysis and biochemical reconstitution have underscored this notion, resolved detailed molecular motions within the p97 hexamer, and suggested substrate threading through the central channel of the p97 hexamer as the driving mechanism. We will discuss the mechanisms and open questions in the context of the diverse cellular activities.
Collapse
|
24
|
Rao MV, Williams DR, Cocklin S, Loll PJ. Interaction between the AAA + ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding. J Biol Chem 2017; 292:18392-18407. [PMID: 28939772 DOI: 10.1074/jbc.m117.806281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/16/2017] [Indexed: 12/29/2022] Open
Abstract
p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum-associated degradation. However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants.
Collapse
Affiliation(s)
- Maya V Rao
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Dewight R Williams
- the LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287
| | - Simon Cocklin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Patrick J Loll
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
25
|
Esaki M, Islam MT, Tani N, Ogura T. Deviation of the typical AAA substrate-threading pore prevents fatal protein degradation in yeast Cdc48. Sci Rep 2017; 7:5475. [PMID: 28710470 PMCID: PMC5511170 DOI: 10.1038/s41598-017-05806-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023] Open
Abstract
Yeast Cdc48 is a well-conserved, essential chaperone of ATPases associated with diverse cellular activity (AAA) proteins, which recognizes substrate proteins and modulates their conformations to carry out many cellular processes. However, the fundamental mechanisms underlying the diverse pivotal roles of Cdc48 remain unknown. Almost all AAA proteins form a ring-shaped structure with a conserved aromatic amino acid residue that is essential for proper function. The threading mechanism hypothesis suggests that this residue guides the intrusion of substrate proteins into a narrow pore of the AAA ring, thereby becoming unfolded. By contrast, the aromatic residue in one of the two AAA rings of Cdc48 has been eliminated through evolution. Here, we show that artificial retrieval of this aromatic residue in Cdc48 is lethal, and essential features to support the threading mechanism are required to exhibit the lethal phenotype. In particular, genetic and biochemical analyses of the Cdc48 lethal mutant strongly suggested that when in complex with the 20S proteasome, essential proteins are abnormally forced to thread through the Cdc48 pore to become degraded, which was not detected in wild-type Cdc48. Thus, the widely applicable threading model is less effective for wild-type Cdc48; rather, Cdc48 might function predominantly through an as-yet-undetermined mechanism.
Collapse
Affiliation(s)
- Masatoshi Esaki
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan. .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Md Tanvir Islam
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Microbiology, Jessore University of Science and Technology, Jessore, 7408, Bangladesh
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Kumamoto, 860-8556, Japan
| |
Collapse
|
26
|
Prajapati P, Sripada L, Singh K, Roy M, Bhatelia K, Dalwadi P, Singh R. Systemic Analysis of miRNAs in PD Stress Condition: miR-5701 Modulates Mitochondrial-Lysosomal Cross Talk to Regulate Neuronal Death. Mol Neurobiol 2017; 55:4689-4701. [PMID: 28710704 DOI: 10.1007/s12035-017-0664-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is complex neurological disorder and is prevalent in the elderly population. This is primarily due to loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) region of the brain. The modulators of the selective loss of dopaminergic neurons in PD are still not well understood. The small non-coding RNAs specifically miRNAs fine-tune the protein levels by post-transcriptional gene regulation. The role of miRNAs in PD pathogenesis is still not well characterized. In the current study, we identified the miRNA expression pattern in 6-OHDA-induced PD stress condition in SH-SY5Y, dopaminergic neuronal cell line. The targets of top 5 miRNAs both up- and down regulated were analyzed by using StarBase. The putative pathways of identified miRNAs included neurotrophin signaling, neuronal processes, mTOR, and cell death. The level of miR-5701 was significantly downregulated in the presence of 6-OHDA. The putative targets of miR-5701 miRNA include genes involved in lysosomal biogenesis and mitochondrial quality control. The transfection of miR-5701 mimic decreased the transcript level of VCP, LAPTM4A, and ATP6V0D1. The expression of miR-5701 mimic induces mitochondrial dysfunction, defect in autophagy flux, and further sensitizes SH-SY5Y cells to 6-OHDA-induced cell death. To our knowledge, the evidence in the current study demonstrated the dysregulation of specific pattern of miRNAs in PD stress conditions. We further characterized the role of miR-5701, a novel miRNA, as a potential regulator of the mitochondrial and lysosomal function determining the fate of neurons which has important implication in the pathogenesis of PD.
Collapse
Affiliation(s)
- Paresh Prajapati
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Lakshmi Sripada
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Khyati Bhatelia
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Pooja Dalwadi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
27
|
Götzl JK, Lang CM, Haass C, Capell A. Impaired protein degradation in FTLD and related disorders. Ageing Res Rev 2016; 32:122-139. [PMID: 27166223 DOI: 10.1016/j.arr.2016.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
Impaired protein degradation has been discussed as a cause or consequence of various neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's disease. More recently, evidence accumulated that dysfunctional protein degradation may play a role in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Since in almost all neurodegenerative diseases, protein aggregates are disease-defining hallmarks, it is most likely that impaired protein degradation contributes to disease onset and progression. In the majority of FTD cases, the pathological protein aggregates contain either microtubuleassociated protein tau or TAR DNA-binding protein (TDP)-43. Aggregates are also positive for ubiquitin and p62/sequestosome 1 (SQSTM1) indicating that these aggregates are targeted for degradation. FTD-linked mutations in genes encoding three autophagy adaptor proteins, p62/SQSTM1, ubiquilin 2 and optineurin, indicate that impaired autophagy might cause FTD. Furthermore, the strongest evidence for lysosomal impairment in FTD is provided by the progranulin (GRN) gene, which is linked to FTD and neuronal ceroid lipofuscinosis. In this review, we summarize the observations that have been made during the last years linking the accumulation of disease-associated proteins in FTD to impaired protein degradation pathways. In addition, we take resent findings for nucleocytoplasmic transport defects of TDP-43, as discussed for hexanucleotide repeat expansions in C9orf72 into account and provide a hypothesis how the interplay of altered nuclear transport and protein degradation leads to the accumulation of protein deposits.
Collapse
|
28
|
Phongphaew W, Kobayashi S, Sasaki M, Carr M, Hall WW, Orba Y, Sawa H. Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus. Virus Res 2016; 228:114-123. [PMID: 27914931 PMCID: PMC7114552 DOI: 10.1016/j.virusres.2016.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
Abstract
Inhibition of VCP by chemical inhibitors decreased WNV infection in a dose-dependent manner. Knockdown of endogenous VCP level using siRNA suppressed WNV infection. Depletion of VCP levels suppressed WNV infection at the early stages of WNV replication cycle. Depletion of VCP levels lowered nascent WNV genomic RNA. VCP participates in early stages and viral genomic RNA replication.
Valosin-containing protein (VCP) is classified as a member of the type II AAA+ ATPase protein family. VCP functions in several cellular processes, including protein degradation, membrane fusion, vesicular trafficking and disassembly of stress granules. Moreover, VCP is considered to play a role in the replication of several viruses, albeit through different mechanisms. In the present study, we have investigated the role of VCP in West Nile virus (WNV) infection. Endogenous VCP expression was inhibited using either VCP inhibitors or by siRNA knockdown. It could be shown that the inhibition of endogenous VCP expression significantly inhibited WNV infection. The entry assay revealed that silencing of endogenous VCP caused a significant reduction in the expression levels of WNV-RNA compared to control siRNA-treated cells. This indicates that VCP may play a role in early steps either the binding or entry steps of the WNV life cycle. Using WNV virus like particles and WNV-DNA-based replicon, it could be demonstrated that perturbation of VCP expression decreased levels of newly synthesized WNV genomic RNA. These findings suggest that VCP is involved in early steps and during genome replication of the WNV life cycle.
Collapse
Affiliation(s)
- Wallaya Phongphaew
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Shintaro Kobayashi
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michael Carr
- Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Center for Research in Infectious Diseases, University College of Dublin, Belfield, Dublin 4, Dublin, Ireland; Global Virus Network (GVN), The Institute of Human Virology, University of Maryland, 22S. Greene Street, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Global Virus Network (GVN), The Institute of Human Virology, University of Maryland, 22S. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
29
|
Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. Int J Biochem Cell Biol 2016; 79:403-418. [DOI: 10.1016/j.biocel.2016.07.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 01/10/2023]
|
30
|
Tyson T, Steiner JA, Brundin P. Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J Neurochem 2016; 139 Suppl 1:275-289. [PMID: 26617280 PMCID: PMC4958606 DOI: 10.1111/jnc.13449] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022]
Abstract
Parkinson's disease is a progressive neurological disorder that is characterized by the formation of intracellular protein inclusion bodies composed primarily of a misfolded and aggregated form of the protein α-synuclein. There is growing evidence that supports the prion-like hypothesis of α-synuclein progression. This hypothesis postulates that α-synuclein is a prion-like pathological agent and is responsible for the progression of Parkinson pathology in the brain. Potential misfolding or aggregation of α-synuclein that might occur in the peripheral nervous system as a result of some insult, environmental or genetic (or more likely a combination of both) that might spread into the midbrain, eventually causing degeneration of the neurons in the substantia nigra. As the disease progresses further, it is likely that α-synuclein pathology continues to spread throughout the brain, including the cortex, leading to deterioration of cognition and higher brain functions. While it is unknown why α-synuclein initially misfolds and aggregates, a great deal has been learned about how the cell handles aberrant α-synuclein assemblies. In this review, we focus on these mechanisms and discuss them in an attempt to define the role that they might play in the propagation of misfolded α-synuclein from cell-to-cell. The prion-like hypothesis of α-synuclein pathology suggests a method for the transmission of misfolded α-synuclein from one neuron to another. This hypothesis postulates that misfolded α-synuclein becomes aggregation prone and when released and taken up by neighboring cells, seeds further misfolding and aggregation. In this review we examine the cellular mechanisms that are involved in the processing of α-synuclein and how these may contribute to the prion-like propagation of α-synuclein pathology. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
31
|
Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Angeletti M, Keller JN, Eleuteri AM. The fine-tuning of proteolytic pathways in Alzheimer's disease. Cell Mol Life Sci 2016; 73:3433-51. [PMID: 27120560 PMCID: PMC11108445 DOI: 10.1007/s00018-016-2238-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
Several integrated proteolytic systems contribute to the maintenance of cellular homeostasis through the continuous removal of misfolded, aggregated or oxidized proteins and damaged organelles. Among these systems, the proteasome and autophagy play the major role in protein quality control, which is a fundamental issue in non-proliferative cells such as neurons. Disturbances in the functionality of these two pathways are frequently observed in neurodegenerative diseases, like Alzheimer's disease, and reflect the accumulation of protease-resistant, deleterious protein aggregates. In this review, we explored the sophisticated crosstalk between the ubiquitin-proteasome system and autophagy in the removal of the harmful structures that characterize Alzheimer's disease neurons. We also dissected the role of the numerous shuttle factors and chaperones that, directly or indirectly interacting with ubiquitin and LC3, are used for cargo selection and delivery to one pathway or the other.
Collapse
Affiliation(s)
- Valentina Cecarini
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy.
| | - Laura Bonfili
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Massimiliano Cuccioloni
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Matteo Mozzicafreddo
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Mauro Angeletti
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Jeffrey N Keller
- Pennington Biomedical Research Centre, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Anna Maria Eleuteri
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| |
Collapse
|
32
|
Vekaria PH, Home T, Weir S, Schoenen FJ, Rao R. Targeting p97 to Disrupt Protein Homeostasis in Cancer. Front Oncol 2016; 6:181. [PMID: 27536557 PMCID: PMC4971439 DOI: 10.3389/fonc.2016.00181] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer cells are addicted to numerous non-oncogenic traits that enable them to thrive. Proteotoxic stress is one such non-oncogenic trait that is experienced by all tumor cells owing to increased genomic abnormalities and the resulting synthesis and accumulation of non-stoichiometric amounts of cellular proteins. This imbalance in the amounts of proteins ultimately culminates in proteotoxic stress. p97, or valosin-containing protein (VCP), is an ATPase whose function is essential to restore protein homeostasis in the cells. Working in concert with the ubiquitin proteasome system, p97 promotes the retrotranslocation from cellular organelles and/or degradation of misfolded proteins. Consequently, p97 inhibition has emerged as a novel therapeutic target in cancer cells, especially those that have a highly secretory phenotype. This review summarizes our current understanding of the function of p97 in maintaining protein homeostasis and its inhibition with small molecule inhibitors as an emerging strategy to target cancer cells.
Collapse
Affiliation(s)
| | - Trisha Home
- Division of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center , Kansas City, KS , USA
| | - Scott Weir
- The University of Kansas Cancer Center, University of Kansas , Kansas City, KS , USA
| | - Frank J Schoenen
- Specialized Chemistry Center, University of Kansas , Lawrence, KS , USA
| | - Rekha Rao
- Division of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center , Kansas City, KS , USA
| |
Collapse
|
33
|
The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1623-34. [PMID: 27106764 DOI: 10.1016/j.ajpath.2016.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor arsenite and heat shock-activated stress responses evident by T-intracellular antigen-1-positive granules in C2C12 myoblasts. Granules also contained phosphorylated transactive response DNA-binding protein 43, ubiquitin, microtubule-associated protein 1A/1B light chains 3, and lysosome-associated membrane protein 2. Mutant VCP produced more T-intracellular antigen-1-positive granules than wild-type in the postarsenite exposure period. Similar results were observed for other granule components, indicating that mutant VCP delayed clearance of stress granules. Furthermore, stress granule resolution was impaired on differentiated C2C12 cells expressing mutant VCP. To address whether mutant VCP triggers dysregulation of the stress granule pathway in vivo, we analyzed skeletal muscle of aged VCPR155H-knockin mice. We found significant increments in oxidated proteins but observed the stress granule markers RasGAP SH3-binding protein and phosphorylated eukaryotic translation initiation factor 2α unchanged. The mixed results indicate that mutant VCP together with aging lead to higher oxidative stress in skeletal muscle but were insufficient to disrupt the stress granule pathway. Our findings support that deficiencies in recovery from stressors may result in attenuated tolerance to stress that could trigger muscle degeneration.
Collapse
|
34
|
Zhou HJ, Wang J, Yao B, Wong S, Djakovic S, Kumar B, Rice J, Valle E, Soriano F, Menon MK, Madriaga A, Kiss von Soly S, Kumar A, Parlati F, Yakes FM, Shawver L, Le Moigne R, Anderson DJ, Rolfe M, Wustrow D. Discovery of a First-in-Class, Potent, Selective, and Orally Bioavailable Inhibitor of the p97 AAA ATPase (CB-5083). J Med Chem 2015; 58:9480-97. [PMID: 26565666 DOI: 10.1021/acs.jmedchem.5b01346] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The AAA-ATPase p97 plays vital roles in mechanisms of protein homeostasis, including ubiquitin-proteasome system (UPS) mediated protein degradation, endoplasmic reticulum-associated degradation (ERAD), and autophagy. Herein we describe our lead optimization efforts focused on in vitro potency, ADME, and pharmaceutical properties that led to the discovery of a potent, ATP-competitive, D2-selective, and orally bioavailable p97 inhibitor 71, CB-5083. Treatment of tumor cells with 71 leads to significant accumulation of markers associated with inhibition of UPS and ERAD functions, which induces irresolvable proteotoxic stress and cell death. In tumor bearing mice, oral administration of 71 causes rapid accumulation of markers of the unfolded protein response (UPR) and subsequently induces apoptosis leading to sustained antitumor activity in in vivo xenograft models of both solid and hematological tumors. 71 has been taken into phase 1 clinical trials in patients with multiple myeloma and solid tumors.
Collapse
Affiliation(s)
- Han-Jie Zhou
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Jinhai Wang
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Bing Yao
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Steve Wong
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Stevan Djakovic
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Brajesh Kumar
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Julie Rice
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Eduardo Valle
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Ferdie Soriano
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Mary-Kamala Menon
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Antonett Madriaga
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | | | - Abhinav Kumar
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Francesco Parlati
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - F Michael Yakes
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Laura Shawver
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Ronan Le Moigne
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Daniel J Anderson
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - Mark Rolfe
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| | - David Wustrow
- Cleave Biosciences Inc. , 866 Malcom Road, Burlingame, California 94010, United States
| |
Collapse
|
35
|
Braunstein I, Zach L, Allan S, Kalies KU, Stanhill A. Proteasomal degradation of preemptive quality control (pQC) substrates is mediated by an AIRAPL-p97 complex. Mol Biol Cell 2015; 26:3719-27. [PMID: 26337389 PMCID: PMC4626058 DOI: 10.1091/mbc.e15-02-0085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
The preemptive quality control (pQC) pathway participates in the unfolded protein response regulating ER homeostasis, yet many components are not known. The role of p97 and its adaptor, AIRAPL, in proteasomal processing of pQC substrates is shown, and an insulin-processing mutant (R6C) is identified as a pQC substrate. The initial folding of secreted proteins occurs in the ER lumen, which contains specific chaperones and where posttranslational modifications may occur. Therefore lack of translocation, regardless of entry route or protein identity, is a highly toxic event, as the newly synthesized polypeptide is misfolded and can promiscuously interact with cytosolic factors. Mislocalized proteins bearing a signal sequence that did not successfully translocate through the translocon complex are subjected to a preemptive quality control (pQC) pathway and are degraded by the ubiquitin-proteasome system (UPS). In contrast to UPS-mediated, ER-associated degradation, few components involved in pQC have been identified. Here we demonstrate that on specific translocation inhibition, a p97–AIRAPL complex directly binds and regulates the efficient processing of polyubiquitinated pQC substrates by the UPS. We also demonstrate p97’s role in pQC processing of preproinsulin in cases of naturally occurring mutations within the signal sequence of insulin.
Collapse
Affiliation(s)
- Ilana Braunstein
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lolita Zach
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Susanne Allan
- Centre for Structural and Cell Biology in Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Kai-Uwe Kalies
- Centre for Structural and Cell Biology in Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Ariel Stanhill
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
36
|
Abstract
α-Synuclein inclusion bodies are a pathological hallmark of several neurodegenerative diseases, including Parkinson’s disease, and contain aggregated α-synuclein and a variety of recruited factors, including protein chaperones, proteasome components, ubiquitin and the small ubiquitin-like modifier, SUMO-1. Cell culture and animal model studies suggest that misfolded, aggregated α-synuclein is actively translocated via the cytoskeletal system to a region of the cell where other factors that help to lessen the toxic effects can also be recruited. SUMO-1 covalently conjugates to various intracellular target proteins in a way analogous to ubiquitination to alter cellular distribution, function and metabolism and also plays an important role in a growing list of cellular pathways, including exosome secretion and apoptosis. Furthermore, SUMO-1 modified proteins have recently been linked to cell stress responses, such as oxidative stress response and heat shock response, with increased SUMOylation being neuroprotective in some cases. Several recent studies have linked SUMOylation to the ubiquitin-proteasome system, while other evidence implicates the lysosomal pathway. Other reports depict a direct mechanism whereby sumoylation reduced the aggregation tendency of α-synuclein, and reduced the toxicity. However, the precise role of SUMO-1 in neurodegeneration remains unclear. In this review, we explore the potential direct or indirect role(s) of SUMO-1 in the cellular response to misfolded α-synuclein in neurodegenerative disorders.
Collapse
|
37
|
Johnson AE, Shu H, Hauswirth AG, Tong A, Davis GW. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo. eLife 2015; 4. [PMID: 26167652 PMCID: PMC4574298 DOI: 10.7554/elife.07366] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/11/2015] [Indexed: 12/25/2022] Open
Abstract
Lysosomes are classically viewed as vesicular structures to which cargos are delivered for degradation. Here, we identify a network of dynamic, tubular lysosomes that extends throughout Drosophila muscle, in vivo. Live imaging reveals that autophagosomes merge with tubular lysosomes and that lysosomal membranes undergo extension, retraction, fusion and fission. The dynamics and integrity of this tubular lysosomal network requires VCP, an AAA-ATPase that, when mutated, causes degenerative diseases of muscle, bone and neurons. We show that human VCP rescues the defects caused by loss of Drosophila VCP and overexpression of disease relevant VCP transgenes dismantles tubular lysosomes, linking tubular lysosome dysfunction to human VCP-related diseases. Finally, disruption of tubular lysosomes correlates with impaired autophagosome-lysosome fusion, increased cytoplasmic poly-ubiquitin aggregates, lipofuscin material, damaged mitochondria and impaired muscle function. We propose that VCP sustains sarcoplasmic proteostasis, in part, by controlling the integrity of a dynamic tubular lysosomal network. DOI:http://dx.doi.org/10.7554/eLife.07366.001 Mutations in a gene that produces a protein called Valosin-containing protein (VCP for short) causes degenerative diseases that affect the brain, muscle and bone. In nearly half of the individuals with these VCP-related diseases—which can also result in dementia, Paget's disease of the bone and amyotrophic lateral sclerosis (ALS)—the first symptom is muscle weakness. Currently, very little is known about how VCP affects muscles. Patients with VCP-related diseases often have problems clearing damaged proteins from their cells, and recent research suggests that VCP is important for forming a cellular structure known as a lysosome. Lysosomes contain powerful enzymes that destroy damaged proteins and other cellular structures that would otherwise accumulate in the cells. In most cells, lysosomes look like bubble-like compartments called vesicles. However, in some types of cells lysosomes have been observed to form a network of tubules that extend throughout the cell interior. However, it remains unclear what these tubules do, how they form in cells and whether they are altered in disease. Johnson et al. analyzed lysosomes in the muscle of the fruit fly species Drosophila melanogaster and discovered that lysosomes were in the form of a network of tubules that spread throughout each muscle cell. These tubules constantly changed in living muscles; extending, retracting, breaking and merging to form a large tubular lysosome network. When Johnson et al. reduced the amount of VCP produced by the muscle cells, via a method called RNA interference, the lysosome tubules broke down into vesicles that were no longer constantly changing. Modifying these defective fly muscle cells so that they produced the human VCP protein caused the tubules to form again. These results suggest that the human and fly VCP proteins are very similar and that they play a key role in either the ability of lysosomes to form tubules or the maintenance of existing tubules. Johnson et al. then engineered flies to produce a version of the VCP protein that had mutations commonly seen in individuals with degenerative diseases. Lysosome tubules did not form correctly in the muscle cells of these flies. These flies also had other abnormalities; for example, their cells showed a great build-up of damaged proteins, and their ability to move their muscles was weaker. These findings suggest that a network of lysosomal tubules is necessary for healthy muscle cells, but how and why these tubular networks are formed or maintained is still mysterious. What causes lysosomal membranes to form tubules? How do they break and fuse? And why are they necessary? Genetic experiments in fruit flies will be a great place to discover these mechanisms and understand the links to degenerative diseases in humans. DOI:http://dx.doi.org/10.7554/eLife.07366.002
Collapse
Affiliation(s)
- Alyssa E Johnson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Huidy Shu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Anna G Hauswirth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Amy Tong
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
38
|
Kelly SP, Bedwell DM. Both the autophagy and proteasomal pathways facilitate the Ubp3p-dependent depletion of a subset of translation and RNA turnover factors during nitrogen starvation in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2015; 21:898-910. [PMID: 25795416 PMCID: PMC4408797 DOI: 10.1261/rna.045211.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 01/05/2015] [Indexed: 05/20/2023]
Abstract
Protein turnover is an important regulatory mechanism that facilitates cellular adaptation to changing environmental conditions. Previous studies have shown that ribosome abundance is reduced during nitrogen starvation by a selective autophagy mechanism termed ribophagy, which is dependent upon the deubiquitinase Ubp3p. In this study, we asked whether the abundance of various translation and RNA turnover factors are reduced following the onset of nitrogen starvation in Saccharomyces cerevisiae. We found distinct differences in the abundance of the proteins tested following nitrogen starvation: (1) The level of some did not change; (2) others were reduced with kinetics similar to ribophagy, and (3) a few proteins were rapidly depleted. Furthermore, different pathways differentially degraded the various proteins upon nitrogen starvation. The translation factors eRF3 and eIF4GI, and the decapping enhancer Pat1p, required an intact autophagy pathway for their depletion. In contrast, the deadenylase subunit Pop2p and the decapping enzyme Dcp2p were rapidly depleted by a proteasome-dependent mechanism. The proteasome-dependent depletion of Dcp2p and Pop2p was also induced by rapamycin, suggesting that the TOR1 pathway influences this pathway. Like ribophagy, depletion of eIF4GI, eRF3, Dcp2p, and Pop2p was dependent upon Ubp3p to varying extents. Together, our results suggest that the autophagy and proteasomal pathways degrade distinct translation and RNA turnover factors in a Ubp3p-dependent manner during nitrogen starvation. While ribophagy is thought to mediate the reutilization of scarce resources during nutrient limitation, our results suggest that the selective degradation of specific proteins could also facilitate a broader reprogramming of the post-transcriptional control of gene expression.
Collapse
Affiliation(s)
- Shane P Kelly
- Department of Cell, Developmental and Integrative Biology, Birmingham, Alabama 35294, USA
| | - David M Bedwell
- Department of Cell, Developmental and Integrative Biology, Birmingham, Alabama 35294, USA Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
39
|
Braun RJ. Ubiquitin-dependent proteolysis in yeast cells expressing neurotoxic proteins. Front Mol Neurosci 2015; 8:8. [PMID: 25814926 PMCID: PMC4357299 DOI: 10.3389/fnmol.2015.00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 01/16/2023] Open
Abstract
Critically impaired protein degradation is discussed to contribute to neurodegenerative disorders, including Parkinson's, Huntington's, Alzheimer's, and motor neuron diseases. Misfolded, aggregated, or surplus proteins are efficiently degraded via distinct protein degradation pathways, including the ubiquitin-proteasome system, autophagy, and vesicular trafficking. These pathways are regulated by covalent modification of target proteins with the small protein ubiquitin and are evolutionary highly conserved from humans to yeast. The yeast Saccharomyces cerevisiae is an established model for deciphering mechanisms of protein degradation, and for the elucidation of pathways underlying programmed cell death. The expression of human neurotoxic proteins triggers cell death in yeast, with neurotoxic protein-specific differences. Therefore, yeast cell death models are suitable for analyzing the role of protein degradation pathways in modulating cell death upon expression of disease-causing proteins. This review summarizes which protein degradation pathways are affected in these yeast models, and how they are involved in the execution of cell death. I will discuss to which extent this mimics the situation in other neurotoxic models, and how this may contribute to a better understanding of human disorders.
Collapse
Affiliation(s)
- Ralf J Braun
- Institut für Zellbiologie, Universität Bayreuth Bayreuth, Germany
| |
Collapse
|
40
|
Murayama Y, Ogura T, Yamanaka K. Characterization of C-terminal adaptors, UFD-2 and UFD-3, of CDC-48 on the polyglutamine aggregation in C. elegans. Biochem Biophys Res Commun 2015; 459:154-60. [PMID: 25721663 DOI: 10.1016/j.bbrc.2015.02.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 01/30/2023]
Abstract
CDC-48 (also called VCP or p97 in mammals and Cdc48p in yeast) is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities including modulation of protein complexes and protein aggregates. UFD-2 and UFD-3, C-terminal adaptors for CDC-48, reportedly bind to CDC-48 in a mutually exclusive manner and they may modulate the fate of substrates for CDC-48. However, their cellular functions have not yet been elucidated. In this study, we found that CDC-48 preferentially interacts with UFD-3 in Caenorhabditis elegans. We also found that the number of polyglutamine (polyQ) aggregates was reduced in the ufd-3 deletion mutant but not in the ufd-2 deletion mutant. Furthermore, the lifespan and motility of the ufd-3 deletion mutant, where polyQ40::GFP was expressed, were greatly decreased. Taken together, we propose that UFD-3 may promote the formation of polyQ aggregates to reduce the polyQ toxicity in C. elegans.
Collapse
Affiliation(s)
- Yuki Murayama
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
41
|
Bonizec M, Hérissant L, Pokrzywa W, Geng F, Wenzel S, Howard GC, Rodriguez P, Krause S, Tansey WP, Hoppe T, Dargemont C. The ubiquitin-selective chaperone Cdc48/p97 associates with Ubx3 to modulate monoubiquitylation of histone H2B. Nucleic Acids Res 2014; 42:10975-86. [PMID: 25183520 PMCID: PMC4176170 DOI: 10.1093/nar/gku786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/14/2022] Open
Abstract
Cdc48/p97 is an evolutionary conserved ubiquitin-dependent chaperone involved in a broad array of cellular functions due to its ability to associate with multiple cofactors. Aside from its role in removing RNA polymerase II from chromatin after DNA damage, little is known about how this AAA-ATPase is involved in the transcriptional process. Here, we show that yeast Cdc48 is recruited to chromatin in a transcription-coupled manner and modulates gene expression. Cdc48, together with its cofactor Ubx3 controls monoubiquitylation of histone H2B, a conserved modification regulating nucleosome dynamics and chromatin organization. Mechanistically, Cdc48 facilitates the recruitment of Lge1, a cofactor of the H2B ubiquitin ligase Bre1. The function of Cdc48 in controlling H2B ubiquitylation appears conserved in human cells because disease-related mutations or chemical inhibition of p97 function affected the amount of ubiquitylated H2B in muscle cells. Together, these results suggest a prominent role of Cdc48/p97 in the coordination of chromatin remodeling with gene transcription to define cellular differentiation processes.
Collapse
Affiliation(s)
- Mélanie Bonizec
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Lucas Hérissant
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Wojciech Pokrzywa
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Fuqiang Geng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Sabine Wenzel
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Paco Rodriguez
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Sabine Krause
- Laboratory for Molecular Myology, Friedrich Baur Institute, Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Catherine Dargemont
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| |
Collapse
|
42
|
Autophagy protects C. elegans against necrosis during Pseudomonas aeruginosa infection. Proc Natl Acad Sci U S A 2014; 111:12480-5. [PMID: 25114220 DOI: 10.1073/pnas.1405032111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autophagy, a conserved pathway that delivers intracellular materials into lysosomes for degradation, is involved in development, aging, and a variety of diseases. Accumulating evidence demonstrates that autophagy plays a protective role against infectious diseases by diminishing intracellular pathogens, including bacteria, viruses, and parasites. However, the mechanism by which autophagy regulates innate immunity remains largely unknown. Here, we show that autophagy is involved in host defense against a pathogenic bacterium Pseudomonas aeruginosa in the metazoan Caenorhabditis elegans. P. aeruginosa infection induces autophagy via a conserved extracellular signal-regulated kinase (ERK). Intriguingly, impairment of autophagy does not influence the intestinal accumulation of P. aeruginosa, but instead induces intestinal necrosis. Inhibition of necrosis results in the survival of autophagy-deficient worms after P. aeruginosa infection. These findings reveal a previously unidentified role for autophagy in protection against necrosis triggered by pathogenic bacteria in C. elegans and implicate that such a function of autophagy may be conserved through the inflammatory response in diverse organisms.
Collapse
|
43
|
Seguin SJ, Morelli FF, Vinet J, Amore D, De Biasi S, Poletti A, Rubinsztein DC, Carra S. Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Differ 2014; 21:1838-51. [PMID: 25034784 PMCID: PMC4227144 DOI: 10.1038/cdd.2014.103] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/15/2022] Open
Abstract
Stress granules (SGs) are mRNA-protein aggregates induced during stress, which accumulate in many neurodegenerative diseases. Previously, the autophagy-lysosome pathway and valosin-containing protein (VCP), key players of the protein quality control (PQC), were shown to regulate SG degradation. This is consistent with the idea that PQC may survey and/or assist SG dynamics. However, despite these observations, it is currently unknown whether the PQC actively participates in SG assembly. Here, we describe that inhibition of autophagy, lysosomes and VCP causes defective SG formation after induction. Silencing the VCP co-factors UFD1L and PLAA, which degrade defective ribosomal products (DRIPs) and 60S ribosomes, also impaired SG assembly. Intriguingly, DRIPs and 60S, which are released from disassembling polysomes and are normally excluded from SGs, were significantly retained within SGs in cells with impaired autophagy, lysosome or VCP function. Our results suggest that deregulated autophagy, lysosomal or VCP activities, which occur in several neurodegenerative (VCP-associated) diseases, may alter SG morphology and composition.
Collapse
Affiliation(s)
- S J Seguin
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - F F Morelli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - J Vinet
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - D Amore
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - S De Biasi
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - A Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Universita' di Milano, Milan, Italy
| | - D C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, UK
| | - S Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
44
|
Abstract
Autophagy is a lysosome-mediated degradative system that is a highly conserved pathway present in all eukaryotes. In all cells, double-membrane autophagosomes form and engulf cytoplasmic components, delivering them to the lysosome for degradation. Autophagy is essential for cell health and can be activated to function as a recycling pathway in the absence of nutrients or as a quality-control pathway to eliminate damaged organelles or even to eliminate invading pathogens. Autophagy was first identified as a pathway in mammalian cells using morphological techniques, but the Atg (autophagy-related) genes required for autophagy were identified in yeast genetic screens. Despite tremendous advances in elucidating the function of individual Atg proteins, our knowledge of how autophagosomes form and subsequently interact with the endosomal pathway has lagged behind. Recent progress toward understanding where and how both the endocytotic and autophagic pathways overlap is reviewed here.
Collapse
Affiliation(s)
- Sharon A Tooze
- London Research Institute, Cancer Research UK, Secretory Pathways Laboratory, London WC2A 3LY, United Kingdom
| | | | | |
Collapse
|
45
|
Ossareh-Nazari B, Niño CA, Bengtson MH, Lee JW, Joazeiro CAP, Dargemont C. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. ACTA ACUST UNITED AC 2014; 204:909-17. [PMID: 24616224 PMCID: PMC3998797 DOI: 10.1083/jcb.201308139] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The E3 ligase Ltn1 and the deubiquitylase Ubp3-Bre5 titrate the level of ribosomal subunit ubiquitylation and thereby set the rate of ribosomal protein degradation by ribophagy in response to nutrient supply and the level of protein translation. Autophagy, the process by which proteins or organelles are engulfed by autophagosomes and delivered for vacuolar/lysosomal degradation, is induced to ensure survival under starvation and other stresses. A selective autophagic pathway for 60S ribosomal subunits elicited by nitrogen starvation in yeast—ribophagy—was recently described and requires the Ubp3-Bre5 deubiquitylating enzyme. This discovery implied that an E3 ligases act upstream, whether inhibiting the process or providing an initial required signal. In this paper, we show that Ltn1/Rkr1, a 60S ribosome-associated E3 implicated in translational surveillance, acts as an inhibitor of 60S ribosomal subunit ribophagy and is antagonized by Ubp3. The ribosomal protein Rpl25 is a relevant target. Its ubiquitylation is Ltn1 dependent and Ubp3 reversed, and mutation of its ubiquitylation site rendered ribophagy less dependent on Ubp3. Consistently, the expression of Ltn1—but not Ubp3—rapidly decreased after starvation, presumably to allow ribophagy to proceed. Thus, Ltn1 and Ubp3-Bre5 likely contribute to adapt ribophagy activity to both nutrient supply and protein translation.
Collapse
Affiliation(s)
- Batool Ossareh-Nazari
- Institut Jacques Monod, University Paris Diderot, Sorbonne Paris Cité, and Centre National de la Recherche Scientifique Unité Mixte de Recherche 7592, 75205 Paris, Cedex 13, France
| | | | | | | | | | | |
Collapse
|
46
|
Structural and mechanistic insights into the arginine/lysine-rich peptide motifs that interact with P97/VCP. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2672-8. [DOI: 10.1016/j.bbapap.2013.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/05/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022]
|
47
|
Yang FC, Lin YH, Chen WH, Huang JY, Chang HY, Su SH, Wang HT, Chiang CY, Hsu PH, Tsai MD, Tan BCM, Lee SC. Interaction between salt-inducible kinase 2 (SIK2) and p97/valosin-containing protein (VCP) regulates endoplasmic reticulum (ER)-associated protein degradation in mammalian cells. J Biol Chem 2013; 288:33861-33872. [PMID: 24129571 DOI: 10.1074/jbc.m113.492199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salt-inducible kinase 2 (SIK2) is an important regulator of cAMP response element-binding protein-mediated gene expression in various cell types and is the only AMP-activated protein kinase family member known to interact with the p97/valosin-containing protein (VCP) ATPase. Previously, we have demonstrated that SIK2 can regulate autophagy when proteasomal function is compromised. Here we report that physical and functional interactions between SIK2 and p97/VCP underlie the regulation of endoplasmic reticulum (ER)-associated protein degradation (ERAD). SIK2 co-localizes with p97/VCP in the ER membrane and stimulates its ATPase activity through direct phosphorylation. Although the expression of wild-type recombinant SIK2 accelerated the degradation and removal of ERAD substrates, the kinase-deficient variant conversely had no effect. Furthermore, down-regulation of endogenous SIK2 or mutation of the SIK2 target site on p97/VCP led to impaired degradation of ERAD substrates and disruption of ER homeostasis. Collectively, these findings highlight a mechanism by which the interplay between SIK2 and p97/VCP contributes to the regulation of ERAD in mammalian cells.
Collapse
Affiliation(s)
- Fu-Chia Yang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ya-Huei Lin
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wei-Hao Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jing-Yi Huang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsin-Yun Chang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Su-Hui Su
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsiao-Ting Wang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Yi Chiang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pang-Hung Hsu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Daw Tsai
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | - Sheng-Chung Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
48
|
Cdc48: a swiss army knife of cell biology. JOURNAL OF AMINO ACIDS 2013; 2013:183421. [PMID: 24167726 PMCID: PMC3791797 DOI: 10.1155/2013/183421] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
Cdc48 (also called VCP and p97) is an abundant protein that plays essential regulatory functions in a broad array of cellular processes. Working with various cofactors, Cdc48 utilizes its ATPase activity to promote the assembly and disassembly of protein complexes. Here, we review key biological functions and regulation of Cdc48 in ubiquitin-related events. Given the broad employment of Cdc48 in cell biology and its intimate ties to human diseases (e.g., amyotrophic lateral sclerosis), studies of Cdc48 will bring significant insights into the mechanism and function of ubiquitin in health and diseases.
Collapse
|
49
|
Hutt DM, Balch WE. Expanding proteostasis by membrane trafficking networks. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013383. [PMID: 23426524 DOI: 10.1101/cshperspect.a013383] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The folding biology common to all three kingdoms of life (Archaea, Bacteria, and Eukarya) is proteostasis. The proteostasis network (PN) functions as a "cloud" to generate, protect, and degrade the proteome. Whereas microbes (Bacteria, Archaea) have a single compartment, Eukarya have numerous subcellular compartments. We examine evidence that Eukarya compartments use coat, tether, and fusion (CTF) membrane trafficking components to form an evolutionarily advanced arm of the PN that we refer to as the "trafficking PN" (TPN). We suggest that the TPN builds compartments by generating a mosaic of integrated cargo-specific trafficking signatures (TRaCKS). TRaCKS control the temporal and spatial features of protein-folding biology based on the Anfinsen principle that the local environment plays a critical role in managing protein structure. TPN-generated endomembrane compartments apply a "quinary" level of structural control to modify the secondary, tertiary, and quaternary structures defined by the primary polypeptide-chain sequence. The development of Anfinsen compartments provides a unifying foundation for understanding the purpose of endomembrane biology and its capacity to drive extant Eukarya function and diversity.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology and Department of Chemical Physiology, The Skaggs Institute for Chemical Biology and the Dorris Institute for Neurological Diseases, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
50
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|