1
|
Cruz KP, Petersen ALOA, Amorim MF, Pinho AGSF, Palma LC, Dantas DAS, Silveira MRG, Silva CSA, Cordeiro ALJ, Oliveira IG, Pita GB, Souza BCA, Bomfim GC, Brodskyn CI, Fraga DBM, Lima IS, de_Santana MBR, Teixeira HMP, de_Menezes JPB, Santos WLC, Veras PST. Intraperitoneal Administration of 17-DMAG as an Effective Treatment against Leishmania braziliensis Infection in BALB/c Mice: A Preclinical Study. Pathogens 2024; 13:630. [PMID: 39204231 PMCID: PMC11357173 DOI: 10.3390/pathogens13080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Leishmaniasis is a significant global public health issue that is caused by parasites from Leishmania genus. With limited treatment options and rising drug resistance, there is a pressing need for new therapeutic approaches. Molecular chaperones, particularly Hsp90, play a crucial role in parasite biology and are emerging as promising targets for drug development. OBJECTIVE This study evaluates the efficacy of 17-DMAG in treating BALB/c mice from cutaneous leishmaniasis through in vitro and in vivo approaches. MATERIALS AND METHODS We assessed 17-DMAG's cytotoxic effect on bone marrow-derived macrophages (BMMΦ) and its effects against L. braziliensis promastigotes and intracellular amastigotes. Additionally, we tested the compound's efficacy in BALB/c mice infected with L. braziliensis via intraperitoneal administration to evaluate the reduction in lesion size and the decrease in parasite load in the ears and lymph nodes of infected animals. RESULTS 17-DMAG showed selective toxicity [selective index = 432) towards Leishmania amastigotes, causing minimal damage to host cells. The treatment significantly reduced lesion sizes in mice and resulted in parasite clearance from ears and lymph nodes. It also diminished inflammatory responses and reduced the release of pro-inflammatory cytokines (IL-6, IFN-γ, TNF) and the regulatory cytokine IL-10, underscoring its dual leishmanicidal and anti-inflammatory properties. CONCLUSIONS Our findings confirm the potential of 17-DMAG as a viable treatment for cutaneous leishmaniasis and support further research into its mechanisms and potential applications against other infectious diseases.
Collapse
Affiliation(s)
- Kercia P. Cruz
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Antonio L. O. A. Petersen
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- Baiano Federal Institute of Education, Science and Technology—Santa Inês Campus, BR 420, Santa Inês Road, Rural Zone, Ubaíra 45320-000, Bahia, Brazil
| | - Marina F. Amorim
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Alan G. S. F. Pinho
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Luana C. Palma
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Diana A. S. Dantas
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Mariana R. G. Silveira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Carine S. A. Silva
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Ana Luiza J. Cordeiro
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Izabella G. Oliveira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Gabriella B. Pita
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Bianca C. A. Souza
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
| | - Gilberto C. Bomfim
- Laboratory of Population Genetics and Molecular Evolution, Biology Institute, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil;
| | - Cláudia I. Brodskyn
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Deborah B. M. Fraga
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| | - Isadora S. Lima
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
| | - Maria B. R. de_Santana
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Helena M. P. Teixeira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Juliana P. B. de_Menezes
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Washington L. C. Santos
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
- Department of Pathology and Forensic Medicine, Bahia Medical School, Federal University of Bahia, Salvador 40110-906, Bahia, Brazil
| | - Patrícia S. T. Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| |
Collapse
|
2
|
Wickramaratne AC, Wickner S, Kravats AN. Hsp90, a team player in protein quality control and the stress response in bacteria. Microbiol Mol Biol Rev 2024; 88:e0017622. [PMID: 38534118 PMCID: PMC11332350 DOI: 10.1128/mmbr.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.
Collapse
Affiliation(s)
- Anushka C. Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
3
|
Mansfield CR, Quan B, Chirgwin ME, Eduful B, Hughes PF, Neveu G, Sylvester K, Ryan DH, Kafsack BFC, Haystead TAJ, Leahy JW, Fitzgerald MC, Derbyshire ER. Selective targeting of Plasmodium falciparum Hsp90 disrupts the 26S proteasome. Cell Chem Biol 2024; 31:729-742.e13. [PMID: 38492573 PMCID: PMC11031320 DOI: 10.1016/j.chembiol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) has an essential but largely undefined role in maintaining proteostasis in Plasmodium falciparum, the most lethal malaria parasite. Herein, we identify BX-2819 and XL888 as potent P. falciparum (Pf)Hsp90 inhibitors. Derivatization of XL888's scaffold led to the development of Tropane 1, as a PfHsp90-selective binder with nanomolar affinity. Hsp90 inhibitors exhibit anti-Plasmodium activity against the liver, asexual blood, and early gametocyte life stages. Thermal proteome profiling was implemented to assess PfHsp90-dependent proteome stability, and the proteasome-the main site of cellular protein recycling-was enriched among proteins with perturbed stability upon PfHsp90 inhibition. Subsequent biochemical and cellular studies suggest that PfHsp90 directly promotes proteasome hydrolysis by chaperoning the active 26S complex. These findings expand our knowledge of the PfHsp90-dependent proteome and protein quality control mechanisms in these pathogenic parasites, as well as further characterize this chaperone as a potential antimalarial drug target.
Collapse
Affiliation(s)
- Christopher R Mansfield
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Baiyi Quan
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Benjamin Eduful
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Gaëlle Neveu
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Daniel H Ryan
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Björn F C Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - James W Leahy
- Department of Chemistry, University of South Florida, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Wei H, Zhang Y, Jia Y, Chen X, Niu T, Chatterjee A, He P, Hou G. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e470. [PMID: 38283176 PMCID: PMC10811298 DOI: 10.1002/mco2.470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a predominant member among Heat shock proteins (HSPs), playing a central role in cellular protection and maintenance by aiding in the folding, stabilization, and modification of diverse protein substrates. It collaborates with various co-chaperones to manage ATPase-driven conformational changes in its dimer during client protein processing. Hsp90 is critical in cellular function, supporting the proper operation of numerous proteins, many of which are linked to diseases such as cancer, Alzheimer's, neurodegenerative conditions, and infectious diseases. Recognizing the significance of these client proteins across diverse diseases, there is a growing interest in targeting Hsp90 and its co-chaperones for potential therapeutic strategies. This review described biological background of HSPs and the structural characteristics of HSP90. Additionally, it discusses the regulatory role of heat shock factor-1 (HSF-1) in modulating HSP90 and sheds light on the dynamic chaperone cycle of HSP90. Furthermore, the review discusses the specific contributions of HSP90 in various disease contexts, especially in cancer. It also summarizes HSP90 inhibitors for cancer treatment, offering a thoughtful analysis of their strengths and limitations. These advancements in research expand our understanding of HSP90 and open up new avenues for considering HSP90 as a promising target for therapeutic intervention in a range of diseases.
Collapse
Affiliation(s)
- Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yilin Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Xunan Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tengda Niu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Aniruddha Chatterjee
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Pengxing He
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
5
|
Zheng M, Jiang X, Kong X, Guo Y, Zhang W, Di W. Proteomic analysis of Fasciola gigantica excretory and secretory products ( FgESPs) co-immunoprecipitated using a time course of infected buffalo sera. Front Microbiol 2022; 13:1089394. [PMID: 36620027 PMCID: PMC9816151 DOI: 10.3389/fmicb.2022.1089394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Widespread Fasciola gigantica infection in buffaloes has caused great economic losses in buffalo farming. Studies on F. gigantica excretory and secretory products (FgESP) have highlighted their importance in F. gigantica parasitism and their potential in vaccine development. Identifying FgESP components involved in F. gigantica-buffalo interactions during different periods is important for developing effective strategies against fasciolosis. Methods Buffaloes were assigned to non-infection (n = 3, as control group) and infection (n = 3) groups. The infection group was orally administrated 250 metacercariae. Sera were collected at 3, 10, and 16 weeks post-infection (wpi) for the non-infection group and at 0 (pre-infection), 1, 3, 6, 8, 10, 13, and 16 wpi for the infection group. FgESP components interacting with sera from the non-infection and infection groups assay were pulled down by co-IP and identified using LC-MS/MS. Interacting FgESP components in infection group were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway and gene ontology (GO) functional annotation to infer their potential functions. Results and discussion Proteins of FgESP components identified in the non-infection group at 3, 10, and 16 wpi accounted for 80.5%, 84.3%, and 82.1% of all proteins identified in these three time points, respectively, indicating surroundings did not affect buffalo immune response during maintenance. Four hundred and ninety proteins were identified in the infection group, of which 87 were consistently identified at 7 time points. Following GO analysis showed that most of these 87 proteins were in biological processes, while KEGG analysis showed they mainly functioned in metabolism and cellular processing, some of which were thought to functions throughout the infection process. The numbers of specific interactors identified for each week were 1 (n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 (n = 23), 13 (n = 22), and 16 (n = 14) wpi, some of which were thought to functions in specific infection process. This study screened the antigenic targets in FgESP during a dense time course over a long period. These findings may enhance the understanding of molecular F. gigantica-buffalo interactions and help identify new potential vaccine and drug target candidates.
Collapse
Affiliation(s)
- Mengwei Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xuelian Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yanfeng Guo
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,*Correspondence: Weiyu Zhang, ✉
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,Wenda Di, ✉
| |
Collapse
|
6
|
Tassone G, Mazzorana M, Pozzi C. Structural Basis of Parasitic HSP90 ATPase Inhibition by Small Molecules. Pharmaceuticals (Basel) 2022; 15:1341. [PMID: 36355513 PMCID: PMC9692773 DOI: 10.3390/ph15111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Protozoan parasites are responsible for several harmful and widespread human diseases that cause high morbidity and mortality. Currently available treatments have serious limitations due to poor efficiency, strong adverse effects, and high cost. Hence, the identification of new targets and the development of specific drug therapies against parasitic diseases are urgent needs. Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone that plays a key role in parasite survival during the various differentiation stages, spread over the vector insect and the human host, which they undergo during their life cycle. The N-terminal domain (NTD) of HSP90, containing the main determinants for ATPase activity, represents the most druggable domain for inhibitor targeting. The molecules investigated on parasite HSP90 are mainly developed from known inhibitors of the human counterpart, and they have strong limitations due to selectivity issues, accounting for the high conservation of the ATP-binding site between the parasite and human proteins. The current review highlights the recent structural progress made to support the rational design of new molecules able to effectively block the chaperone activity of parasite HSP90.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
7
|
Jamabo M, Bentley SJ, Macucule-Tinga P, Tembo P, Edkins AL, Boshoff A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front Mol Biosci 2022; 9:947078. [PMID: 36213128 PMCID: PMC9538636 DOI: 10.3389/fmolb.2022.947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level. Inhibition of its interactions with chaperones and co-chaperones is being explored as a potential therapeutic target for numerous diseases. This study provides an in silico overview of HSP90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other trypanosomal species, including non-parasitic Bodo saltans and the insect infecting Crithidia fasciculata. A structural analysis of T. brucei HSP90 revealed differences in the orientation of the linker and C-terminal domain in comparison to human HSP90. Phylogenetic analysis displayed the T. brucei HSP90 proteins clustering into three distinct groups based on subcellular localizations, namely, cytosol, mitochondria, and endoplasmic reticulum. Syntenic analysis of cytosolic HSP90 genes revealed that T. b. brucei encoded for 10 tandem copies, while T. b. gambiense encoded for three tandem copies; Leishmania major (L. major) had the highest gene copy number with 17 tandem copies. The updated information on HSP90 from recently published proteomics on T. brucei was examined for different life cycle stages and subcellular localizations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding a total of twelve putative HSP90 genes, while T. b. gambiense encodes five HSP90 genes. Eighteen putative co-chaperones were identified with one notable absence being cell division cycle 37 (Cdc37). These results provide an updated framework on approaching HSP90 and its interactions as drug targets in the African trypanosome.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | | | | | - Praise Tembo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- *Correspondence: Aileen Boshoff,
| |
Collapse
|
8
|
Transcriptomic Differences between Free-Living and Parasitic Chilodonella uncinata (Alveolata, Ciliophora). Microorganisms 2022; 10:microorganisms10081646. [PMID: 36014062 PMCID: PMC9416717 DOI: 10.3390/microorganisms10081646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Chilodonella uncinata is a facultatively parasitic ciliate, which can opportunistically parasitize on fish gills and fins, and sometimes even cause host mortality. Previous molecular studies of C. uncinata mainly focused on genetic diversity and molecular evolution. There are currently no transcriptome reports studying differences between free-living and parasitic C. uncinata. We addressed this by sequencing transcriptomes of these two C. uncinata lifestyle types using Smart-seq2 and Illumina HiSeq technologies. In total, 1040 differentially expressed genes (DEGs) were identified. Compared with the free-living type, 494 genes of the parasitic type were downregulated and 546 genes were upregulated. These DEGs were identified through BLAST with NCBI-nr, Swiss-Port, and Pfam databases and then annotated by GO enrichment and KEGG pathway analysis. The results showed that parasitism-related genes such as heat shock proteins (HSPs), actin I, and leishmanolysin were significantly upregulated in parasitic C. uncinata. The ciliary-related dynein heavy chain also had a higher expression in parasitic C. uncinata. Furthermore, there were significant differences in the amino acid metabolism, fatty acid metabolism, lipid metabolism, and TCA cycle. This study increases the volume of molecular data available for C. uncinata and contributes to our understanding of the mechanisms underlying the transition from a free-living to a parasitic lifestyle.
Collapse
|
9
|
Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi. Arch Microbiol 2022; 204:240. [PMID: 35377020 DOI: 10.1007/s00203-022-02833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
The heat shock proteins (Hsps) act as a molecular chaperone to stabilize client proteins involved in various cell functions in fungi. Hsps are classified into different families such as HSP90, HSP70, HSP60, HSP40, and small HSPs (sHsps). Hsp90, a well-studied member of the Hsp family proteins, plays a role in growth, cell survival, and pathogenicity in fungi. Hsp70 and sHsps are involved in the development, tolerance to stress conditions, and drug resistance in fungi. Hsp60 is a mitochondrial chaperone, and Hsp40 regulates fungal ATPase machinery. In this review, we describe the cell functions, regulation, and the molecular link of the Hsps with the calcineurin-crz1 calcium signaling pathway for their role in cell survival, growth, virulence, and drug resistance in fungi and related organisms.
Collapse
|
10
|
Wititkornkul B, Hulme BJ, Tomes JJ, Allen NR, Davis CN, Davey SD, Cookson AR, Phillips HC, Hegarty MJ, Swain MT, Brophy PM, Wonfor RE, Morphew RM. Evidence of Immune Modulators in the Secretome of the Equine Tapeworm Anoplocephala perfoliata. Pathogens 2021; 10:pathogens10070912. [PMID: 34358062 PMCID: PMC8308605 DOI: 10.3390/pathogens10070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Anoplocephala perfoliata is a neglected gastro-intestinal tapeworm, commonly infecting horses worldwide. Molecular investigation of A. perfoliata is hampered by a lack of tools to better understand the host-parasite interface. This interface is likely influenced by parasite derived immune modulators released in the secretome as free proteins or components of extracellular vesicles (EVs). Therefore, adult RNA was sequenced and de novo assembled to generate the first A. perfoliata transcriptome. In addition, excretory secretory products (ESP) from adult A. perfoliata were collected and EVs isolated using size exclusion chromatography, prior to proteomic analysis of the EVs, the EV surface and EV depleted ESP. Transcriptome analysis revealed 454 sequences homologous to known helminth immune modulators including two novel Sigma class GSTs, five α-HSP90s, and three α-enolases with isoforms of all three observed within the proteomic analysis of the secretome. Furthermore, secretome proteomics identified common helminth proteins across each sample with known EV markers, such as annexins and tetraspanins, observed in EV fractions. Importantly, 49 of the 454 putative immune modulators were identified across the secretome proteomics contained within and on the surface of EVs in addition to those identified in free ESP. This work provides the molecular tools for A. perfoliata to reveal key players in the host-parasite interaction within the horse host.
Collapse
Affiliation(s)
- Boontarikaan Wititkornkul
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand
| | - Benjamin J. Hulme
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - John J. Tomes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Nathan R. Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Chelsea N. Davis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Sarah D. Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Alan R. Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Helen C. Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Matthew J. Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Martin T. Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Peter M. Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Ruth E. Wonfor
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| | - Russell M. Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| |
Collapse
|
11
|
17-AAG-Induced Activation of the Autophagic Pathway in Leishmania Is Associated with Parasite Death. Microorganisms 2021; 9:microorganisms9051089. [PMID: 34069389 PMCID: PMC8158731 DOI: 10.3390/microorganisms9051089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is thought to be an excellent drug target against parasitic diseases. The leishmanicidal effect of an Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), was previously demonstrated in both in vitro and in vivo models of cutaneous leishmaniasis. Parasite death was shown to occur in association with severe ultrastructural alterations in Leishmania, suggestive of autophagic activation. We hypothesized that 17-AAG treatment results in the abnormal activation of the autophagic pathway, leading to parasite death. To elucidate this process, experiments were performed using transgenic parasites with GFP-ATG8-labelled autophagosomes. Mutant parasites treated with 17-AAG exhibited autophagosomes that did not entrap cargo, such as glycosomes, or fuse with lysosomes. ATG5-knockout (Δatg5) parasites, which are incapable of forming autophagosomes, demonstrated lower sensitivity to 17-AAG-induced cell death when compared to wild-type (WT) Leishmania, further supporting the role of autophagy in 17-AAG-induced cell death. In addition, Hsp90 inhibition resulted in greater accumulation of ubiquitylated proteins in both WT- and Δatg5-treated parasites compared to controls, in the absence of proteasome overload. In conjunction with previously described ultrastructural alterations, herein we present evidence that treatment with 17-AAG causes abnormal activation of the autophagic pathway, resulting in the formation of immature autophagosomes and, consequently, incidental parasite death.
Collapse
|
12
|
Cruz KP, Patricio BFC, Pires VC, Amorim MF, Pinho AGSF, Quadros HC, Dantas DAS, Chaves MHC, Formiga FR, Rocha HVA, Veras PST. Development and Characterization of PLGA Nanoparticles Containing 17-DMAG, an Hsp90 Inhibitor. Front Chem 2021; 9:644827. [PMID: 34055735 PMCID: PMC8161503 DOI: 10.3389/fchem.2021.644827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a spectrum of neglected tropical diseases and its cutaneous form (CL) is characterized by papillary or ulcerated skin lesions that negatively impact patients' quality of life. Current CL treatments suffer limitations, such as severe side effects and high cost, making the search for new therapeutic alternatives an imperative. In this context, heat shock protein 90 (Hsp90) could present a novel therapeutic target, as evidence suggests that Hsp90 inhibitors, such as 17-Dimethylaminoethylamino-17-Demethoxygeldanamycin (17-DMAG), may represent promising chemotherapeutic agents against CL. As innovative input for formulation development of 17-DMAG, nano-based drug delivery systems could provide controlled release, targeting properties, and reduced drug toxicity. In this work, a double emulsion method was used to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles containing 17-DMAG. The nanoparticle was developed using two distinct protocols: Protocol 1 (P1) and Protocol 2 (P2), which differed concerning the organic solvent (acetone or dichloromethane, respectively) and procedure used to form double-emulsions (Ultra-Turrax® homogenization or sonication, respectively). The nanoparticles produced by P2 were comparatively smaller (305.5 vs. 489.0 nm) and more homogeneous polydispersion index (PdI) (0.129 vs. 0.33) than the ones made by P1. Afterward, the P2 was optimized and the best composition consisted of 2 mg of 17-DMAG, 100 mg of PLGA, 5% of polyethylene glycol (PEG 8000), 1.5 mL of the internal aqueous phase, 1% of polyvinyl alcohol (PVA), and 4 mL of the organic phase. Optimized P2 nanoparticles had a particle size of 297.2 nm (288.6-304.1) and encapsulation efficacy of 19.35% (15.42-42.18) by the supernatant method and 31.60% (19.9-48.79) by the filter/column method. Release kinetics performed at 37°C indicated that ~16% of the encapsulated 17-DMAG was released about to 72 h. In a separate set of experiments, a cell uptake assay employing confocal fluorescence microscopy revealed the internalization by macrophages of P2-optimized rhodamine B labeled nanoparticles at 30 min, 1, 2, 4, 6, 24, 48, and 72 h. Collectively, our results indicate the superior performance of P2 concerning the parameters used to assess nanoparticle development. Therefore, these findings warrant further research to evaluate optimized 17-DMAG-loaded nanoparticles (NP2-17-DMAG) for toxicity and antileishmanial effects in vitro and in vivo.
Collapse
Affiliation(s)
- Kercia P. Cruz
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Beatriz F. C. Patricio
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinícius C. Pires
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marina F. Amorim
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Alan G. S. F. Pinho
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Helenita C. Quadros
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Diana A. S. Dantas
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marcelo H. C. Chaves
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fabio R. Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Brazil
| | - Helvécio V. A. Rocha
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patrícia S. T. Veras
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq), Salvador, Brazil
| |
Collapse
|
13
|
Role of Heat Shock Proteins in Immune Modulation in Malaria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:169-186. [PMID: 34569025 DOI: 10.1007/978-3-030-78397-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Malaria is one of the major parasitic killer diseases worldwide. Severe cases of malaria are mostly in children under the age of 5 years due to their naïve immune system and in pregnant women with weakened immune responses. Inflammatory immune responses against the parasite involve complement activation as well as the antibody and effector cell-mediated immune system. However, after an infection with Plasmodium falciparum (P. falciparum), the most dangerous malaria species, the host-derived immunity is often insufficient to completely inhibit the infection cycles of the parasite in red blood cells for yet unknown reasons. In the present chapter we aim to elucidate the role of the host's and the parasite's heat shock proteins (HSPs) in the development of a novel anti-malaria therapeutic approach.
Collapse
|
14
|
Wu WC, Liu YM, Liao YH, Hsu KC, Lien ST, Chen IC, Lai MJ, Li YH, Pan SL, Chen MC, Liou JP. Fluoropyrimidin-2,4-dihydroxy-5-isopropylbenzamides as antitumor agents against CRC and NSCLC cancer cells. Eur J Med Chem 2020; 203:112540. [PMID: 32683166 DOI: 10.1016/j.ejmech.2020.112540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022]
Abstract
A major cause of failure of therapy in patients with non-small cell lung cancer (NSCLC) is development of acquired drug resistance leading to tumor recurrence and disease progression. In addition to the development of new generations of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), different molecular targets may provide opportunities to improve the therapeutic outcomes. In this study, we utilized the core structure 5-fluorouracil (5-FU) or tegafur, a 5-FU prodrug combined through different linkers with resorcinol to generate a series of fluoropyrimidin-2,4-dihydroxy-5-isopropylbenzamides which inhibit potent Heat Shock Protein 90 (HSP90). These compounds were found to show significant antiproliferative activity in colorectal cancer (CRC) HCT116 and NSCLC A549, H460, and H1975 (EGFR L858R/T790 M double mutation) cells. Compound 12c, developed by molecular docking analysis and enzymatic assays exhibits promising inhibitory activity of HSP90. This compound, 12c shows the most potent HSP90 inhibitory activity with an IC50 value of 27.8 ± 4.4 nM, superior to that of reference compounds AUY-922 (Luminespib) and BIIB021 whose IC50 values are 43.0 ± 0.9 nM and 56.8 ± 4.0 nM respectively. This strong HSP90 inhibitory activity of 12c leads to rapid degradation of client proteins EGFR and Akt in NSCLC cells. In addition, 12c induces significant accumulation of a sub-G1 phase population in parallel with apoptosis by showing activated caspase-3, -8 and -9 and PARP induction. These results provide a new strategy for development of novel HSP90 inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Wei-Cheng Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Yi-Min Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu-Hsuan Liao
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kai-Cheng Hsu
- TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ssu-Ting Lien
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Chung Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan
| | - Yu-Hsuan Li
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Shiow-Lin Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chuan Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan; Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan.
| |
Collapse
|
15
|
Lucena ACR, Amorim JC, de Paula Lima CV, Batista M, Krieger MA, de Godoy LMF, Marchini FK. Quantitative phosphoproteome and proteome analyses emphasize the influence of phosphorylation events during the nutritional stress of Trypanosoma cruzi: the initial moments of in vitro metacyclogenesis. Cell Stress Chaperones 2019; 24:927-936. [PMID: 31368045 PMCID: PMC6717228 DOI: 10.1007/s12192-019-01018-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation is an important event in cell signaling that is modulated by kinases and phosphatases. In Trypanosoma cruzi, the etiological agent of Chagas disease, approximately 2% of the protein-coding genes encode for protein kinases. This parasite has a heteroxenic life cycle with four different development stages. In the midgut of invertebrate vector, epimastigotes differentiate into metacyclic trypomastigotes in a process known as metacyclogenesis. This process can be reproduced in vitro by submitting parasites to nutritional stress (NS). Aiming to contribute to the elucidation of mechanisms that trigger metacyclogenesis, we applied super-SILAC (super-stable isotope labeling by amino acids in cell culture) and LC-MS/MS to analyze different points during NS. This analysis resulted in the identification of 4205 protein groups and 3643 phosphopeptides with the location of 4846 phosphorylation sites. Several phosphosites were considered modulated along NS and are present in proteins associated with various functions, such as fatty acid synthesis and the regulation of protein expression, reinforcing the importance of phosphorylation and signaling events to the parasite. These modulated sites may be triggers of metacyclogenesis.
Collapse
Affiliation(s)
- Aline Castro Rodrigues Lucena
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Juliana Carolina Amorim
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Carla Vanessa de Paula Lima
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Michel Batista
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Marco Aurelio Krieger
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Lyris Martins Franco de Godoy
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Fabricio Klerynton Marchini
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
| |
Collapse
|
16
|
Drug Screening for Discovery of Broad-spectrum Agents for Soil-transmitted Nematodes. Sci Rep 2019; 9:12347. [PMID: 31451730 PMCID: PMC6710243 DOI: 10.1038/s41598-019-48720-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Soil-transmitted nematodes (STNs), namely hookworms, whipworms, and ascarids, are extremely common parasites, infecting 1-2 billion of the poorest people worldwide. Two benzimidazoles, albendazole and mebendazole, are currently used in STN mass drug administration, with many instances of low/reduced activity reported. New drugs against STNs are urgently needed. We tested various models for STN drug screening with the aim of identifying the most effective tactics for the discovery of potent, safe and broad-spectrum agents. We screened a 1280-compound library of approved drugs to completion against late larval/adult stages and egg/larval stages of both the human hookworm parasite Ancylostoma ceylanicum and the free-living nematode Caenorhabditis elegans, which is often used as a surrogate for STNs in screens. The quality of positives was further evaluated based on cheminformatics/data mining analyses and activity against evolutionarily distant Trichuris muris whipworm adults. From these data, two pairs of positives, sulconazole/econazole and pararosaniline/cetylpyridinium, predicted to target nematode CYP-450 and HSP-90 respectively, were prioritized for in vivo evaluation against A. ceylanicum infections in hamsters. One of these positives, pararosaniline, showed a significant impact on hookworm fecundity in vivo. Taken together, our results suggest that anthelmintic screening with A. ceylanicum larval stages is superior to C. elegans based on both reduced false negative rate and superior overall quality of actives. Our results also highlight two potentially important targets for the discovery of broad-spectrum human STN drugs.
Collapse
|
17
|
Petersen ALDOA, Campos TA, Dantas DADS, Rebouças JDS, da Silva JC, de Menezes JPB, Formiga FR, de Melo JV, Machado G, Veras PST. Encapsulation of the HSP-90 Chaperone Inhibitor 17-AAG in Stable Liposome Allow Increasing the Therapeutic Index as Assessed, in vitro, on Leishmania (L) amazonensis Amastigotes-Hosted in Mouse CBA Macrophages. Front Cell Infect Microbiol 2018; 8:303. [PMID: 30214897 PMCID: PMC6126448 DOI: 10.3389/fcimb.2018.00303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
The current long-term treatment for leishmaniasis causes severe side effects and resistance in some cases. An evaluation of the anti-leishmanial potential of an HSP90-inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), demonstrated its potent effect against Leishmania spp. in vitro and in vivo. We have previously shown that 17-AAG can kill L. (L) amazonensis promastigotes with an IC50 of 65 nM and intracellular amastigote at concentrations as low as 125 nM. As this compound presents low solubility and high toxicity in human clinical trials, we prepared an inclusion complex containing hydroxypropyl-β-cyclodextrin and 17-AAG (17-AAG:HPβCD) to improve its solubility. This complex was characterized by scanning electron microscopy, and X-ray diffraction. Liposomes-containing 17-AAG:HPβCD was prepared and evaluated for encapsulation efficiency (EE%), particle size, polydispersity index (PDI), pH, and zeta potential, before and after accelerated and long-term stability testing. An evaluation of leishmanicidal activity against promastigotes and intracellular amastigotes of L. (L) amazonensis was also performed. The characterization techniques utilized confirmed the formation of the inclusion complex, HPβCD:17-AAG, with a resulting 33-fold-enhancement in compound water solubility. Stability studies revealed that 17-AAG:HPβCD-loaded liposomes were smaller than 200 nm, with 99% EE. Stability testing detected no alterations in PDI that was 0.295, pH 7.63, and zeta potential +22.6, suggesting liposome stability, and suitability for evaluating leishmanicidal activity. Treatment of infected macrophages with 0.006 nM of 17-AAG:HPβCD or 17-AAG:HPβCD-loaded liposomes resulted in almost complete amastigote clearance inside macrophages after 48 h. This reduction is similar to the one observed in infected macrophages treated with 2 μM amphotericin B. Our results showed that nanotechnology and drug delivery systems could be used to increase the antileishmanial efficacy and potency of 17-AAG in vitro, while also resulting in reduced toxicity that indicates these formulations may represent a potential therapeutic strategy against leishmaniasis.
Collapse
Affiliation(s)
| | - Thiers A Campos
- Graduate Program in Biological Sciences, Center of Biological Sciences, Federal University of Pernambuco, Recife, Brazil.,Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | | | - Juliana de Souza Rebouças
- Laboratory of Parasite-Host Interaction and Epidemiology (LAIPHE), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil.,Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil
| | - Juliana Cruz da Silva
- Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | - Juliana P B de Menezes
- Laboratory of Parasite-Host Interaction and Epidemiology (LAIPHE), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil
| | - Fábio R Formiga
- Postgraduate Program in Applied Cellular and Molecular Biology, Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil.,Laboratory of Vector-Borne Infectious Diseases (LEITV), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil
| | - Janaina V de Melo
- Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | - Giovanna Machado
- Laboratory of Electron Microscopy and Microanalysis (LAMM), Center of Strategical Technologies (CETENE), Recife, Brazil
| | - Patrícia S T Veras
- Laboratory of Parasite-Host Interaction and Epidemiology (LAIPHE), Gonçalo Moniz Institute-FIOCRUZ, Salvador, Brazil.,National Institute of Technology in Tropical Diseases-National Council for Scientific and Technological Development, Brasilia, Brazil
| |
Collapse
|
18
|
Hoter A, El-Sabban ME, Naim HY. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2018; 19:E2560. [PMID: 30158430 PMCID: PMC6164434 DOI: 10.3390/ijms19092560] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The mammalian HSP90 family of proteins is a cluster of highly conserved molecules that are involved in myriad cellular processes. Their distribution in various cellular compartments underlines their essential roles in cellular homeostasis. HSP90 and its co-chaperones orchestrate crucial physiological processes such as cell survival, cell cycle control, hormone signaling, and apoptosis. Conversely, HSP90, and its secreted forms, contribute to the development and progress of serious pathologies, including cancer and neurodegenerative diseases. Therefore, targeting HSP90 is an attractive strategy for the treatment of neoplasms and other diseases. This manuscript will review the general structure, regulation and function of HSP90 family and their potential role in pathophysiology.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Marwan E El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| |
Collapse
|
19
|
Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella F, Colombo G. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. J Med Chem 2018; 62:60-87. [DOI: 10.1021/acs.jmedchem.8b00825] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini, 50, 20133 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
20
|
Quiliano M, Pabón A, Moles E, Bonilla-Ramirez L, Fabing I, Fong KY, Nieto-Aco DA, Wright DW, Pizarro JC, Vettorazzi A, López de Cerain A, Deharo E, Fernández-Busquets X, Garavito G, Aldana I, Galiano S. Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery. Eur J Med Chem 2018; 152:489-514. [PMID: 29754074 DOI: 10.1016/j.ejmech.2018.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70-73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70-73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC50s < 0.28 μM), and compounds 55, 56, 64, 70, 71, and 72 showed potent biological activity in chloroquine-sensitive and multidrug-resistant strains (IC50s < 0.7 μM for 3D7, D6, FCR-3 and C235). All of these compounds share appropriate drug-likeness profiles and adequate selectivity indexes (77 < SI < 184) as well as lack genotoxicity. In vivo efficacy tests in a mouse model showed compounds 66 and 72 to be promising candidates as they exhibited significant parasitemia reductions of 96.4% and 80.4%, respectively. Additional studies such as liver stage and sporogony inhibition, target exploration of heat shock protein 90 of P. falciparum, targeted delivery by immunoliposomes, and enantiomer characterization were performed and strongly reinforce the hypothesis of 1-aryl-3-substituted propanol derivatives as promising antimalarial compounds.
Collapse
Affiliation(s)
- Miguel Quiliano
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain
| | - Adriana Pabón
- Grupo Malaria, Universidad de Antioquía, Medellín, Colombia
| | - Ernest Moles
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | | | - Isabelle Fabing
- Laboratoire de Synthese et Physicochimie de Molécules d'Intéret Biologique SPCMIB-UMR5068, CNRS - Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Kim Y Fong
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Diego A Nieto-Aco
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA
| | - Juan C Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University USA; Vector-Borne Infectious Diseases Research Center, Tulane University USA
| | - Ariane Vettorazzi
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Pharmacology and Toxicology, Campus Universitario, 31008 Pamplona, Spain
| | - Adela López de Cerain
- Universidad de Navarra, Facultad de Farmacia y Nutrición, Department of Pharmacology and Toxicology, Campus Universitario, 31008 Pamplona, Spain
| | - Eric Deharo
- UMR 152 PHARMA-DEV, Université Toulouse, IRD, UPS, 31062, Toulouse, France
| | - Xavier Fernández-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, 08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Giovanny Garavito
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia (DFUNC), Grupo de investigación FaMeTra (Farmacología de la Medicina tradicional y popular), Carrera 30 45-03, Bogotá D.C., Colombia
| | - Ignacio Aldana
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain
| | - Silvia Galiano
- Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Campus Universitario, 31008 Pamplona, Spain; Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Química Orgánica y Farmacéutica, Campus Universitario, 31008 Pamplona, Spain.
| |
Collapse
|
21
|
Mohammadi-Ostad-Kalayeh S, Stahl F, Scheper T, Kock K, Herrmann C, Heleno Batista FA, Borges JC, Sasse F, Eichner S, Ongouta J, Zeilinger C, Kirschning A. Heat Shock Proteins Revisited: Using a Mutasynthetically Generated Reblastatin Library to Compare the Inhibition of Human and Leishmania Hsp90s. Chembiochem 2018; 19:562-574. [PMID: 29265716 DOI: 10.1002/cbic.201700616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/12/2023]
Abstract
Thirteen new reblastatin derivatives, with alkynyl, amino and fluoro substituents on the aromatic ring, were prepared by a chemo-biosynthetic approach using an AHBA(-) mutant strain of Streptomyces hygroscopicus, the geldanamycin producer. The inhibitory potencies of these mutaproducts and of an extended library of natural products and derivatives were probed with purified heat shock proteins (Hsps), obtained from Leishmania braziliensis (LbHsp90) as well as from human sources (HsHsp90). We determined the activities of potential inhibitors by means of a displacement assay in which fluorescence-labelled ATP competes for the ATP binding sites of Hsps in the presence of the inhibitor in question. The results were compared with those of cell-based assays and, in selected cases, of isothermal titration calorimetry (ITC) measurements. In essence, reblastatin derivatives are also able to bind effectively to the ATP-binding site of LbHsp90, and for selected derivatives, moderate differences in binding to LbHsp90 and HsHsp90 were encountered. This work demonstrates that parasitic heat shock proteins can be developed as potential pharmaceutical targets.
Collapse
Affiliation(s)
- Sona Mohammadi-Ostad-Kalayeh
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Frank Stahl
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany
| | - Klaus Kock
- Physical Chemistry I, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | | | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos, SP, 13560-970, Brazil
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Center of Infectious Research (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Simone Eichner
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Jekaterina Ongouta
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Carsten Zeilinger
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
22
|
Penkler DL, Atilgan C, Tastan Bishop Ö. Allosteric Modulation of Human Hsp90α Conformational Dynamics. J Chem Inf Model 2018; 58:383-404. [PMID: 29378140 DOI: 10.1021/acs.jcim.7b00630] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Central to Hsp90's biological function is its ability to interconvert between various conformational states. Drug targeting of Hsp90's regulatory mechanisms, including its modulation by cochaperone association, presents as an attractive therapeutic strategy for Hsp90 associated pathologies. In this study, we utilized homology modeling techniques to calculate full-length structures of human Hsp90α in closed and partially open conformations and used these structures as a basis for several molecular dynamics based analyses aimed at elucidating allosteric mechanisms and modulation sites in human Hsp90α. Atomistic simulations demonstrated that bound adenosine triphosphate (ATP) stabilizes the dimer by "tensing" each protomer, while adenosine diphosphate (ADP) and apo configurations "relax" the complex by increasing global flexibility, the former case resulting in a fully open "v-like" conformation. Dynamic residue network analysis revealed regions of the protein involved in intraprotein communication and identified several key communication hubs that correlate with known functional sites. Pairwise comparison of betweenness centrality, shortest path, and residue fluctuations revealed that a proportional relationship exists between the latter two measurables and an inverse relationship between these two and betweenness centrality. This analysis showed how protein flexibility, degree of compactness, and the distance cutoff used for network construction influence the correlations between these metrics. These findings are novel and suggest shortest path and betweenness centrality to be more relevant quantities to follow for detecting functional residues in proteins compared to residue fluctuations. Perturbation response scanning analysis identified several potential residue sites capable of modulating conformational change in favor of interstate conversion. For the ATP-bound open conformation, these sites were found to overlap with known Aha1 and client binding sites, demonstrating how naturally occurring forces associated with cofactor binding could allosterically modulate conformational dynamics.
Collapse
Affiliation(s)
- David L Penkler
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University , Grahamstown, 6140, South Africa
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University , Tuzla 34956, Istanbul, Turkey
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University , Grahamstown, 6140, South Africa
| |
Collapse
|
23
|
Sun H, Zhuo X, Zhao X, Yang Y, Chen X, Yao C, Du A. The heat shock protein 90 of Toxoplasma gondii is essential for invasion of host cells and tachyzoite growth. ACTA ACUST UNITED AC 2017. [PMID: 28627357 PMCID: PMC5479401 DOI: 10.1051/parasite/2017023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects almost all warm-blooded vertebrates. Heat shock proteins (HSP) regulate key signal transduction events in many organisms, and heat shock protein 90 (Hsp90) plays an important role in growth, development, and virulence in several parasitic protozoa. Here, we discovered increased transcription of the Hsp90 gene under conditions for bradyzoite differentiation, i.e. alkaline and heat shock conditions in vitro, suggesting that Hsp90 may be connected with bradyzoite development in T. gondii. A knockout of the TgHsp90 strain (ΔHsp90) and a complementation strain were constructed. The TgHsp90 knockout cells were found to be defective in host-cell invasion, were not able to proliferate in vitro in Vero cells, and did not show long-time survival in mice in vivo. These inabilities of the knockout parasites were restored upon complementation of TgHsp90. These data unequivocally show that TgHsp90 contributes to bradyzoite development, and to invasion and replication of T. gondii in host cells.
Collapse
Affiliation(s)
- Hongchao Sun
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xunhui Zhuo
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xianfeng Zhao
- Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen 518045, PR China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| | - Aifang Du
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
24
|
Abstract
The heat shock protein 90 (HSP90) chaperone machinery is a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells. As HSP90 has several hundred protein substrates (or 'clients'), it is involved in many cellular processes beyond protein folding, which include DNA repair, development, the immune response and neurodegenerative disease. A large number of co-chaperones interact with HSP90 and regulate the ATPase-associated conformational changes of the HSP90 dimer that occur during the processing of clients. Recent progress has allowed the interactions of clients with HSP90 and its co-chaperones to be defined. Owing to the importance of HSP90 in the regulation of many cellular proteins, it has become a promising drug target for the treatment of several diseases, which include cancer and diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
25
|
Gewirth DT. Paralog Specific Hsp90 Inhibitors - A Brief History and a Bright Future. Curr Top Med Chem 2017; 16:2779-91. [PMID: 27072700 DOI: 10.2174/1568026616666160413141154] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/30/2015] [Accepted: 01/17/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND The high sequence and structural homology among the hsp90 paralogs - Hsp90α, Hsp90β, Grp94, and Trap-1 - has made the development of paralog-specific inhibitors a challenging proposition. OBJECTIVE This review surveys the state of developments in structural analysis, compound screening, and structure-based design that have been brought to bear on this problem. RESULTS First generation compounds that selectively bind to Hsp90, Grp94, or Trap-1 have been identified. CONCLUSION With the proof of principle firmly established, the prospects for further progress are bright.
Collapse
Affiliation(s)
- Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
26
|
Faya N, Penkler DL, Tastan Bishop Ö. Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis. FEBS Open Bio 2015; 5:916-27. [PMID: 26793431 PMCID: PMC4688443 DOI: 10.1016/j.fob.2015.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 11/09/2015] [Indexed: 12/27/2022] Open
Abstract
Cytosolic Hsp90s are more conserved than those from mitochondrial and ER. Cell environment plays a role in the overall physicochemical properties of Hsp90s. Serine and tyrosine are favored phosphorylated residues of Hsp90s. Mitochondrial and ER Hsp90s have motifs unique to specific organisms.
The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets.
Collapse
|
27
|
Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301326. [PMID: 26167482 PMCID: PMC4488524 DOI: 10.1155/2015/301326] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis.
Collapse
|
28
|
Santos DM, Petersen ALOA, Celes FS, Borges VM, Veras PST, de Oliveira CI. Chemotherapeutic potential of 17-AAG against cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis. PLoS Negl Trop Dis 2014; 8:e3275. [PMID: 25340794 PMCID: PMC4207694 DOI: 10.1371/journal.pntd.0003275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Leishmaniasis remains a worldwide public health problem. The limited therapeutic options, drug toxicity and reports of resistance, reinforce the need for the development of new treatment options. Previously, we showed that 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a Heat Shock Protein 90 (HSP90)-specific inhibitor, reduces L. (L.) amazonensis infection in vitro. Herein, we expand the current knowledge on the leishmanicidal activity of 17-AAG against cutaneous leishmaniasis, employing an experimental model of infection with L. (V.) braziliensis. METHODOLOGY/PRINCIPAL FINDINGS Exposure of axenic L. (V.) braziliensis promastigotes to 17-AAG resulted in direct dose-dependent parasite killing. These results were extended to L. (V.) braziliensis-infected macrophages, an effect that was dissociated from the production of nitric oxide (NO), superoxide (O(-2)) or inflammatory mediators such as TNF-α, IL-6 and MCP-1. The leishmanicidal effect was then demonstrated in vivo, employing BALB/c mice infected with L. braziliensis. In this model, 17-AAG treatment resulted in smaller skin lesions and parasite counts were also significantly reduced. Lastly, 17-AAG showed a similar effect to amphotericin B regarding the ability to reduce parasite viability. CONCLUSION/SIGNIFICANCE 17-AAG effectively inhibited the growth of L. braziliensis, both in vitro and in vivo. Given the chronicity of L. (V.) braziliensis infection and its association with mucocutaneous leishmaniasis, 17-AAG can be envisaged as a new chemotherapeutic alternative for cutaneous Leishmaniasis.
Collapse
Affiliation(s)
- Diego M. Santos
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Fabiana S. Celes
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Valeria M. Borges
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Bahia, Brazil
| | - Patricia S. T. Veras
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Camila I. de Oliveira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
29
|
Hsp90 inhibitors as new leads to target parasitic diarrheal diseases. Antimicrob Agents Chemother 2014; 58:4138-44. [PMID: 24820073 DOI: 10.1128/aac.02576-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Entamoeba histolytica and Giardia lamblia are anaerobic protozoan parasites that cause amebiasis and giardiasis, two of the most common diarrheal diseases worldwide. Current therapy relies on metronidazole, but resistance has been reported and the drug has significant adverse effects. Therefore, it is critical to search for effective, better-tolerated antiamebic and antigiardial drugs. We synthesized several examples of a recently reported class of Hsp90 inhibitors and evaluated these compounds as potential leads for antiparasitic chemotherapy. Several of these inhibitors showed strong in vitro activity against both E. histolytica and G. lamblia trophozoites. The inhibitors were rescreened to discriminate between amebicidal and giardicidal activity and general cytotoxicity toward a mammalian cell line. No mammalian cytotoxicity was found at >100 μM for 48 h for any of the inhibitors. To understand the mechanism of action, a competitive binding assay was performed using the fluorescent ATP analogue bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid dipotassium salt) and recombinant E. histolytica Hsp90 preincubated in both the presence and absence of Hsp90 inhibitors. There was significant reduction in fluorescence compared to the level in the control, suggesting that E. histolytica Hsp90 is a selective target. The in vivo efficacy and safety of one Hsp90 inhibitor in a mouse model of amebic colitis and giardiasis was demonstrated by significant inhibition of parasite growth at a single oral dose of 5 mg/kg of body weight/day for 7 days and 10 mg/kg/day for 3 days. Considering the results for in vitro activity and in vivo efficacy, Hsp90 inhibitors represent a promising therapeutic option for amebiasis and giardiasis.
Collapse
|
30
|
Nageshan RK, Roy N, Ranade S, Tatu U. Trans-spliced heat shock protein 90 modulates encystation in Giardia lamblia. PLoS Negl Trop Dis 2014; 8:e2829. [PMID: 24786776 PMCID: PMC4006730 DOI: 10.1371/journal.pntd.0002829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/13/2014] [Indexed: 01/22/2023] Open
Abstract
Background Hsp90 from Giardia lamblia is expressed by splicing of two independently transcribed RNA molecules, coded by genes named HspN and HspC located 777 kb apart. The reasons underlying such unique trans-splicing based generation of GlHsp90 remain unclear. Principle Finding In this study using mass-spectrometry we identify the sequence of the unique, junctional peptide contributed by the 5′ UTR of HspC ORF. This peptide is critical for the catalytic function of Hsp90 as it harbours an essential “Arg” in its sequence. We also show that full length GlHsp90 possesses all the functional hall marks of a canonical Hsp90 including its ability to bind and hydrolyze ATP. Using qRT-PCR as well as western blotting approach we find the reconstructed Hsp90 to be induced in response to heat shock. On the contrary we find GlHsp90 to be down regulated during transition from proliferative trophozoites to environmentally resistant cysts. This down regulation of GlHsp90 appears to be mechanistically linked to the encystation process as we find pharmacological inhibition of GlHsp90 function to specifically induce encystation. Significance Our results implicate the trans-spliced GlHsp90 from Giardia lamblia to regulate an essential stage transition in the life cycle of this important human parasite. Giardia lamblia is one of the most common causes of diarrhoea across the globe. The disease can result in fatalities especially in small children. The parasite is transmitted by contaminated food through faeco-oral route due to unhygienic habits. The parasite exhibits two stages during its lifecycle; namely cysts and trophozoites. Due to their environmentally resistant hardy nature cysts are transmitted through contaminated food into the human body. Upon entry into the human body they convert into active trophozoites and cause pathogenesis of the disease. In the course of infection within the host, some of the trophozoites convert back into cysts and are released in the environment through the faeces. The mechanisms and signals that convert the parasite from trophozoites to cysts are not yet known. Our study, for the first time, implicates heat shock protein 90 of the parasite in the conversion of trophozoites into cysts in the intestine of the infected human body. Hsp90 is famous for its ability to sense environmental changes and provide cues for stage-switch in related parasites. In addition to providing a glimpse into molecular mechanisms of stage inter-conversion, our results suggest potential new ways of treating this important human infection.
Collapse
Affiliation(s)
| | - Nainita Roy
- The Department of Biochemistry, Indian Institute of Sciences, Bangalore, India
| | - Shatakshi Ranade
- The Department of Biochemistry, Indian Institute of Sciences, Bangalore, India
| | - Utpal Tatu
- The Department of Biochemistry, Indian Institute of Sciences, Bangalore, India
- * E-mail:
| |
Collapse
|
31
|
Wang T, Bisson WH, Mäser P, Scapozza L, Picard D. Differences in conformational dynamics between Plasmodium falciparum and human Hsp90 orthologues enable the structure-based discovery of pathogen-selective inhibitors. J Med Chem 2014; 57:2524-35. [PMID: 24580531 DOI: 10.1021/jm401801t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The high sequence conservation of druggable pockets of closely related proteins can make it challenging to develop selective inhibitors. We designed a new drug discovery approach that exploits both the static and dynamic differences of two orthologues. We applied it, as a proof of concept, to identify compounds that discriminate between the molecular chaperone Hsp90 of the protozoan pathogen Plasmodium falciparum (Pf) and that of its human host. We found that the ATP-binding pocket has a Pf-specific extension, whose sequence lining is identical in human Hsp90 but which differs by tertiary structure and dynamics. Using these insights for a structure-based drug screen, we discovered novel 7-azaindole compounds that exclusively bind the recombinant N-terminal domain of PfHsp90 but not of human Hsp90 nor of a PfHsp90 mutant with "human-like" dynamics. Moreover, these compounds preferentially inhibit the growth of yeast complemented by PfHsp90 and block the growth of Pf in culture.
Collapse
Affiliation(s)
- Tai Wang
- Department of Cell Biology, University of Geneva , and ‡Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences of the Universities of Geneva and Lausanne , 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Toxoplasma gondii Hsp90: potential roles in essential cellular processes of the parasite. Parasitology 2014; 141:1138-47. [PMID: 24560345 DOI: 10.1017/s0031182014000055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hsp90 is a widely distributed and highly conserved molecular chaperone that is ubiquitously expressed throughout nature, being one of the most abundant proteins within non-stressed cells. This chaperone is up-regulated following stressful events and has been involved in many cellular processes. In Toxoplasma gondii, Hsp90 could be linked with many essential processes of the parasite such as host cell invasion, replication and tachyzoite-bradyzoite interconversion. A Protein-Protein Interaction (PPI) network approach of TgHsp90 has allowed inferring how these processes may be altered. In addition, data mining of T. gondii phosphoproteome and acetylome has allowed the generation of the phosphorylation and acetylation map of TgHsp90. This review focuses on the potential roles of TgHsp90 in parasite biology and the analysis of experimental data in comparison with its counterparts in yeast and humans.
Collapse
|
33
|
Alix JH. Targeting HSP70 to Fight Cancer and Bad Bugs: One and the Same Battle? Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Seraphim TV, Alves MM, Silva IM, Gomes FER, Silva KP, Murta SMF, Barbosa LRS, Borges JC. Low resolution structural studies indicate that the activator of Hsp90 ATPase 1 (Aha1) of Leishmania braziliensis has an elongated shape which allows its interaction with both N- and M-domains of Hsp90. PLoS One 2013; 8:e66822. [PMID: 23826147 PMCID: PMC3691308 DOI: 10.1371/journal.pone.0066822] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022] Open
Abstract
The Hsp90 molecular chaperone is essential for protein homeostasis and in the maturation of proteins involved with cell-cycle control. The low ATPase activity of Hsp90 is critical to drive its functional cycle, which is dependent on the Hsp90 cochaperones. The Activator of Hsp90 ATPase-1 (Aha1) is a protein formed by two domains, N- and C-terminal, that stimulates the Hsp90 ATPase activity by several folds. Although the relevance of Aha1 for Hsp90 functions has been proved, as well as its involvement in the desensitization to inhibitors of the Hsp90, the knowledge on its overall structure and behavior in solution is limited. In this work we present the functional and structural characterization of Leishmania braziliensis Aha1 (LbAha1). This protozoan is the causative agent of cutaneous and mucocutaneous leishmaniasis, a neglected disease. The recombinant LbAha1 behaves as an elongated monomer and is organized into two folded domains interconnected by a flexible linker. Functional experiments showed that LbAha1 interacts with L. braziliensis Hsp90 (LbHsp90) with micromolar dissociation constant in a stoichiometry of 2 LbAha1 to 1 LbHsp90 dimer and stimulates 10-fold the LbHsp90 ATPase activity showing positive cooperativity. Furthermore, the LbHsp90::LbAha1 complex is directed by enthalphy and opposed by entropy, probably due to the spatial freedom restrictions imposed by the proteins' interactions. Small-angle X-ray scattering data allowed the reconstruction of low resolution models and rigid body simulations of LbAha1, indicating its mode of action on LbHsp90. Western blot experiments allowed Aha1 identification (as well as Hsp90) in three Leishmania species at two temperatures, suggesting that Aha1 is a cognate protein. All these data shed light on the LbAha1 mechanism of action, showing that it has structural dimensions and flexibility that allow interacting with both N-terminal and middle domains of the LbHsp90.
Collapse
Affiliation(s)
- Thiago V. Seraphim
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, SP, Brazil
| | - Marina M. Alves
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, SP, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Indjara M. Silva
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, SP, Brazil
| | - Francisco E. R. Gomes
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, SP, Brazil
| | - Kelly P. Silva
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, SP, Brazil
| | | | - Leandro R. S. Barbosa
- Departamento de Física Geral, Instituto de Física, Universidade de São Paulo - USP, São Paulo, SP, Brazil
| | - Júlio C. Borges
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, SP, Brazil
| |
Collapse
|
35
|
Prado-Alvarez M, Chollet B, Couraleau Y, Morga B, Arzul I. Heat Shock Protein 90 of Bonamia ostreae
: Characterization and Possible Correlation with Infection of the Flat Oyster, Ostrea edulis. J Eukaryot Microbiol 2013; 60:257-66. [DOI: 10.1111/jeu.12031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Maria Prado-Alvarez
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| | - Bruno Chollet
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| | - Yann Couraleau
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| | - Benjamin Morga
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| | - Isabelle Arzul
- IFREMER; Laboratoire de Génétique et Pathologie; Avenue de Mus de Loup 17390 La Tremblade France
| |
Collapse
|
36
|
Petersen ALDOA, Guedes CES, Versoza CL, Lima JGB, de Freitas LAR, Borges VM, Veras PST. 17-AAG kills intracellular Leishmania amazonensis while reducing inflammatory responses in infected macrophages. PLoS One 2012; 7:e49496. [PMID: 23152914 PMCID: PMC3496716 DOI: 10.1371/journal.pone.0049496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022] Open
Abstract
Background Leishmaniasis is a neglected endemic disease with a broad spectrum of clinical manifestations. Pentavalent antimonials have been the treatment of choice for the past 70 years and, due to the emergence of resistant cases, the efficacy of these drugs has come under scrutiny. Second-line drugs are less efficacious, cause a range of side effects and can be costly. The formulation of new generations of drugs, especially in developing countries, has become mandatory. Methodology/Principal Findings We investigated the anti-leishmanial effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an HSP90 inhibitor, in vitro. This inhibitor is currently in clinical trials for cancer treatment; however, its effects against intracellular Leishmania remain untested. Macrophages infected with L. amazonensis were treated with 17-AAG (25–500 nM) and parasite load was quantified using optical microscopy. Parasite load declined in 17-AAG-treated macrophages in a dose- and time-dependent manner. Intracellular parasite death became irreversible after 4 h of treatment with 17-AAG, and occurred independent of nitric oxide (NO) and superoxide (O2−) production. Additionally, intracellular parasite viability was severely reduced after 48 h of treatment. Interestingly, treatment with 17-AAG reduced pro-inflammatory mediator production, including TNF-α, IL-6 and MCP-1, yet IL-12 remained unaffected. Electron microscopy revealed morphological alterations, such as double-membrane vacuoles and myelin figures at 24 and 48 h after 17-AAG treatment. Conclusions/Significance The HSP90 inhibitor, 17-AAG, possesses high potency under low dosage and reduces both pro-inflammatory and oxidative molecule production. Therefore, further studies are warranted to investigate this inhibitor’s potential in the development of new generations of anti-leishmanials.
Collapse
Affiliation(s)
- Antonio Luis de Oliveira Almeida Petersen
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
- Departamento de Anatomia Patológica e Medicina Legal, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Carolina Leite Versoza
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
| | - José Geraldo Bomfim Lima
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
- Departamento de Anatomia Patológica e Medicina Legal, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Luiz Antônio Rodrigues de Freitas
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
- Departamento de Anatomia Patológica e Medicina Legal, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Valéria Matos Borges
- Laboratório Integrado de Microbiologia e Imunoregulação, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
| | | |
Collapse
|
37
|
Wang CR, Xu MJ, Fu JH, Nisbet AJ, Chang QC, Zhou DH, Huang SY, Zou FC, Zhu XQ. Characterization of microRNAs from Orientobilharzia turkestanicum, a neglected blood fluke of human and animal health significance. PLoS One 2012; 7:e47001. [PMID: 23071694 PMCID: PMC3468544 DOI: 10.1371/journal.pone.0047001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
The neglected blood flukes Orientobilharzia spp. belonging to the Platyhelminthes, infect animals in a number of countries of the world, and cause cercarial dermatitis in humans, as well as significant diseases and even death in economically-important animals. MicroRNAs (miRNAs) are now considered to be a key mechanism of gene regulation. Herein, we investigated the global miRNA expression profile of adult O. turkestanicum using next-generation sequencing technology and real-time quantitative PCR, to gain further information on the role of these molecules in host invasion and the parasitic lifestyle of this species. A total of 13.48 million high quality reads were obtained out of 13.78 million raw sequencing reads, with 828 expressed miRNAs identified. Phylogenetic analysis showed that the miRNAs of O. turkestanicum were still rapidly evolving and there was a “directed mutation” pattern compared with that of other species. Target mRNAs were successfully predicted to 518 miRNAs. These targets included energy metabolism, transcription initiation factors, signal transduction, growth factor receptors. miRNAs targeting egg proteins, including major egg antigen p40, and heat shock proteins were also found. Enrichment analysis indicated enrichment for mRNAs involved in catalytic, binding, transcription regulators and translation regulators. The present study represented the first large-scale characterization of O. turkestanicum miRNAs, which provides novel resources for better understanding the complex biology of this zoonotic parasite, which, in turn, has implications for the effective control of the disease it causes.
Collapse
Affiliation(s)
- Chun-Ren Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, People's Republic of China
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- * E-mail: (MJX); (XQZ)
| | - Jing-Hua Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| | - Alasdair J. Nisbet
- Parasitology Division, Moredun Research Institute, Pentlands Science Park, Midlothian, Scotland, United Kingdom
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, People's Republic of China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Feng-Cai Zou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, People's Republic of China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, People's Republic of China
- * E-mail: (MJX); (XQZ)
| |
Collapse
|
38
|
Abstract
Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.
Collapse
|