1
|
Wang YJ, Li SY, Zhao JY, Li K, Xu J, Xu XY, Wu WM, Yang R, Xiao Y, Ye MQ, Liu JP, Zhong YJ, Cao Y, Yi HY, Tian L. Clathrin-dependent endocytosis predominantly mediates protein absorption by fat body from the hemolymph in Bombyx mori. INSECT SCIENCE 2020; 27:675-686. [PMID: 30912872 DOI: 10.1111/1744-7917.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
During insect larval-pupal metamorphosis, proteins in the hemolymph are absorbed by the fat body for the maintenance of intracellular homeostasis; however, the type of proteins and how these proteins are internalized into the fat body are unclear. In Bombyx mori, the developmental profiles of total proteins in the hemolymph and fat body showed that hemolymph-decreased protein bands (55-100 kDa) were in accordance with those protein bands that increased in the fat body. Inhibition of clathrin-dependent endocytosis predominantly blocked the transportation of 55-100 kDa proteins from the hemolymph into the fat body, which was further verified by RNA interference treatment of Bmclathrin. Six hexamerins were shown to comprise ∼90% of the total identified proteins in both the hemolymph and fat body by mass spectrum (MS) analysis. In addition, hemolymph-specific proteins were mainly involved in material transportation, while fat body-specific proteins particularly participated in metabolism. In this paper, four hexamerins were found for the first time, and potential proteins absorbed by the fat body from the hemolymph through clathrin-dependent endocytosis were identified. This study sheds light on the protein absorption mechanism during insect metamorphosis.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shu-Yan Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jia-Ye Zhao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jing Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xian-Ying Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wen-Mei Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Rong Yang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Xiao
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ming-Qiang Ye
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ji-Ping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang-Jin Zhong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Cao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hui-Yu Yi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ling Tian
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding / Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
3
|
Lo RW, Li L, Leung R, Pluthero FG, Kahr WHA. NBEAL2 (Neurobeachin-Like 2) Is Required for Retention of Cargo Proteins by α-Granules During Their Production by Megakaryocytes. Arterioscler Thromb Vasc Biol 2019; 38:2435-2447. [PMID: 30354215 DOI: 10.1161/atvbaha.118.311270] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Human and mouse megakaryocytes lacking NBEAL2 (neurobeachin-like 2) produce platelets where α-granules lack protein cargo. This cargo is mostly megakaryocyte-synthesized, but some proteins, including FGN (fibrinogen), are endocytosed. In this study, we examined the trafficking of both types of cargo within primary megakaryocytes cultured from normal and NBEAL2-null mice, to determine the role of NBEAL2 in α-granule maturation. We also examined the interaction of NBEAL2 with the granule-associated protein P-selectin in human megakaryocytes and platelets. Approach and Results- Fluorescence microscopy was used to compare uptake of labeled FGN by normal and NBEAL2-null mouse megakaryocytes, which was similar in both. NBEAL2-null cells, however, showed decreased FGN retention, and studies with biotinylated protein showed rapid loss rather than increased degradation. Intracellular tracking via fluorescence microscopy revealed that in normal megakaryocytes, endocytosed FGN sequentially associated with compartments expressing RAB5 (Ras-related protein in brain 5), RAB7 (Ras-related protein in brain 7), and P-selectin, where it was retained. A similar initial pattern was observed in NBEAL2-null megakaryocytes, but then FGN passed from the P-selectin compartment to RAB11 (Ras-related protein in brain 11)-associated endosomes before release. Megakaryocyte-synthesized VWF (Von Willebrand factor) was observed to follow the same route out of NBEAL2-null cells. Immunofluorescence microscopy revealed intracellular colocalization of NBEAL2 with P-selectin in human megakaryocytes, proplatelets, and platelets. Native NBEAL2 and P-selectin were coimmunoprecipitated from platelets and megakaryocytes. Conclusions- NBEAL2 is not required for FGN uptake by megakaryocytes. NBEAL2 is required for the retention of both endocytosed and megakaryocyte-synthesized proteins by maturing α-granules, and possibly by platelet-borne granules. This function may involve interaction of NBEAL2 with P-selectin.
Collapse
Affiliation(s)
- Richard W Lo
- From the Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada (R.W.L., L.L., R.L., F.G.P., W.H.A.K.).,Department of Biochemistry, University of Toronto, ON, Canada (R.W.L., W.H.A.K.)
| | - Ling Li
- From the Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada (R.W.L., L.L., R.L., F.G.P., W.H.A.K.)
| | - Richard Leung
- From the Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada (R.W.L., L.L., R.L., F.G.P., W.H.A.K.)
| | - Fred G Pluthero
- From the Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada (R.W.L., L.L., R.L., F.G.P., W.H.A.K.)
| | - Walter H A Kahr
- From the Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada (R.W.L., L.L., R.L., F.G.P., W.H.A.K.).,Department of Biochemistry, University of Toronto, ON, Canada (R.W.L., W.H.A.K.).,Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, ON, Canada (W.H.A.K.)
| |
Collapse
|
4
|
|
5
|
Impacts of Cancer on Platelet Production, Activation and Education and Mechanisms of Cancer-Associated Thrombosis. Cancers (Basel) 2018; 10:cancers10110441. [PMID: 30441823 PMCID: PMC6266827 DOI: 10.3390/cancers10110441] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Platelets are small anucleate cells that are traditionally described as the major effectors of hemostasis and thrombosis. However, increasing evidence indicates that platelets play several roles in the progression of malignancies and in cancer-associated thrombosis. A notable cross-communication exists between platelets and cancer cells. On one hand, cancer can “educate” platelets, influencing their RNA profiles, the numbers of circulating platelets and their activation states. On the other hand, tumor-educated platelets contain a plethora of active biomolecules, including platelet-specific and circulating ingested biomolecules, that are released upon platelet activation and participate in the progression of malignancy. The numerous mechanisms by which the primary tumor induces the production, activation and aggregation of platelets (also known as tumor cell induced platelet aggregation, or TCIPA) are directly related to the pro-thrombotic state of cancer patients. Moreover, the activation of platelets is critical for tumor growth and successful metastatic outbreak. The development or use of existing drugs targeting the activation of platelets, adhesive proteins responsible for cancer cell-platelet interactions and platelet agonists should be used to reduce cancer-associated thrombosis and tumor progression.
Collapse
|
6
|
Abstract
Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types—dense granules, α-granules, and lysosomes—although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the
trans-Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble
N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.
Collapse
Affiliation(s)
- Anish Sharda
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
7
|
Finkielstein CV, Capelluto DGS. Disabled-2: A modular scaffold protein with multifaceted functions in signaling. Bioessays 2017; 38 Suppl 1:S45-55. [PMID: 27417122 DOI: 10.1002/bies.201670907] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022]
Abstract
Disabled-2 (Dab2) is a multimodular scaffold protein with signaling roles in the domains of cell growth, trafficking, differentiation, and homeostasis. Emerging evidences place Dab2 as a novel modulator of cell-cell interaction; however, its mode of action has remained largely elusive. In this review, we highlight the relevance of Dab2 function in cell signaling and development and provide the most recent and comprehensive analysis of Dab2's action as a mediator of homotypical and heterotypical interactions. Accordingly, Dab-2 controls the extent of platelet aggregation through various motifs within its N-terminus. Dab2 interacts with the cytosolic tail of the integrin receptor blocking inside-out signaling, whereas extracellular Dab2 competes with fibrinogen for integrin αIIb β3 receptor binding and, thus, modulates outside-in signaling. An additional level of regulation results from Dab2's association with cell surface lipids, an event that defines the extent of cell-cell interactions. As a multifaceted regulator, Dab2 acts as a mediator of endocytosis through its association with the [FY]xNPx[YF] motifs of internalized cell surface receptors, phosphoinositides, and clathrin. Other emerging roles of Dab2 include its participation in developmental mechanisms required for tissue formation and in modulation of immune responses. This review highlights the various novel mechanisms by which Dab2 mediates an array of signaling events with vast physiological consequences.
Collapse
Affiliation(s)
- Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Tsai HJ, Chien KY, Liao HR, Shih MS, Lin YC, Chang YW, Cheng JC, Tseng CP. Functional links between Disabled-2 Ser723 phosphorylation and thrombin signaling in human platelets. J Thromb Haemost 2017; 15:2029-2044. [PMID: 28876503 DOI: 10.1111/jth.13785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 01/17/2023]
Abstract
Essentials Disabled-2 (Dab2) phosphorylation status in thrombin signaling of human platelet was investigated. Ser723 was the major Dab2 phosphorylation site in human platelets stimulated by thrombin. Dab2 S723 phosphorylation (pS723) caused the dissociation of Dab2-CIN85 protein complex. Dab2-pS723 regulated ADP release and integrin αIIbβ3 activation in thrombin-treated platelets. SUMMARY Background Disabled-2 (Dab2) is a platelet protein that is functionally involved in thrombin signaling in mice. It is unknown whether or not Dab2 undergoes phosphorylation during human platelet activation. Objectives To investigate the phosphorylation status of Dab2 and its functional consequences in thrombin-stimulated human platelets. Methods Dab2 was immunoprecipitated from resting and thrombin-stimulated platelet lysates for differential isotopic labeling. After enrichment of the phosphopeptides, the phosphorylation sites were analyzed by mass spectrometry. The corresponding phospho-specific antibody was generated. The protein kinases responsible for and the functional significance of Dab2 phosphorylation were defined by the use of signaling pathway inhibitors/activators, protein kinase assays, and various molecular approaches. Results Dab2 was phosphorylated at Ser227, Ser394, Ser401 and Ser723 in thrombin-stimulated platelets, with Ser723 phosphorylation being the most significantly increased by thrombin. Dab2 was phosphorylated by protein kinase C at Ser723 in a Gαq -dependent manner. ADP released from the stimulated platelets further activated the Gβγ -dependent pathway to sustain Ser723 phosphorylation. The Cbl-interacting protein of 85 kDa (CIN85) bound to Dab2 at a motif adjacent to Ser723 in resting platelets. The consequence of Ser723 phosphorylation was the dissociation of CIN85 from the Dab2-CIN85 complex. These molecular events led to increases in fibrinogen binding and platelet aggregation in thrombin-stimulated platelets by regulating αIIb β3 activation and ADP release. Conclusions Dab2 Ser723 phosphorylation is a key molecular event in thrombin-stimulated inside-out signaling and platelet activation, contributing to a new function of Dab2 in thrombin signaling.
Collapse
Affiliation(s)
- H-J Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - K-Y Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Clinical Proteomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - H-R Liao
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - M-S Shih
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Y-C Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Y-W Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - J-C Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, China Medical University, Taichung, Taiwan
| | - C-P Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
9
|
Hung WS, Ling P, Cheng JC, Chang SS, Tseng CP. Disabled-2 is a negative immune regulator of lipopolysaccharide-stimulated Toll-like receptor 4 internalization and signaling. Sci Rep 2016; 6:35343. [PMID: 27748405 PMCID: PMC5066213 DOI: 10.1038/srep35343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptor 4 (TLR4) plays a pivotal role in the host response to lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria. Here, we elucidated whether the endocytic adaptor protein Disabled-2 (Dab2), which is abundantly expressed in macrophages, plays a role in LPS-stimulated TLR4 signaling and trafficking. Molecular analysis and transcriptome profiling of RAW264.7 macrophage-like cells expressing short-hairpin RNA of Dab2 revealed that Dab2 regulated the TLR4/TRIF pathway upon LPS stimulation. Knockdown of Dab2 augmented TRIF-dependent interferon regulatory factor 3 activation and the expression of subsets of inflammatory cytokines and interferon-inducible genes. Dab2 acted as a clathrin sponge and sequestered clathrin from TLR4 in the resting stage of macrophages. Upon LPS stimulation, clathrin was released from Dab2 to facilitate endocytosis of TLR4 for triggering the TRIF-mediated pathway. Dab2 functions as a negative immune regulator of TLR4 endocytosis and signaling, supporting a novel role for a Dab2-associated regulatory circuit in controlling the inflammatory response of macrophages to endotoxin.
Collapse
Affiliation(s)
- Wei-Shan Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China
| | - Pin Ling
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, Republic of China.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan, Republic of China
| | - Shy-Shin Chang
- Department of Family Medicine, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China.,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 333, Taiwan, Republic of China
| |
Collapse
|
10
|
Abstract
Multiple functions of platelets in various physiological and pathological conditions have prompted considerable attention on understanding how platelets are generated and activated. Of the adaptor proteins that are expressed in megakaryocytes and platelets, Disabled-2 (Dab2) has been demonstrated in the past decades as a key regulator of platelet signaling. Dab2 has two alternative splicing isoforms p82 and p59. However, the mode of Dab2’s action remains to be clearly defined. In this review, we highlight the current understanding of Dab2 expression and function in megakaryocytic differentiation, platelet activation and integrin signaling. Accordingly, Dab2 is upregulated when the human K562 cells, human CD34+ hematopoietic stem cells, and murine embryonic stem cells were undergone megakaryocytic differentiation. Appropriate level of Dab2 expression is essential for fate determination of mesodermal and megakaryocytic differentiation. Dab2 is also shown to regulate cell-cell and cell-fibrinogen adhesion, integrin αIIbβ3 activation, fibrinogen uptake, and intracellular signaling of the megakaryocytic cells. In human platelets, p82 is the sole Dab2 isoform present in the cytoplasm and α-granules. Dab2 is released from the α-granules and forms two pools of Dab2 on the outer surface of the platelet plasma membrane, one at the sulfatide-bound and the other at integrin αIIbβ3-bound forms. The balance between these two pools of Dab2 controls the extent of clotting reaction, platelet-fibrinogen interactions and outside-in signaling. In murine platelets, p59 is the only Dab2 isoform and is required for platelet aggregation, fibrinogen uptake, RhoA-ROCK activation, adenosine diphosphate release and integrin αIIbβ3 activation stimulated by low concentration of thrombin. As a result, the bleeding time is prolonged and thrombus formation is impaired for the megakaryocyte lineage-restricted Dab2 deficient mouse. Although discrepancies of Dab2 function and isoform expression are noted between human and murine platelets, the studies up-to-date define Dab2 playing a pivotal role in integrin signaling and platelet activation. With the new tools such as CRISPR and TALEN in the generation of genetically modified animals, the progress in gaining new insights into the functions of Dab2 in megakaryocyte and platelet biology is expected to accelerate.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, Collage of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China ; Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, Collage of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China ; Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China ; Graduate Institute of Biomedical Science, Collage of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, Republic of China ; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan, Republic of China
| |
Collapse
|
11
|
Bury L, Falcinelli E, Chiasserini D, Springer TA, Italiano JE, Gresele P. Cytoskeletal perturbation leads to platelet dysfunction and thrombocytopenia in variant forms of Glanzmann thrombasthenia. Haematologica 2015; 101:46-56. [PMID: 26452979 DOI: 10.3324/haematol.2015.130849] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022] Open
Abstract
Several patients have been reported to have variant dominant forms of Glanzmann thrombasthenia, associated with macrothrombocytopenia and caused by gain-of-function mutations of ITGB3 or ITGA2B leading to reduced surface expression and constitutive activation of integrin αIIbβ3. The mechanisms leading to a bleeding phenotype of these patients have never been addressed. The aim of this study was to unravel the mechanism by which ITGB3 mutations causing activation of αIIbβ3 lead to platelet dysfunction and macrothrombocytopenia. Using platelets from two patients carrying the β3 del647-686 mutation and Chinese hamster ovary cells expressing different αIIbβ3-activating mutations, we showed that reduced surface expression of αIIbβ3 is due to receptor internalization. Moreover, we demonstrated that permanent triggering of αIIbβ3-mediated outside-in signaling causes an impairment of cytoskeletal reorganization arresting actin turnover at the stage of polymerization. The induction of actin polymerization by jasplakinolide, a natural toxin that promotes actin nucleation and prevents depolymerization of stress fibers, in control platelets produced an impairment of platelet function similar to that of patients with variant forms of dominant Glanzmann thrombasthenia. del647-686β3-transduced murine megakaryocytes generated proplatelets with a reduced number of large tips and asymmetric barbell-proplatelets, suggesting that impaired cytoskeletal rearrangement is the cause of macrothrombocytopenia. These data show that impaired cytoskeletal remodeling caused by a constitutively activated αIIbβ3 is the main effector of platelet dysfunction and macrothrombocytopenia, and thus of bleeding, in variant forms of dominant Glanzmann thrombasthenia.
Collapse
Affiliation(s)
- Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Davide Chiasserini
- Department of Medicine, Section of Neurology, University of Perugia, Italy
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA, USA
| | - Joseph E Italiano
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| |
Collapse
|
12
|
Tsai HJ, Huang CL, Chang YW, Huang DY, Lin CC, Cooper JA, Cheng JC, Tseng CP. Disabled-2 is required for efficient hemostasis and platelet activation by thrombin in mice. Arterioscler Thromb Vasc Biol 2014; 34:2404-12. [PMID: 25212232 DOI: 10.1161/atvbaha.114.302602] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The essential role of platelet activation in hemostasis and thrombotic diseases focuses attention on unveiling the underlying intracellular signals of platelet activation. Disabled-2 (Dab2) has been implicated in platelet aggregation and in the control of clotting responses. However, there is not yet any in vivo study to provide direct evidence for the role of Dab2 in hemostasis and platelet activation. APPROACH AND RESULTS Megakaryocyte lineage-restricted Dab2 knockout (Dab2(-/-)) mice were generated to delineate in vivo functions of Dab2 in platelets. Dab2(-/-) mice appeared normal in size with prolonged bleeding time and impaired thrombus formation. Although normal in platelet production and granule biogenesis, Dab2(-/-) platelets elicited a selective defect in platelet aggregation and spreading on fibrinogen in response to low concentrations of thrombin, but not other soluble agonists. Investigation of the role of Dab2 in thrombin signaling revealed that Dab2 has no effect on the expression of thrombin receptors and the outside-in signaling. Dab2(-/-) platelets stimulated by low concentrations of thrombin were normal in Gαq-mediated calcium mobilization and protein kinase C activation, but were defective in Gα₁₂/₁₃-mediated RhoA-ROCKII activation. The attenuated Gα₁₂/₁₃ signaling led to impaired ADP release, Akt-mammalian target of rapamycin and integrin αIIbβ3 activation, fibrinogen binding, and clot retraction. The defective responses of Dab2(-/-) platelets to low concentrations of thrombin stimulation may contribute to the impaired hemostasis and thrombosis of Dab2(-/-) mice. CONCLUSIONS This study sheds new insight in platelet biology and represents the first report demonstrating that Dab2 is a key regulator of hemostasis and thrombosis by functional interplay with Gα₁₂/₁₃-mediated thrombin signaling.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- From the Graduate Institute of Biomedical Sciences (H.-J.T., Y.-W.C., C.-P.T.), and Department of Medical Biotechnology and Laboratory Science (C.-L.H., D.-Y.H., C.-C.L., C.-P.T.), College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.A.C.); Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (J.-C.C.); Molecular Medicine Research Center, Chang Gung University (C.-P.T.) and Department of Family Medicine (C.-P.T.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Ling Huang
- From the Graduate Institute of Biomedical Sciences (H.-J.T., Y.-W.C., C.-P.T.), and Department of Medical Biotechnology and Laboratory Science (C.-L.H., D.-Y.H., C.-C.L., C.-P.T.), College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.A.C.); Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (J.-C.C.); Molecular Medicine Research Center, Chang Gung University (C.-P.T.) and Department of Family Medicine (C.-P.T.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yao-Wen Chang
- From the Graduate Institute of Biomedical Sciences (H.-J.T., Y.-W.C., C.-P.T.), and Department of Medical Biotechnology and Laboratory Science (C.-L.H., D.-Y.H., C.-C.L., C.-P.T.), College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.A.C.); Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (J.-C.C.); Molecular Medicine Research Center, Chang Gung University (C.-P.T.) and Department of Family Medicine (C.-P.T.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ding-Yuan Huang
- From the Graduate Institute of Biomedical Sciences (H.-J.T., Y.-W.C., C.-P.T.), and Department of Medical Biotechnology and Laboratory Science (C.-L.H., D.-Y.H., C.-C.L., C.-P.T.), College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.A.C.); Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (J.-C.C.); Molecular Medicine Research Center, Chang Gung University (C.-P.T.) and Department of Family Medicine (C.-P.T.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Ching Lin
- From the Graduate Institute of Biomedical Sciences (H.-J.T., Y.-W.C., C.-P.T.), and Department of Medical Biotechnology and Laboratory Science (C.-L.H., D.-Y.H., C.-C.L., C.-P.T.), College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.A.C.); Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (J.-C.C.); Molecular Medicine Research Center, Chang Gung University (C.-P.T.) and Department of Family Medicine (C.-P.T.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jonathan A Cooper
- From the Graduate Institute of Biomedical Sciences (H.-J.T., Y.-W.C., C.-P.T.), and Department of Medical Biotechnology and Laboratory Science (C.-L.H., D.-Y.H., C.-C.L., C.-P.T.), College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.A.C.); Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (J.-C.C.); Molecular Medicine Research Center, Chang Gung University (C.-P.T.) and Department of Family Medicine (C.-P.T.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ju-Chien Cheng
- From the Graduate Institute of Biomedical Sciences (H.-J.T., Y.-W.C., C.-P.T.), and Department of Medical Biotechnology and Laboratory Science (C.-L.H., D.-Y.H., C.-C.L., C.-P.T.), College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.A.C.); Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (J.-C.C.); Molecular Medicine Research Center, Chang Gung University (C.-P.T.) and Department of Family Medicine (C.-P.T.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Ping Tseng
- From the Graduate Institute of Biomedical Sciences (H.-J.T., Y.-W.C., C.-P.T.), and Department of Medical Biotechnology and Laboratory Science (C.-L.H., D.-Y.H., C.-C.L., C.-P.T.), College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.A.C.); Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (J.-C.C.); Molecular Medicine Research Center, Chang Gung University (C.-P.T.) and Department of Family Medicine (C.-P.T.), Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Chu HC, Tseng WL, Lee HY, Cheng JC, Chang SS, Yung BYM, Tseng CP. Distinct effects of Disabled-2 on transferrin uptake in different cell types and culture conditions. Cell Biol Int 2014; 38:1252-9. [PMID: 24889971 DOI: 10.1002/cbin.10316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/06/2014] [Indexed: 11/10/2022]
Abstract
Iron uptake by the transferrin (Tf)-transferrin receptor (TfR) complex is critical for erythroid differentiation. The mechanisms of TfR trafficking have been examined, but the adaptor proteins involved in this process are not fully elucidated. We have investigated the role of the adaptor protein, Disabled-2 (Dab2), in erythroid differentiation and Tf uptake in the cells of hematopoietic lineage. Dab2 was upregulated in a time-dependent manner during erythroid differentiation of mouse embryonic stem cells and human K562 erythroleukemic cells. Attenuating Dab2 expression in K562 cells diminished TfR internalization and increased surface levels of TfR concomitantly with a decrease in Tf uptake and erythroid differentiation. Dab2 regulated Tf uptake of the suspended, but not adherent, cultures of K562 cells. In contrast, Dab2 is not involved in TfR trafficking in the HeLa cells with epithelial origin. These differential effects are Dab2-specific because attenuating the expression of adaptor protein 2 μ subunit inhibited the uptake of Tf regardless of culture condition. We offer novel insight of Dab2 function in iron uptake and TfR internalization for the suspended culture of hematopoietic lineage cells.
Collapse
Affiliation(s)
- Hui-Chun Chu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 333, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Chu HC, Lee HY, Huang YS, Tseng WL, Yen CJ, Cheng JC, Tseng CP. Erythroid differentiation is augmented in Reelin-deficient K562 cells and homozygous reeler mice. FEBS Lett 2013; 588:58-64. [PMID: 24239537 DOI: 10.1016/j.febslet.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
Abstract
Reelin is an extracellular glycoprotein that is highly conserved in mammals. In addition to its expression in the nervous system, Reelin is present in erythroid cells but its function there is unknown. We report in this study that Reelin is up-regulated during erythroid differentiation of human erythroleukemic K562 cells and is expressed in the erythroid progenitors of murine bone marrow. Reelin deficiency promotes erythroid differentiation of K562 cells and augments erythroid production in murine bone marrow. In accordance with these findings, Reelin deficiency attenuates AKT phosphorylation of the Ter119(+)CD71(+) erythroid progenitors and alters the cell number and frequency of the progenitors at different erythroid differentiation stages. A regulatory role of Reelin in erythroid differentiation is thus defined.
Collapse
Affiliation(s)
- Hui-Chun Chu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Hsing-Ying Lee
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Yen-Shu Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Wei-Lien Tseng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ching-Ju Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC
| | - Ju-Chien Cheng
- Department of Medical Laboratory Sciences and Biotechnology, China Medical University, Taichung 404, Taiwan, ROC.
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan, ROC.
| |
Collapse
|
15
|
XIE XUEMEI, ZHANG ZIYIN, YANG LIANHE, YANG DALEI, TANG NA, ZHAO HUANYU, XU HONGTAO, LI QINGCHANG, WANG ENHUA. Aberrant hypermethylation and reduced expression of disabled-2 promote the development of lung cancers. Int J Oncol 2013; 43:1636-42. [DOI: 10.3892/ijo.2013.2084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/09/2013] [Indexed: 11/06/2022] Open
|