1
|
Révész C, Wasik AA, Godó M, Tod P, Lehtonen S, Szénási G, Hamar P. Cold Saline Perfusion before Ischemia-Reperfusion Is Harmful to the Kidney and Is Associated with the Loss of Ezrin, a Cytoskeletal Protein, in Rats. Biomedicines 2021; 9:biomedicines9010030. [PMID: 33401597 PMCID: PMC7824567 DOI: 10.3390/biomedicines9010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Organ protection for transplantation is perfusion with ice-cold preservation solutions, although saline is also used in animal experiments and living donor transplantations. However, ice-cold perfusion can contribute to initial graft injury. Our aim was to test if cytoskeletal damage of parenchymal cells is caused by saline itself or by the ice-cold solution. Methods: F344 rat kidneys were flushed with cold (4 °C) saline, ischemic and sham kidneys were not perfused. In a separate set, F344 kidneys were flushed with saline or preservation solution at 4 or 15 °C. Ischemia time was 30 min. Results: Renal injury was significantly more severe following cold ischemia (CI) than after ischemia-reperfusion without flushing (ischemia/reperfusion (I/R)). Functional and morphologic damage was accompanied by severe loss of ezrin from glomerular and tubular epithelial cells after CI. Moreover, saline caused serious injury independently from its temperature, while the perfusion solution was more beneficial, especially at 4 °C. Conclusions: Flushing the kidney with ice-cold saline can cause more severe injury than ischemia-reperfusion at body temperature even during a short (30 min) ischemia. Saline perfusion can prolong recovery from ischemia in kidney transplantation, which can be prevented by using preservation solutions.
Collapse
Affiliation(s)
- Csaba Révész
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Anita A. Wasik
- Department of Pathology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.A.W.); (S.L.)
| | - Mária Godó
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Pál Tod
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Sanna Lehtonen
- Department of Pathology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.A.W.); (S.L.)
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Gábor Szénási
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
| | - Péter Hamar
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, 1143 Budapest, Hungary; (C.R.); (M.G.); (P.T.); (G.S.)
- Correspondence: ; Tel.: +36-20-825-9751; Fax: +36-1-210-0100
| |
Collapse
|
2
|
Stoddart LA, Vernall AJ, Bouzo-Lorenzo M, Bosma R, Kooistra AJ, de Graaf C, Vischer HF, Leurs R, Briddon SJ, Kellam B, Hill SJ. Development of novel fluorescent histamine H 1-receptor antagonists to study ligand-binding kinetics in living cells. Sci Rep 2018; 8:1572. [PMID: 29371669 PMCID: PMC5785503 DOI: 10.1038/s41598-018-19714-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023] Open
Abstract
The histamine H1-receptor (H1R) is an important mediator of allergy and inflammation. H1R antagonists have particular clinical utility in allergic rhinitis and urticaria. Here we have developed six novel fluorescent probes for this receptor that are very effective for high resolution confocal imaging, alongside bioluminescence resonance energy transfer approaches to monitor H1R ligand binding kinetics in living cells. The latter technology exploits the opportunities provided by the recently described bright bioluminescent protein NanoLuc when it is fused to the N-terminus of a receptor. Two different pharmacophores (mepyramine or the fragment VUF13816) were used to generate fluorescent H1R antagonists conjugated via peptide linkers to the fluorophore BODIPY630/650. Kinetic properties of the probes showed wide variation, with the VUF13816 analogues having much longer H1R residence times relative to their mepyramine-based counterparts. The kinetics of these fluorescent ligands could also be monitored in membrane preparations providing new opportunities for future drug discovery applications.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Andrea J Vernall
- School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Monica Bouzo-Lorenzo
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Reggie Bosma
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Albert J Kooistra
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Chris de Graaf
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Henry F Vischer
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Stephen J Briddon
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Barrie Kellam
- School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| | - Stephen J Hill
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
3
|
Arruda MA, Stoddart LA, Gherbi K, Briddon SJ, Kellam B, Hill SJ. A Non-imaging High Throughput Approach to Chemical Library Screening at the Unmodified Adenosine-A 3 Receptor in Living Cells. Front Pharmacol 2017; 8:908. [PMID: 29321740 PMCID: PMC5733478 DOI: 10.3389/fphar.2017.00908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022] Open
Abstract
Recent advances in fluorescent ligand technology have enabled the study of G protein-coupled receptors in their native environment without the need for genetic modification such as addition of N-terminal fluorescent or bioluminescent tags. Here, we have used a non-imaging plate reader (PHERAstar FS) to monitor the binding of fluorescent ligands to the human adenosine-A3 receptor (A3AR; CA200645 and AV039), stably expressed in CHO-K1 cells. To verify that this method was suitable for the study of other GPCRs, assays at the human adenosine-A1 receptor, and β1 and β2 adrenoceptors (β1AR and β2AR; BODIPY-TMR-CGP-12177) were also carried out. Affinity values determined for the binding of the fluorescent ligands CA200645 and AV039 to A3AR for a range of classical adenosine receptor antagonists were consistent with A3AR pharmacology and correlated well (R2 = 0.94) with equivalent data obtained using a confocal imaging plate reader (ImageXpress Ultra). The binding of BODIPY-TMR-CGP-12177 to the β1AR was potently inhibited by low concentrations of the β1-selective antagonist CGP 20712A (pKi 9.68) but not by the β2-selective antagonist ICI 118551(pKi 7.40). Furthermore, in experiments conducted in CHO K1 cells expressing the β2AR this affinity order was reversed with ICI 118551 showing the highest affinity (pKi 8.73) and CGP20712A (pKi 5.68) the lowest affinity. To determine whether the faster data acquisition of the non-imaging plate reader (~3 min per 96-well plate) was suitable for high throughput screening (HTS), we screened the LOPAC library for inhibitors of the binding of CA200645 to the A3AR. From the initial 1,263 compounds evaluated, 67 hits (defined as those that inhibited the total binding of 25 nM CA200645 by ≥40%) were identified. All compounds within the library that had medium to high affinity for the A3AR (pKi ≥6) were successfully identified. We found three novel compounds in the library that displayed unexpected sub-micromolar affinity for the A3AR. These were K114 (pKi 6.43), retinoic acid p-hydroxyanilide (pKi 6.13) and SU 6556 (pKi 6.17). Molecular docking of these latter three LOPAC library members provided a plausible set of binding poses within the vicinity of the established orthosteric A3AR binding pocket. A plate reader based library screening using an untagged receptor is therefore possible using fluorescent ligand opening the possibility of its use in compound screening at natively expressed receptors.
Collapse
Affiliation(s)
- Maria Augusta Arruda
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
- Vice-Diretoria de Ensino, Pesquisa e Inovacao, Farmanguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Leigh A. Stoddart
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
| | - Karolina Gherbi
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
| | - Stephen J. Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
| | - Barrie Kellam
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom
| |
Collapse
|
4
|
Guo J, Khatri A, Maeda A, Potts JT, Jüppner H, Gardella TJ. Prolonged Pharmacokinetic and Pharmacodynamic Actions of a Pegylated Parathyroid Hormone (1-34) Peptide Fragment. J Bone Miner Res 2017; 32:86-98. [PMID: 27428040 PMCID: PMC5199614 DOI: 10.1002/jbmr.2917] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 11/05/2022]
Abstract
Polyethylene glycol (PEG) addition can prolong the pharmacokinetic and pharmacodynamic actions of a bioactive peptide in vivo, in part by impeding rates of glomerular filtration. For parathyroid hormone (PTH) peptides, pegylation could help in exploring the actions of the hormone in the kidney; e.g., in dissecting the relative roles that filtered versus blood-borne PTH play in regulating phosphate transport. It could also lead to potential alternate forms of treatment for hypoparathyroidism. We thus synthesized the fluorescent pegylated PTH derivative [Lys13 (tetramethylrhodamine {TMR}), Cys35 (PEG-20,000 Da)]PTH(1-35) (PEG-PTHTMR ) and its non-pegylated counterpart [Lys13 (TMR), Cys35 ]PTH(1-35) (PTHTMR ) and assessed their properties in cells and in mice. In PTHR1-expressing HEK-293 cells, PEG-PTHTMR and PTHTMR exhibited similar potencies for inducing cAMP signaling, whereas when injected into mice, the pegylated analog persisted much longer in the circulation (>24 hours versus ∼ 1 hour) and induced markedly more prolonged calcemic and phosphaturic responses than did the non-pegylated control. Fluorescence microscopy analysis of kidney sections obtained from the injected mice revealed much less PEG-PTHTMR than PTHTMR on the luminal brush-border surfaces of renal proximal tubule cells (PTCs), on which PTH regulates phosphate transporter function, whereas immunostained phosphorylated PKA substrate, a marker of cAMP signaling, was increased to similar extents for the two ligands and for each, was localized to the basolateral portion of the PTCs. Pegylation of a bioactive PTH peptide thus led to prolonged pharmacokinetic/pharmacodynamic properties in vivo, as well as to new in vivo data that support a prominent role for PTH action at basolateral surfaces of renal proximal tubule cells. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jun Guo
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Akira Maeda
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - John T Potts
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Abstract
PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in the maintenance of calcium and phosphate homeostasis as well as the development and maintenance of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback on PTH secretion. The major function of PTH and major physiologic regulator is circulating ionized calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium within a tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin D has a stimulatory effect on both calcium and phosphate homeostasis, playing a key role in providing adequate mineral for normal bone formation. Both hormones act in concert with the more recently discovered FGF23 and klotho, hormones involved predominantly in phosphate metabolism, which also participate in this closely knit feedback circuit. Of great interest are recent studies demonstrating effects of both PTH and vitamin D on the cardiovascular system. Hyperparathyroidism and vitamin D deficiency have been implicated in a variety of cardiovascular disorders including hypertension, atherosclerosis, vascular calcification, and kidney failure. Both hormones have direct effects on the endothelium, heart, and other vascular structures. How these effects of PTH and vitamin D interface with the regulation of bone formation are the subject of intense investigation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca D. Murray
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Eleanor Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Stoddart LA, Kilpatrick LE, Briddon SJ, Hill SJ. Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. Neuropharmacology 2015; 98:48-57. [PMID: 25979488 DOI: 10.1016/j.neuropharm.2015.04.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors control a wide range of physiological processes and are the target for many clinically used drugs. Understanding the way in which receptors bind agonists and antagonists, their organisation in the membrane and their regulation after agonist binding are important properties which are key to developing new drugs. One way to achieve this knowledge is through the use of fluorescent ligands, which have been used to study the expression and function of receptors in endogenously expressing systems. Fluorescent ligands with appropriate imaging properties can be used in conjunction with confocal microscopy to investigate the regulation of receptors after activation. Alternatively, through the use of single molecule microscopy, they can probe the spatial organisation of receptors within the membrane. This review focuses on the techniques in which fluorescent ligands have been used and the novel aspects of G protein-coupled receptor pharmacology which have been uncovered. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Laura E Kilpatrick
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J Hill
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Abstract
Phosphate is essential for growth and maintenance of the skeleton and for generating high-energy phosphate compounds. Evolutionary adaptation to high dietary phosphorous in humans and other terrestrial vertebrates involves regulated mechanisms assuring the efficient renal elimination of excess phosphate. These mechanisms prominently include PTH, FGF23, and Vitamin D, which directly and indirectly regulate phosphate transport. Disordered phosphate homeostasis is associated with pathologies ranging from kidney stones to kidney failure. Chronic kidney disease results in hyperphosphatemia, an elevated calcium×phosphate product with considerable morbidity and mortality, mostly associated with adverse cardiovascular events. This chapter highlights recent findings and insights regarding the hormonal regulation of renal phosphate transport along with imbalances of phosphate balance due to acquired or inherited diseases states.
Collapse
|
8
|
Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:15-33. [PMID: 24055822 PMCID: PMC3926105 DOI: 10.1016/j.bbamem.2013.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
G protein coupled receptors are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remain unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes that can be difficult to extract from X-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of G protein coupled receptors and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in G protein coupled receptors. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Rajashri Sridharan
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Jeffrey Zuber
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth Mathew
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, P.O. Box 777, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|