1
|
Bedi O, Sapra V, Kumar M, Krishan P. Newer mitochondrial dynamics and their role of calcium signalling in liver regeneration. Mitochondrion 2024; 79:101969. [PMID: 39305943 DOI: 10.1016/j.mito.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 11/18/2024]
Abstract
Liver regeneration is a crucial process involved in cellular proliferation, differentiation, and tissue repair. Calcium signaling impact key pathways like hepatocyte growth factor-Met-tyrosine kinase (HGF-Met) transduction pathway, the epidermal growth factor receptor (EGFR) signaling and Ca-mediated nuclear SKHep1 cell proliferation pathway. Intracellular hepatocyte calcium stores are considered as base for the induction of ca-mediated regeneration process. Calcium signaling interplays with HGF, TGF-β, and NF-κB signaling, influence stem cell behavior and triggers MAPK cascade. The mitochondria calcium is impacting on liver rejuvenation by regulating apoptosis and cell division. In conclusion, it is stated that calcium-signaling holds promise for therapeutic liver interventions.
Collapse
Affiliation(s)
- Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Vaibhav Sapra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
2
|
Horkan HR, Popgeorgiev N, Vervoort M, Gazave E, Krasovec G. Evolution of Apoptotic Signaling Pathways Within Lophotrochozoans. Genome Biol Evol 2024; 16:evae204. [PMID: 39318156 PMCID: PMC11463336 DOI: 10.1093/gbe/evae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Apoptosis is the main form of regulated cell death in metazoans. Apoptotic pathways are well characterized in nematodes, flies, and mammals, leading to a vision of the conservation of apoptotic pathways in metazoans. However, we recently showed that intrinsic apoptosis is in fact divergent among metazoans. In addition, extrinsic apoptosis is poorly studied in non-mammalian animals, making its evolution unclear. Consequently, our understanding of apoptotic signaling pathways evolution is a black box which must be illuminated by extending research to new biological systems. Lophotrochozoans are a major clade of metazoans which, despite their considerable biological diversity and key phylogenetic position as sister group of ecdysozoans (i.e. flies and nematodes), are poorly explored, especially regarding apoptosis mechanisms. Traditionally, each apoptotic signaling pathway was considered to rely on a specific initiator caspase, associated with an activator. To shed light on apoptosis evolution in animals, we explored the evolutionary history of initiator caspases, caspase activators, and the BCL-2 family (which control mitochondrial apoptotic pathway) in lophotrochozoans using phylogenetic analysis and protein interaction predictions. We discovered a diversification of initiator caspases in molluscs, annelids, and brachiopods, and the loss of key extrinsic apoptosis components in platyhelminths, along with the emergence of a clade-specific caspase with an ankyrin pro-domain. Taken together, our data show a specific history of apoptotic actors' evolution in lophotrochozoans, further demonstrating the appearance of distinct apoptotic signaling pathways during metazoan evolution.
Collapse
Affiliation(s)
- Helen R Horkan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Nikolay Popgeorgiev
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Gabriel Krasovec
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
3
|
Hingorani S, Paniagua Soriano G, Sánchez Huertas C, Villalba Riquelme EM, López Mocholi E, Martínez Rojas B, Alastrué Agudo A, Dupraz S, Ferrer Montiel AV, Moreno Manzano V. Transplantation of dorsal root ganglia overexpressing the NaChBac sodium channel improves locomotion after complete SCI. Mol Ther 2024; 32:1739-1759. [PMID: 38556794 PMCID: PMC11184342 DOI: 10.1016/j.ymthe.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition currently lacking treatment. Severe SCI causes the loss of most supraspinal inputs and neuronal activity caudal to the injury, which, coupled with the limited endogenous capacity for spontaneous regeneration, can lead to complete functional loss even in anatomically incomplete lesions. We hypothesized that transplantation of mature dorsal root ganglia (DRGs) genetically modified to express the NaChBac sodium channel could serve as a therapeutic option for functionally complete SCI. We found that NaChBac expression increased the intrinsic excitability of DRG neurons and promoted cell survival and neurotrophic factor secretion in vitro. Transplantation of NaChBac-expressing dissociated DRGs improved voluntary locomotion 7 weeks after injury compared to control groups. Animals transplanted with NaChBac-expressing DRGs also possessed higher tubulin-positive neuronal fiber and myelin preservation, although serotonergic descending fibers remained unaffected. We observed early preservation of the corticospinal tract 14 days after injury and transplantation, which was lost 7 weeks after injury. Nevertheless, transplantation of NaChBac-expressing DRGs increased the neuronal excitatory input by an increased number of VGLUT2 contacts immediately caudal to the injury. Our work suggests that the transplantation of NaChBac-expressing dissociated DRGs can rescue significant motor function, retaining an excitatory neuronal relay activity immediately caudal to injury.
Collapse
Affiliation(s)
- Sonia Hingorani
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Guillem Paniagua Soriano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carlos Sánchez Huertas
- Development and Assembly of Bilateral Neural Circuits Laboratory, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández, Avenida Santiago Ramon y Cajal, s/n, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Eva María Villalba Riquelme
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Eric López Mocholi
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Beatriz Martínez Rojas
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Ana Alastrué Agudo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Sebastián Dupraz
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Antonio Vicente Ferrer Montiel
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| |
Collapse
|
4
|
Morelli C, Chiodo C, Nocito MC, Cormace A, Catalano S, Sisci D, Sirianni R, Casaburi I, Andò S, Lanzino M. Androgens Modulate Bcl-2 Agonist of Cell Death (BAD) Expression and Function in Breast Cancer Cells. Int J Mol Sci 2023; 24:13464. [PMID: 37686282 PMCID: PMC10487823 DOI: 10.3390/ijms241713464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Androgen receptor (AR) expression in estrogen receptor-positive (ER+) breast cancer (BC) correlates with lower tumor grade and a better clinical outcome. Additionally, in normal mammary epithelium or ER+ BC preclinical models, androgens counteract basal/ER-dependent proliferation. Here, we report an additional mechanism, underlining the protective role exerted by AR. Specifically, the activation of intracellular AR upregulates the Bcl-2-family protein BAD, and TCGA database analyses show that in ER+ BC, BAD expression is associated with better disease-free survival. Ligand-activated AR influences its own and BAD cellular compartmentalization by enhancing levels in the nucleus, as well as in mitochondrial fractions. In both compartments, BAD exerts unconventional functions. In the nucleus, BAD and AR physically interact and, upon androgen stimulation, are recruited at the AP-1 and ARE sites within the cyclin D1 promoter region, contributing to explaining the anti-proliferative effect of androgens in BC cells. Androgens cause an enrichment in BAD and AR content in the mitochondria, correlated with a decrease in mitochondrial function. Thus, we have defined a novel mechanism by which androgens modulate BAD expression, its mitochondria localization, and nuclear content to force its ability to act as a cell cycle inhibitor, strengthening the protective role of androgen signaling in estrogen-responsive BCs.
Collapse
Affiliation(s)
- Catia Morelli
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Chiara Chiodo
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Marta Claudia Nocito
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Alessandro Cormace
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Stefania Catalano
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Diego Sisci
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Rosa Sirianni
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Ivan Casaburi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| | - Marilena Lanzino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (C.M.); (M.C.N.); (S.C.); (D.S.); (R.S.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata Di Rende, CS, Italy; (C.C.); (A.C.)
| |
Collapse
|
5
|
Duong MQ, Gadet R, Treilleux I, Borel S, Nougarède A, Marcillat O, Gonzalo P, Mikaelian I, Popgeorgiev N, Rimokh R, Gillet G. Nrh L11R single nucleotide polymorphism, a new prediction biomarker in breast cancer, impacts endoplasmic reticulum-dependent Ca 2+ traffic and response to neoadjuvant chemotherapy. Cell Death Dis 2023; 14:392. [PMID: 37391438 PMCID: PMC10313725 DOI: 10.1038/s41419-023-05917-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Overexpression of Bcl-2 proteins such as Bcl2L10, also referred to as Nrh, is associated with resistance to therapy and poor survival in various cancers, including breast cancer, lung cancer, and leukemia. The single nucleotide polymorphism (SNP) of BCL2L10 in its BH4 domain at position 11 (BCL2L10 Leu11Arg, rs2231292), corresponding to position 11 in the Nrh open reading frame, is reported to lower resistance towards chemotherapy, with patients showing better survival in the context of acute leukemia and colorectal cancer. Using cellular models and clinical data, we aimed to extend this knowledge to breast cancer. We report that the homozygous status of the Nrh Leu11Arg isoform (Nrh-R) is found in 9.7-11% percent of the clinical datasets studied. Furthermore, Nrh-R confers higher sensitivity towards Thapsigargin-induced cell death compared to the Nrh-L isoform, due to altered interactions with IP3R1 Ca2+ channels in the former case. Collectively, our data show that cells expressing the Nrh-R isoform are more prone to death triggered by Ca2+ stress inducers, compared to Nrh-L expressing cells. Analysis of breast cancer cohorts revealed that patients genotyped as Nrh-R/Nrh-R may have a better outcome. Overall, this study supports the notion that the rs2231292 Nrh SNP could be used as a predictive tool regarding chemoresistance, improving therapeutic decision-making processes. Moreover, it sheds new light on the contribution of the BH4 domain to the anti-apoptotic function of Nrh and identifies the IP3R1/Nrh complex as a potential therapeutic target in the context of breast cancer.
Collapse
Affiliation(s)
- Minh Quang Duong
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Rudy Gadet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | | | - Stéphane Borel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Adrien Nougarède
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Division for Biology and Healthcare Technologies, CEA-LETI, MINATEC Campus, F-38054, Grenoble, France
| | - Olivier Marcillat
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Philippe Gonzalo
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Laboratoire de Biochimie, CHU de Saint-Etienne, Université de Lyon, Lyon, France
| | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Nikolay Popgeorgiev
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Ruth Rimokh
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.
| | - Germain Gillet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.
- Hospices civils de Lyon, Centre de Biologie Sud, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, 69495, Pierre Bénite, France.
| |
Collapse
|
6
|
Dhaouadi N, Vitto VAM, Pinton P, Galluzzi L, Marchi S. Ca 2+ signaling and cell death. Cell Calcium 2023; 113:102759. [PMID: 37210868 DOI: 10.1016/j.ceca.2023.102759] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Multiple forms of regulated cell death (RCD) have been characterized, each of which originates from the activation of a dedicated molecular machinery. RCD can occur in purely physiological settings or upon failing cellular adaptation to stress. Ca2+ions have been shown to physically interact with - and hence regulate - various components of the RCD machinery. Moreover, intracellular Ca2+ accumulation can promote organellar dysfunction to degree that can be overtly cytotoxic or sensitize cells to RCD elicited by other stressors. Here, we provide an overview of the main links between Ca2+and different forms of RCD, including apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- Nada Dhaouadi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy; GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
7
|
Moore LN, Holmes DL, Sharma A, Landazuri Vinueza J, Lagunoff M. Bcl-xL is required to protect endothelial cells latently infected with KSHV from virus induced intrinsic apoptosis. PLoS Pathog 2023; 19:e1011385. [PMID: 37163552 PMCID: PMC10202281 DOI: 10.1371/journal.ppat.1011385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/22/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Kaposi's Sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's Sarcoma (KS), a highly vascularized tumor common in AIDS patients and many countries in Africa. KSHV is predominantly in the latent state in the main KS tumor cell, the spindle cell, a cell expressing endothelial cell markers. To identify host genes important for KSHV latent infection of endothelial cells we previously used a global CRISPR/Cas9 screen to identify genes necessary for the survival or proliferation of latently infected cells. In this study we rescreened top hits and found that the highest scoring gene necessary for infected cell survival is the anti-apoptotic Bcl-2 family member Bcl-xL. Knockout of Bcl-xL or treatment with a Bcl-xL inhibitor leads to high levels of cell death in latently infected endothelial cells but not their mock counterparts. Cell death occurs through apoptosis as shown by increased PARP cleavage and activation of caspase-3/7. Knockout of the pro-apoptotic protein, Bax, eliminates the requirement for Bcl-xL. Interestingly, neither Bcl-2 nor Mcl-1, related and often redundant anti-apoptotic proteins of the Bcl-2 protein family, are necessary for the survival of latently infected endothelial cells, likely due to their lack of expression in all the endothelial cell types we have examined. Bcl-xL is not required for the survival of latently infected primary effusion lymphoma (PEL) cells or other cell types tested. Expression of the KSHV major latent locus alone in the absence of KSHV infection led to sensitivity to the absence of Bcl-xL, indicating that viral gene expression from the latent locus induces intrinsic apoptosis leading to the requirement for Bcl-xL in endothelial cells. The critical requirement of Bcl-xL during KSHV latency makes it an intriguing therapeutic target for KS tumors.
Collapse
Affiliation(s)
- Lyndsey N. Moore
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Daniel L. Holmes
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Anjali Sharma
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | | | - Michael Lagunoff
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Ajzashokouhi AH, Rezaee R, Omidkhoda N, Karimi G. Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury. Cell Cycle 2023; 22:741-757. [PMID: 36593695 PMCID: PMC10026916 DOI: 10.1080/15384101.2022.2161959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The PI3K/Akt/GSK3β pathway is crucial in regulating cardiomyocyte growth and survival. It has been shown that activation of this pathway alleviates the negative impact of ischemia-reperfusion. Glycogen synthase kinase-3 (GSK3β) induces apoptosis through stimulation of transcription factors, and its phosphorylation has been suggested as a new therapeutic target for myocardial ischemia-reperfusion injury (MIRI). GSK3β regulatory role is mediated by the reperfusion injury salvage kinase (RISK) pathway, and its inhibition by Akt activation blocks mitochondrial permeability transition pore (mPTP) opening and enhances myocardial survival. The present article discusses the involvement of the PI3K/Akt/GSK3β pathway in cardioprotective effects of natural products against MIRI.Abbreviations: Akt: protein kinase B; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Bad: bcl2-associated agonist of cell death; Bax: bcl2-associated x protein; Bcl-2: B-cell lymphoma 2; CK-MB: Creatine kinase-MB; CRP: C-reactive-protein; cTnI: cardiac troponin I; EGCG: Epigallocatechin-3-gallate; Enos: endothelial nitric oxide synthase; ER: endoplasmic reticulum; ERK ½: extracellular signal‑regulated protein kinase ½; GSK3β: glycogen synthase kinase-3; GSRd: Ginsenoside Rd; GSH: glutathione; GSSG: glutathione disulfide; HO-1: heme oxygenase-1; HR: hypoxia/reoxygenation; HSYA: Hydroxysafflor Yellow A; ICAM-1: Intercellular Adhesion Molecule 1; IKK-b: IκB kinase; IL: interleukin; IPoC: Ischemic postconditioning; IRI: ischemia-reperfusion injury; JNK: c-Jun N-terminal kinase; Keap1: kelch-like ECH-associated protein- 1; LDH: lactate dehydrogenase; LVEDP: left ventricular end diastolic pressure; LVP: left ventricle pressure; LVSP: left ventricular systolic pressure; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MIRI: myocardial ischemia-reperfusion injury; MnSOD: manganese superoxide dismutase; mPTP: mitochondrial permeability transition pore; mtHKII: mitochondria-bound hexokinase II; Nrf-1: nuclear respiratory factor 1; Nrf2: nuclear factor erythroid 2-related factor; NO: nitric oxide; PGC-1α: peroxisome proliferator‑activated receptor γ coactivator‑1α; PI3K: phosphoinositide 3-kinases; RISK: reperfusion injury salvage kinase; ROS: reactive oxygen species; RSV: Resveratrol; SOD: superoxide dismutase; TFAM: transcription factor A mitochondrial; TNF-α: tumor necrosis factor-alpha; VEGF-B: vascular endothelial growth factor B.
Collapse
Affiliation(s)
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Zhong Y, Ma T, Fu Z, Chen A, Yu J, Huang Y, Fu J. Effects of Hydrogen Peroxide-Induced Oxidative Stress on Intestinal Morphology, Redox Status, and Related Molecules in Squabs. Animals (Basel) 2023; 13:ani13040749. [PMID: 36830536 PMCID: PMC9952636 DOI: 10.3390/ani13040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The purpose of this study was to evaluate the potential effect of oxidative stress on the intestine of squabs, and to explore the molecular mechanisms. A total of 360 1-day-old squabs were divided evenly into five different groups (n = 72/group): control, negative control, low, medium, and high dose groups. On the 3rd, 5th, and 7th days, squabs in the control group were not effectively treated and the negative control group were intraperitoneally injected with normal saline, whereas the H2O2 group was injected with H2O2 of 2.0, 2.5, and 3.0 mmol/kg BW respectively. On the 21st day, the serum and duodenum were collected for further analysis. The results indicated that, compared with the control group, H2O2 caused squabs weight loss and intestinal morphology damage, and these effects were enhanced with an increase in dose. Further examination revealed that the contents of oxidative stress markers in both the serum and duodenum of the H2O2 group were significantly enhanced as the dose was increased. In addition, H2O2 exposure also resulted in the lower mRNA expression of Occludin, ZO-1, Beclin1, Atg5, and Caspase-3, but the expression of Claudin2 and Bcl-2 was decreased in comparison to the control group. These findings suggested that duodenal oxidative damage was accompanied by weight loss, changes in intestinal morphology, redox status imbalance, apoptosis as well as autophagy of intestinal cells, with, effects of 3.0 mmol/kg BW of H2O2 being the most severe.
Collapse
Affiliation(s)
- Yajing Zhong
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tingting Ma
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhiqi Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ailing Chen
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiahao Yu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.H.); (J.F.)
| | - Jing Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (Y.H.); (J.F.)
| |
Collapse
|
10
|
Resende R, Fernandes T, Pereira AC, Marques AP, Pereira CF. Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor. Antioxid Redox Signal 2022; 37:758-780. [PMID: 35369731 DOI: 10.1089/ars.2020.8231] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.
Collapse
Affiliation(s)
- Rosa Resende
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Fernandes
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Balachander K, Abilasha R, Priyadharsini JV, Balamurugan R, Paramasivam A. Targeting mitochondria for apoptosis in oral cancer: Therapeutic potential and obstacles. Oral Oncol 2022; 133:106059. [PMID: 35947930 DOI: 10.1016/j.oraloncology.2022.106059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Kannan Balachander
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Ramasubramanian Abilasha
- Department of Oral Pathology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Jayaseelan Vijayashree Priyadharsini
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Rangasamy Balamurugan
- Viral Research and Diagnostic Laboratory (VRDL), Government Villupuram Medical College and Hospital, Villupuram, India
| | - Arumugam Paramasivam
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
12
|
Rashad WA, Sakr S, Domouky AM. Comparative study of oral versus parenteral crocin in mitigating acrolein-induced lung injury in albino rats. Sci Rep 2022; 12:10233. [PMID: 35715565 PMCID: PMC9205959 DOI: 10.1038/s41598-022-14252-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Acrolein (Ac) is the second most commonly inhaled toxin, produced in smoke of fires, tobacco smoke, overheated oils, and fried foods; and usually associated with lung toxicity. Crocin (Cr) is a natural carotenoid with a direct antioxidant capacity. Yet, oral administration of crocin as a natural rout is doubtful, because of poor absorbability. Therefore, the current study aimed to compare the potential protective effect of oral versus intraperitoneal (ip) crocin in mitigating Ac-induced lung toxicity. 50 Adult rats were randomly divided into 5 equal groups; Control (oral-saline and ip-saline) group, Cr (oral-Cr and ip-Cr) group, Ac group, oral-Cr/Ac group, and ip-Cr/Ac group; for biochemical, histopathological, and immunohistochemical investigations. Results indicated increased oxidative stress and inflammatory biomarkers in lungs of Ac-treated group. Histopathological and immunohistochemical examinations revealed lung edema, infiltration, fibrosis, and altered expression of apoptotic and anti-apoptotic markers. Compared to oral-Cr/Ac group, the ip-Cr/Ac group demonstrated remarkable improvement in the oxidative, inflammatory, and apoptotic biomarkers, as well as the histopathological alterations. In conclusion, intraperitoneal crocin exerts a more protective effect on acrolein-induced lung toxicity than the orally administered crocin.
Collapse
Affiliation(s)
- Walaa Abdelhaliem Rashad
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt.
| | - Samar Sakr
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, Egypt
| |
Collapse
|
13
|
Smith NA, Wardak AZ, Cowan AD, Colman PM, Czabotar PE, Smith BJ. The Bak core dimer focuses triacylglycerides in the membrane. Biophys J 2022; 121:347-360. [PMID: 34973947 PMCID: PMC8822611 DOI: 10.1016/j.bpj.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Apoptosis, the intrinsic programmed cell death process, is mediated by the Bcl-2 family members Bak and Bax. Activation via formation of symmetric core dimers and oligomerization on the mitochondrial outer membrane (MOM) leads to permeabilization and cell death. Although this process is linked to the MOM, the role of the membrane in facilitating such pores is poorly understood. We recently described Bak core domain dimers, revealing lipid binding sites and an initial role of lipids in oligomerization. Here we describe simulations that identified localized clustering and interaction of triacylglycerides (TAGs) with a minimized Bak dimer construct. Coalescence of TAGs occurred beneath this Bak dimer, mitigating dimer-induced local membrane thinning and curvature in representative coarse-grain MOM and model membrane systems. Furthermore, the effects observed as a result of coarse-grain TAG cluster formation was concentration dependent, scaling from low physiological MOM concentrations to those found in other organelles. We find that increasing the TAG concentration in liposomes mimicking the MOM decreased the ability of activated Bak to permeabilize these liposomes. These results suggest that the presence of TAGs within a Bak-lipid membrane preserves membrane integrity and is associated with reduced membrane stress, suggesting a possible role of TAGs in Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Nicholas A. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ahmad Z. Wardak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Angus D. Cowan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter M. Colman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E. Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Brian J. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia,Corresponding author
| |
Collapse
|
14
|
Zhang Z, Bai L, Hou L, Deng H, Luan S, Liu D, Huang M, Zhao L. Trends in targeting Bcl-2 anti-apoptotic proteins for cancer treatment. Eur J Med Chem 2022; 232:114184. [DOI: 10.1016/j.ejmech.2022.114184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
15
|
Kataba A, Botha TL, Nakayama SMM, Yohannes YB, Ikenaka Y, Wepener V, Ishizuka M. Environmentally relevant lead (Pb) water concentration induce toxicity in zebrafish (Danio rerio) larvae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109215. [PMID: 34673251 DOI: 10.1016/j.cbpc.2021.109215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022]
Abstract
Early developmental stages of aquatic organisms including fish are inherently vulnerable to lead (Pb) and other water metal contaminants. However, reports on the deleterious effects of environmentally relevant Pb levels are limited. To this end, we exposed 2.5 h post fertilization (hpf) old zebrafish (Danio rerio) embryos to a range of Pb concentrations encompassing environmentally relevant levels (1, 10, 25, 50 and 100 μg/L Pb) until 96 hpf. Exposure negatively impacted the development and survival of zebrafish embryos by inducing embryo coagulation related mortalities in a concentration-dependent manner. At 24 hpf, the highest level of exposure (100 μg/L Pb) had impaired embryo activity characterized by reduced burst activity and the number of movements per minute made by embryos. At 72 hpf, newly hatched larvae exhibited adverse cardiovascular effects (100 μg/L Pb group) and neuromuscular effects (50 and 100 μg/L Pb groups). The antioxidant system dysregulation evidenced by downregulation of catalase, and upregulation of mRNA expression of glutathione S-transferase and cytochrome oxidase subunit I were observed. The pro-apoptotic tumour protein P53 (TP53) and the anti-apoptotic B cell lymphoma -2 (Bcl-2) mRNA expression levels were also affected. The former was downregulated across exposed groups and the latter was upregulated and downregulated in the groups with Pb concentrations less than 50 μg/L Pb and downregulated in 50 μg/L Pb, respectively. These findings suggest that Pb within environmentally relevant levels may be deleterious to developing zebrafish.
Collapse
Affiliation(s)
- Andrew Kataba
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Biomedical Sciences, School of Veterinary Medicine, The University of Zambia, Box 32379, Lusaka, Zambia
| | - Tarryn L Botha
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yared B Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Chemistry, College of Natural and Computational Science, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; One Health Research Center, Hokkaido University, Japan
| | - Victor Wepener
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
16
|
Del Bufalo D, Di Martile M, Valentini E, Manni I, Masi I, D'Amore A, Filippini A, Nicoletti C, Zaccarini M, Cota C, Castro MV, Quezada MJ, Rosanò L, Lopez-Bergami P, D'Aguanno S. Bcl-2-like protein-10 increases aggressive features of melanoma cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:11-26. [PMID: 36046354 PMCID: PMC9400776 DOI: 10.37349/etat.2022.00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Aim: B-cell lymphoma-2 (Bcl-2)-like protein-10 (Bcl2L10) is the less studied
member of Bcl-2 family proteins, with the controversial role in different
cancer histotypes. Very recently, Bcl2L10 expression in melanoma tumor
specimens and its role in melanoma response to therapy have been
demonstrated. Here, the involvement of Bcl2L10 on the in
vitro and in vivo properties associated with
melanoma aggressive features has been investigated. Methods: Endogenous Bcl2L10 protein expression was detected by western blotting
analysis in a panel of patient-derived and commercially available human
melanoma cells. In vitro assays to evaluate clonogenicity,
cell proliferation, cell migration, cell invasion, and in
vitro capillary-like structure formation [vasculogenic
mimicry (VM)] have been performed by using human melanoma cells
stably overexpressing Bcl2L10 or transiently transfected for loss/gain
function of Bcl2L10, grown under two- or three-dimensional (3D) conditions
Xenograft melanoma model was employed to evaluate in vivo
tumor growth and angiogenesis. Results: Results demonstrated that Bcl2L10 acts as an inducer of in
vitro cell migration, invasion, and VM, while in
vitro cell proliferation, in vivo tumor
growth, as well as colony formation properties were not affected. Dissecting
different signaling pathways, it was found that Bcl2L10 positively affects
the phosphorylation of extracellular-signal-regulated kinase (ERK) and the
expression of markers of cell invasion, such as urokinase plasminogen
activator receptor (uPAR) and matrix metalloproteinases (MMPs). Of note,
Bcl2L10-dependent in vitro migration, invasion, and VM are
linked to uPAR. Bcl2L10 also negatively regulates the intracellular calcium
level. Finally, reduced invasion capability in 3D spheroid invasion assay of
melanoma cells transiently overexpressing Bcl2L10 was observed after
treatment with inhibitors of MMPs and uPAR. Conclusions: Overall, data reported in this paper provide evidence supporting a positive
role of Bcl2L10 in melanoma aggressive features.
Collapse
Affiliation(s)
- Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology, National Research Council, 00161 Rome, Italy
| | - Antonella D'Amore
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Antonio Filippini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Carmine Nicoletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Dermatological Molecular Biology and Dermatopathology Unit, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Dermatological Molecular Biology and Dermatopathology Unit, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Maria Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires C1405BCK, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BCK, Argentina
| | - María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires C1405BCK, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BCK, Argentina
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council, 00161 Rome, Italy
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires C1405BCK, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BCK, Argentina
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
17
|
Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules 2022; 12:biom12020162. [PMID: 35204663 PMCID: PMC8961529 DOI: 10.3390/biom12020162] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM)) in the mitochondrial localization of Bcl-2 family members and how these machineries regulate the function of pro- and anti-apoptotic proteins in resting cells and in cells committed into apoptosis.
Collapse
|
18
|
Bosc C, Saland E, Bousard A, Gadaud N, Sabatier M, Cognet G, Farge T, Boet E, Gotanègre M, Aroua N, Mouchel PL, Polley N, Larrue C, Kaphan E, Picard M, Sahal A, Jarrou L, Tosolini M, Rambow F, Cabon F, Nicot N, Poillet-Perez L, Wang Y, Su X, Fovez Q, Kluza J, Argüello RJ, Mazzotti C, Avet-Loiseau H, Vergez F, Tamburini J, Fournié JJ, Tiong IS, Wei AH, Kaoma T, Marine JC, Récher C, Stuani L, Joffre C, Sarry JE. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. NATURE CANCER 2021; 2:1204-1223. [PMID: 35122057 DOI: 10.1038/s43018-021-00264-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/31/2021] [Indexed: 04/23/2023]
Abstract
Therapy resistance represents a major clinical challenge in acute myeloid leukemia (AML). Here we define a 'MitoScore' signature, which identifies high mitochondrial oxidative phosphorylation in vivo and in patients with AML. Primary AML cells with cytarabine (AraC) resistance and a high MitoScore relied on mitochondrial Bcl2 and were highly sensitive to venetoclax (VEN) + AraC (but not to VEN + azacytidine). Single-cell transcriptomics of VEN + AraC-residual cell populations revealed adaptive resistance associated with changes in oxidative phosphorylation, electron transport chain complex and the TP53 pathway. Accordingly, treatment of VEN + AraC-resistant AML cells with electron transport chain complex inhibitors, pyruvate dehydrogenase inhibitors or mitochondrial ClpP protease agonists substantially delayed relapse following VEN + AraC. These findings highlight the central role of mitochondrial adaptation during AML therapy and provide a scientific rationale for alternating VEN + azacytidine with VEN + AraC in patients with a high MitoScore and to target mitochondrial metabolism to enhance the sensitivity of AML cells to currently approved therapies.
Collapse
Affiliation(s)
- Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Aurélie Bousard
- Department of Oncology, Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
| | - Noémie Gadaud
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- University of Toulouse, Toulouse, France
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Guillaume Cognet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Mathilde Gotanègre
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Nesrine Aroua
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Pierre-Luc Mouchel
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- University of Toulouse, Toulouse, France
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Nathaniel Polley
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Eléonore Kaphan
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Muriel Picard
- Réanimation Polyvalente IUCT-oncopole, CHU de Toulouse, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Latifa Jarrou
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | - Florian Rambow
- Department of Oncology, Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
| | - Florence Cabon
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Nathalie Nicot
- LuxGen, Quantitative Biology Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Laura Poillet-Perez
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Quentin Fovez
- Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, Lille, France
| | - Jérôme Kluza
- Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, Lille, France
| | - Rafael José Argüello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Céline Mazzotti
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Hervé Avet-Loiseau
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - François Vergez
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- University of Toulouse, Toulouse, France
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | | | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
| | - Ing S Tiong
- Department of Clinical Haematology, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Andrew H Wei
- Department of Clinical Haematology, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Tony Kaoma
- Computational Biomedicine Research Group, Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jean-Christophe Marine
- Department of Oncology, Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
- University of Toulouse, Toulouse, France
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Carine Joffre
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- LabEx Toucan, Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France.
- LabEx Toucan, Toulouse, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, Toulouse, France.
| |
Collapse
|
19
|
Tiribelli M, Michelutti A, Cavallin M, Di Giusto S, Fanin R, Damiani D. Impact of Concomitant Aberrant CD200 and BCL2 Overexpression on Outcome of Acute Myeloid Leukemia: A Cohort Study from a Single Center. Turk J Haematol 2021; 38:119-125. [PMID: 33596632 PMCID: PMC8171206 DOI: 10.4274/tjh.galenos.2021.2020.0728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: CD200 and BCL2 overexpression is independently associated with inferior survival in acute myeloid leukemia (AML), and these two factors are frequently co-expressed; however, no data are available on the role of concomitant aberrant CD200 and BCL2 expression on outcome of AML patients. We aimed to elucidate the prognostic role of CD200/BCL2 co-expression and its association with specific leukemia subsets. Materials and Methods: We analyzed 242 adult AML patients uniformly treated with intensive chemotherapy, evaluating the impact of CD200 and BCL2 expression on complete remission (CR), disease-free survival, and overall survival (OS). Results: CD200 and BCL2 were expressed in 139 (57.4%) and 137 (56.6%) cases, respectively, with 92 patients (38%) displaying double positivity (DP), 58 (24%) displaying double negativity (DN), and 92 patients expressing only either CD200 (n=47) or BCL2 (n=45). CR was achieved in 71% of cases, being less frequent in DP patients (60%) compared to other groups (76%-81%, p<0.001). In the whole population 3-year OS was 44%, being lower in DP patients (28%) than in patients with single CD200 or BCL2 expression (47%) or DN cases (60%; p=0.004). Other factors associated with worse OS were advanced age, CD34 positivity, secondary AML, and high white blood cell count at diagnosis; combining these 4 factors with CD200/BCL2 DP, we identified 6 groups with significantly different rates of survival (3-year OS ranging from 90% to 0%). Conclusion: Our data support a synergistic effect of CD200 and BCL2 in AML cells, conferring an enhanced survival capacity in a permissive microenvironment and resulting in worse prognosis.
Collapse
Affiliation(s)
- Mario Tiribelli
- University of Udine, Department of Medical Area, Division of Hematology and Stem Cell Transplantation, Udine, Italy
| | - Angela Michelutti
- University of Udine, Department of Medical Area, Division of Hematology and Stem Cell Transplantation, Udine, Italy
| | - Margherita Cavallin
- University of Udine, Department of Medical Area, Division of Hematology and Stem Cell Transplantation, Udine, Italy
| | - Sara Di Giusto
- University of Udine, Department of Medical Area, Division of Hematology and Stem Cell Transplantation, Udine, Italy
| | - Renato Fanin
- University of Udine, Department of Medical Area, Division of Hematology and Stem Cell Transplantation, Udine, Italy
| | - Daniela Damiani
- University of Udine, Department of Medical Area, Division of Hematology and Stem Cell Transplantation, Udine, Italy
| |
Collapse
|
20
|
Bcl-2 Family of Proteins in the Control of Mitochondrial Calcium Signalling: An Old Chap with New Roles. Int J Mol Sci 2021; 22:ijms22073730. [PMID: 33918511 PMCID: PMC8038216 DOI: 10.3390/ijms22073730] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.
Collapse
|
21
|
Balancing ER-Mitochondrial Ca 2+ Fluxes in Health and Disease. Trends Cell Biol 2021; 31:598-612. [PMID: 33678551 DOI: 10.1016/j.tcb.2021.02.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Organelles cooperate with each other to control cellular homeostasis and cell functions by forming close connections through membrane contact sites. Important contacts are present between the endoplasmic reticulum (ER), the main intracellular Ca2+-storage organelle, and the mitochondria, the organelle responsible not only for the majority of cellular ATP production but also for switching on cell death processes. Several Ca2+-transport systems focalize at these contact sites, thereby enabling the efficient transmission of Ca2+ signals from the ER toward mitochondria. This provides tight control of mitochondrial functions at the microdomain level. Here, we discuss how ER-mitochondrial Ca2+ transfers support cell function and how their dysregulation underlies, drives, or contributes to pathogenesis and pathophysiology, with a major focus on cancer and neurodegeneration but also with attention to other diseases such as diabetes and rare genetic diseases.
Collapse
|
22
|
Pollyea DA, Pei S, Stevens BM, Smith CA, Jordan CT. The Intriguing Clinical Success of BCL-2 Inhibition in Acute Myeloid Leukemia. ANNUAL REVIEW OF CANCER BIOLOGY 2021. [DOI: 10.1146/annurev-cancerbio-060220-124048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past several decades numerous preclinical and clinical studies have pursued new approaches for the treatment of acute myeloid leukemia (AML). While some degree of clinical response has been demonstrated for many therapies, for the most part, fundamental changes in the treatment landscape have been lacking. Recently, the use of the BCL-2 inhibitor venetoclax has emerged as a potent therapy for a majority of newly diagnosed AML patients. Venetoclax regimens have shown broad response rates with deep and durable remissions, with a superior toxicity profile compared with traditional intensive chemotherapy agents. Numerous ongoing studies are now using venetoclax in combination with a wide range of other agents as investigators seek even more effective and well-tolerated regimens. Notably, however, while the empirical results of BCL-2 inhibition are encouraging, the mechanisms that have led to these successful clinical outcomes remain unclear. Intriguingly, the activity of venetoclax in AML patients appears to go beyond simply modulating canonical antiapoptosis mechanisms; in addition, the efficacy of venetoclax is linked to its combined use with conventional low-intensity backbone therapies. This article will evaluate the state of the field, provide a summary of key considerations, and propose directions for future studies.
Collapse
Affiliation(s)
- Daniel A. Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Shanshan Pei
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Brett M. Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Clayton A. Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Craig T. Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
23
|
Zaibi N, Li P, Xu SZ. Protective effects of dapagliflozin against oxidative stress-induced cell injury in human proximal tubular cells. PLoS One 2021; 16:e0247234. [PMID: 33606763 PMCID: PMC7894948 DOI: 10.1371/journal.pone.0247234] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Elevated reactive oxygen species (ROS) in type 2 diabetes cause cellular damage in many organs. Recently, the new class of glucose-lowering agents, SGLT-2 inhibitors, have been shown to reduce the risk of developing diabetic complications; however, the mechanisms of such beneficial effect are largely unknown. Here we aimed to investigate the effects of dapagliflozin on cell proliferation and cell death under oxidative stress conditions and explore its underlying mechanisms. Human proximal tubular cells (HK-2) were used. Cell growth and death were monitored by cell counting, water-soluble tetrazolium-1 (WST-1) and lactate dehydrogenase (LDH) assays, and flow cytometry. The cytosolic and mitochondrial (ROS) production was measured using fluorescent probes (H2DCFDA and MitoSOX) under normal and oxidative stress conditions mimicked by addition of H2O2. Intracellular Ca2+ dynamics was monitored by FlexStation 3 using cell-permeable Ca2+ dye Fura-PE3/AM. Dapagliflozin (0.1–10 μM) had no effect on HK-2 cell proliferation under normal conditions, but an inhibitory effect was seen at an extreme high concentration (100 μM). However, dapagliflozin at 0.1 to 5 μM showed remarkable protective effects against H2O2-induced cell injury via increasing the viable cell number at phase G0/G1. The elevated cytosolic and mitochondrial ROS under oxidative stress was significantly decreased by dapagliflozin. Dapagliflozin increased the basal intracellular [Ca2+]i in proximal tubular cells, but did not affect calcium release from endoplasmic reticulum and store-operated Ca2+ entry. The H2O2-sensitive TRPM2 channel seemed to be involved in the Ca2+ dynamics regulated by dapagliflozin. However, dapagliflozin had no direct effects on ORAI1, ORAI3, TRPC4 and TRPC5 channels. Our results suggest that dapagliflozin shows anti-oxidative properties by reducing cytosolic and mitochondrial ROS production and altering Ca2+ dynamics, and thus exerts its protective effects against cell damage under oxidative stress environment.
Collapse
Affiliation(s)
- Nawel Zaibi
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Pengyun Li
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Shang-Zhong Xu
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
- Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Drastichova Z, Rudajev V, Pallag G, Novotny J. Proteome profiling of different rat brain regions reveals the modulatory effect of prolonged maternal separation on proteins involved in cell death-related processes. Biol Res 2021; 54:4. [PMID: 33557947 PMCID: PMC7871601 DOI: 10.1186/s40659-021-00327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Early-life stress in the form of maternal separation can be associated with alterations in offspring neurodevelopment and brain functioning. Here, we aimed to investigate the potential impact of prolonged maternal separation on proteomic profiling of prefrontal cortex, hippocampus and cerebellum of juvenile and young adult rats. A special attention was devoted to proteins involved in the process of cell death and redox state maintenance. Methods Long-Evans pups were separated from their mothers for 3 h daily over the first 3 weeks of life (during days 2–21 of age). Brain tissue samples collected from juvenile (22-day-old) and young adult (90-day-old) rats were used for label-free quantitative (LFQ) proteomic analysis. In parallel, selected oxidative stress markers and apoptosis-related proteins were assessed biochemically and by Western blot, respectively. Results In total, 5526 proteins were detected in our proteomic analysis of rat brain tissue. Approximately one tenth of them (586 proteins) represented those involved in cell death processes or regulation of oxidative stress balance. Prolonged maternal separation caused changes in less than half of these proteins (271). The observed alterations in protein expression levels were age-, sex- and brain region-dependent. Interestingly, the proteins detected by mass spectrometry that are known to be involved in the maintenance of redox state were not markedly altered. Accordingly, we did not observe any significant differences between selected oxidative stress markers, such as the levels of hydrogen peroxide, reduced glutathione, protein carbonylation and lipid peroxidation in brain samples from rats that underwent maternal separation and from the corresponding controls. On the other hand, a number of changes were found in cell death-associated proteins, mainly in those involved in the apoptotic and autophagic pathways. However, there were no detectable alterations in the levels of cleaved products of caspases or Bcl-2 family members. Taken together, these data indicate that the apoptotic and autophagic cell death pathways were not activated by maternal separation either in adolescent or young adult rats. Conclusion Prolonged maternal separation can distinctly modulate expression profiles of proteins associated with cell death pathways in prefrontal cortex, hippocampus and cerebellum of juvenile rats and the consequences of early-life stress may last into adulthood and likely participate in variations in stress reactivity. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00327-5.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Gergely Pallag
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
25
|
Kerkhofs M, La Rovere R, Welkenhuysen K, Janssens A, Vandenberghe P, Madesh M, Parys JB, Bultynck G. BIRD-2, a BH4-domain-targeting peptide of Bcl-2, provokes Bax/Bak-independent cell death in B-cell cancers through mitochondrial Ca 2+-dependent mPTP opening. Cell Calcium 2021; 94:102333. [PMID: 33450506 DOI: 10.1016/j.ceca.2020.102333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Anti-apoptotic Bcl-2 critically controls cell death by neutralizing pro-apoptotic Bcl-2-family members at the mitochondria. Bcl-2 proteins also act at the endoplasmic reticulum, the main intracellular Ca2+-storage organelle, where they inhibit IP3 receptors (IP3R) and prevent pro-apoptotic Ca2+-signaling events. IP3R channels are targeted by the BH4 domain of Bcl-2. Some cancer types rely on the IP3R-Bcl-2 interaction for survival. We previously developed a cell-permeable, BH4-domain-targeting peptide that can abrogate Bcl-2's inhibitory action on IP3Rs, named Bcl-2 IP3 receptor disrupter-2 (BIRD-2). This peptide kills several Bcl-2-dependent cancer cell types, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukaemia (CLL) cells, by eliciting intracellular Ca2+ signalling. However, the exact mechanisms by which these excessive Ca2+ signals triggered by BIRD-2 provoke cancer cell death remain elusive. Here, we demonstrate in DLBCL that although BIRD-2 activates caspase 3/7 and provokes cell death in a caspase-dependent manner, the cell death is independent of pro-apoptotic Bcl-2-family members, Bim, Bax and Bak. Instead, BIRD-2 provokes mitochondrial Ca2+ overload that is rapidly followed by opening of the mitochondrial permeability transition pore (mPTP). Inhibiting mitochondrial Ca2+ overload using Ru265, an inhibitor of the mitochondrial Ca2+ uniporter complex counteracts BIRD-2-induced cancer cell death. Finally, we validated our findings in primary CLL patient samples where BIRD-2 provoked mitochondrial Ca2+ overload and Ru265 counteracted BIRD-2-induced cell death. Overall, this work reveals the mechanisms by which BIRD-2 provokes cell death, which occurs via mitochondrial Ca2+ overload but acts independently of pro-apoptotic Bcl-2-family members.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Kirsten Welkenhuysen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Ann Janssens
- Department of Hematology, UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Hematology, UZ Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Muniswamy Madesh
- Department of Medicine/Cardiology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, TX 78229, United States
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
26
|
Huang CY, Deng JS, Huang WC, Jiang WP, Huang GJ. Attenuation of Lipopolysaccharide-Induced Acute Lung Injury by Hispolon in Mice, Through Regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 Pathways, and Suppressing Oxidative Stress-Mediated ER Stress-Induced Apoptosis and Autophagy. Nutrients 2020; 12:E1742. [PMID: 32532087 PMCID: PMC7352175 DOI: 10.3390/nu12061742] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
The anti-inflammatory effect of hispolon has identified it as one of the most important compounds from Sanghuangporus sanghuang. The research objectives were to study this compound using an animal model by lipopolysaccharide (LPS)-induced acute lung injury. Hispolon treatment reduced the production of the pro-inflammatory mediator NO, TNF-α, IL-1β, and IL-6 induced by LPS challenge in the lung tissues, as well as decreasing their histological alterations and protein content. Total cell number was also reduced in the bronchoalveolar lavage fluid (BALF). Moreover, hispolon inhibited iNOS, COX-2 and IκB-α and phosphorylated IKK and MAPK, while increasing catalase, SOD, GPx, TLR4, AKT, HO-1, Nrf-2, Keap1 and PPARγ expression, after LPS challenge. It also regulated apoptosis, ER stress and the autophagy signal transduction pathway. The results of this study show that hispolon regulates LPS-induced ER stress (increasing CHOP, PERK, IRE1, ATF6 and GRP78 protein expression), apoptosis (decreasing caspase-3 and Bax and increasing Bcl-2 expression) and autophagy (reducing LC3 I/II and Beclin-1 expression). This in vivo experimental study suggests that hispolon suppresses the LPS-induced activation of inflammatory pathways, oxidative injury, ER stress, apoptosis and autophagy and has the potential to be used therapeutically in major anterior segment lung diseases.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Graduate Institute of Aging Medicine, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Wen-Ping Jiang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| |
Collapse
|
27
|
Bellini L, Strub T, Habel N, Pandiani C, Marchetti S, Martel A, Baillif S, Bailly-Maitre B, Gual P, Ballotti R, Bertolotto C. Endoplasmic reticulum stress mediates resistance to BCL-2 inhibitor in uveal melanoma cells. Cell Death Discov 2020; 6:22. [PMID: 32337074 PMCID: PMC7165182 DOI: 10.1038/s41420-020-0259-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
To address unmet clinical need for uveal melanomas, we assessed the effects of BH3-mimetic molecules, the ABT family, known to exert pro-apoptotic activities in cancer cells. Our results uncovered that ABT-263 (Navitoclax), a potent and orally bioavailable BCL-2 family inhibitor, induced antiproliferative effects in metastatic human uveal melanoma cells through cell cycle arrest at the G0/G1 phase, loss of mitochondrial membrane potential, and subsequently apoptotic cell death monitored by caspase activation and poly-ADP ribose polymerase cleavage. ABT-263-mediated reduction in tumor growth was also observed in vivo. We observed in some cells that ABT-263 treatment mounted a pro-survival response through activation of the ER stress signaling pathway. Blocking the PERK signaling pathway increased the pro-apoptotic ABT-263 effect. We thus uncovered a resistance mechanism in uveal melanoma cells mediated by activation of endoplasmic reticulum stress pathway. Therefore, our study identifies ABT-263 as a valid therapeutic option for patients suffering from uveal melanoma.
Collapse
Affiliation(s)
- Lara Bellini
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Thomas Strub
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Nadia Habel
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Charlotte Pandiani
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Sandrine Marchetti
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Metabolism, cancer and immune response, team 3, Nice, France
| | - Arnaud Martel
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
- CHU NICE, Département d’Ophtalmologie, Nice, France
| | - Stéphanie Baillif
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
- CHU NICE, Département d’Ophtalmologie, Nice, France
| | - Béatrice Bailly-Maitre
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Chronic liver diseases associated with obesity and alcohol, team8, Nice, France
| | - Philippe Gual
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Chronic liver diseases associated with obesity and alcohol, team8, Nice, France
| | - Robert Ballotti
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Corine Bertolotto
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| |
Collapse
|
28
|
The apoptosis inhibitor Bcl-xL controls breast cancer cell migration through mitochondria-dependent reactive oxygen species production. Oncogene 2020; 39:3056-3074. [PMID: 32066881 DOI: 10.1038/s41388-020-1212-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
The Bcl-xL apoptosis inhibitor plays a major role in vertebrate development. In addition to its effect on apoptosis, Bcl-xL is also involved in cell migration and mitochondrial metabolism. These effects may favour the onset and dissemination of metastasis. However, the underlying molecular mechanisms remain to be fully understood. Here we focus on the control of cell migration by Bcl-xL in the context of breast cancer cells. We show that Bcl-xL silencing led to migration defects in Hs578T and MDA-MB231 cells. These defects were rescued by re-expressing mitochondria-addressed, but not endoplasmic reticulum-addressed, Bcl-xL. The use of BH3 mimetics, such as ABT-737 and WEHI-539 confirmed that the effect of Bcl-xL on migration did not depend on interactions with BH3-containing death accelerators such as Bax or BH3-only proteins. In contrast, the use of a BH4 peptide that disrupts the Bcl-xL/VDAC1 complex supports that Bcl-xL by acting on VDAC1 permeability contributes to cell migration through the promotion of reactive oxygen species production by the electron transport chain. Collectively our data highlight the key role of Bcl-xL at the interface between cell metabolism, cell death, and cell migration, thus exposing the VDAC1/Bcl-xL interaction as a promising target for anti-tumour therapy in the context of metastatic breast cancer.
Collapse
|
29
|
Huang SL, Wu LS, Lee M, Chang CW, Cheng WC, Fang YS, Chen YR, Cheng PL, Shen CKJ. A robust TDP-43 knock-in mouse model of ALS. Acta Neuropathol Commun 2020; 8:3. [PMID: 31964415 PMCID: PMC6975031 DOI: 10.1186/s40478-020-0881-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset degenerative disorder of motor neurons. The diseased spinal cord motor neurons of more than 95% of amyotrophic lateral sclerosis (ALS) patients are characterized by the mis-metabolism of the RNA/DNA-binding protein TDP-43 (ALS-TDP), in particular, the presence of cytosolic aggregates of the protein. Most available mouse models for the basic or translational studies of ALS-TDP are based on transgenic overexpression of the TDP-43 protein. Here, we report the generation and characterization of mouse lines bearing homologous knock-in of fALS-associated mutation A315T and sALS-associated mutation N390D, respectively. Remarkably, the heterozygous TDP-43 (N390D/+) mice but not those heterozygous for the TDP-43 (A315T/+) mice develop a full spectrum of ALS-TDP-like pathologies at the molecular, cellular and behavioral levels. Comparative analysis of the mutant mice and spinal cord motor neurons (MN) derived from their embryonic stem (ES) cells demonstrates that different ALS-associated TDP-43 mutations possess critical ALS-causing capabilities and pathogenic pathways, likely modified by their genetic background and the environmental factors. Mechanistically, we identify aberrant RNA splicing of spinal cord Bcl-2 pre-mRNA and consequent increase of a negative regulator of autophagy, Bcl-2, which correlate with and are caused by a progressive increase of TDP-43, one of the early events associated with ALS-TDP pathogenesis, in the spinal cord of TDP-43 (N390D/+) mice and spinal cord MN derived from their ES cells. The TDP-43 (N390D/+) knock-in mice appear to be an ideal rodent model for basic as well as translational studies of ALS- TDP.
Collapse
|
30
|
Hu QL, Xu ZP, Lan YF, Li B. miR-636 represses cell survival by targeting CDK6/Bcl-2 in cervical cancer. Kaohsiung J Med Sci 2019; 36:328-335. [PMID: 31889428 DOI: 10.1002/kjm2.12181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is widely known as one of the most common types of cancer diagnosed in women, and microRNAs (miRNAs) has been characterized as an important regulator in tumor progression, such as cervical cancer. MiR-636 was found to play a tumor suppressor role in hepatocellular carcinoma tumorigenesis. However, the tumorigenic mechanism of miR-636 on cervical cancer has not yet been found. In the present study, we first found that miR-636 was significantly downregulated in cervical cancer tissues and cell lines. in vitro gain- and loss-of-function assays revealed that overexpression of miR-636 inhibited cell proliferation and induced cell apoptosis, while knockdown of miR-636 reversed the effect on cervical tumorigenesis. Furthermore, cyclin-dependent kinase 6 (CDK6) and B-cell lymphoma 2 (Bcl-2) were characterized as targets of miR-636. Notably, overexpression of CDK6 or Bcl-2 could reverse the inhibitory effect of miR-636 on cervical cancer progression. Mechanistically, miR-636 repressed cell survival by targeting CDK6/Bcl-2 in cervical cancer, which may be the underlying mechanism of miR-636-inhibited cervical progression. In conclusion, our findings clarified the biologic significance of miR-636/CDK6/Bcl-2 axis in cervical cancer progression and suggested the potential therapeutic target ability of miR-636 in treatment of cervical cancer.
Collapse
Affiliation(s)
- Qing-Lan Hu
- Department of Gynecology, Qinyuan Women and Children Hospital, Qingyuan, China
| | - Zun-Peng Xu
- Department of Prenatal Diagnosis Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yun-Fei Lan
- Department of Pathology, Qinyuan Women and Children Hospital, Qingyuan, China
| | - Bei Li
- Department of National Demonstration Base for Early Childhood Development, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
31
|
Shen H, Guo M, Wang L, Cui X. MUC16 facilitates cervical cancer progression via JAK2/STAT3 phosphorylation-mediated cyclooxygenase-2 expression. Genes Genomics 2019; 42:127-133. [PMID: 31736008 DOI: 10.1007/s13258-019-00885-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES MUC16 (mucin 16, also known as CA-125, cancer antigen 125, carcinoma antigen 125, or carbohydrate antigen 125) has been predicted as tumor biomarker for therapy. We determined to investigate effects and regulatory mechanism of MUC16 on cervical tumorigenesis. METHODS Expression levels of MUC16 in cervical cancer cell lines was analyzed via qRT-PCR (quantitative real-time polymerase chain reaction). Knockdown of MUC16 was conducted via shRNA (Short hairpin RNA) transfection. MTT and colony formation assays were used to investigate effect of MUC16 on cell proliferation. Wound healing assay was utilized to detect migration and transwell assay to detect invasion. The underlying mechanism was demonstrated via western blot analysis. RESULTS MUC16 was elevated in cervical cancer cell lines. MUC16 knockdown inhibited cell proliferation, invasion and migration. Gain- and loss-of functional assays revealed that over-expression of MUC16 activated Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) via phosphorylation, thus facilitating cyclooxygenase-2 (COX-2) expression, while knockdown of MUC16 demonstrated the reverse effect on JAK2/STAT3 activation and COX-2 expression. Moreover, inhibition of JAK2/STAT3 attenuated the regulation of MUC16 on COX-2. CONCLUSIONS MUC16 enhanced proliferation and invasion of cervical cancer cells via JAK2/STAT3 phosphorylation-mediated cyclooxygenase-2 expression, suggesting the potential therapeutic target ability of MUC16 to treat cervical cancer.
Collapse
Affiliation(s)
- Hui Shen
- Department of Gynaecology and Obstetrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, No. 109 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| | - Meng Guo
- Department of Gynaecology and Obstetrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, No. 109 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Lu Wang
- Department of Gynaecology and Obstetrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, No. 109 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Xinyue Cui
- Department of Gynaecology and Obstetrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, No. 109 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| |
Collapse
|
32
|
Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit. Cell 2019; 178:1344-1361.e11. [PMID: 31474371 PMCID: PMC6736209 DOI: 10.1016/j.cell.2019.08.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/15/2019] [Accepted: 08/02/2019] [Indexed: 01/07/2023]
Abstract
Necrosis of infected macrophages constitutes a critical pathogenetic event in tuberculosis by releasing mycobacteria into the growth-permissive extracellular environment. In zebrafish infected with Mycobacterium marinum or Mycobacterium tuberculosis, excess tumor necrosis factor triggers programmed necrosis of infected macrophages through the production of mitochondrial reactive oxygen species (ROS) and the participation of cyclophilin D, a component of the mitochondrial permeability transition pore. Here, we show that this necrosis pathway is not mitochondrion-intrinsic but results from an inter-organellar circuit initiating and culminating in the mitochondrion. Mitochondrial ROS induce production of lysosomal ceramide that ultimately activates the cytosolic protein BAX. BAX promotes calcium flow from the endoplasmic reticulum into the mitochondrion through ryanodine receptors, and the resultant mitochondrial calcium overload triggers cyclophilin-D-mediated necrosis. We identify ryanodine receptors and plasma membrane L-type calcium channels as druggable targets to intercept mitochondrial calcium overload and necrosis of mycobacterium-infected zebrafish and human macrophages. TNF induces mitochondrial ROS to cause necrosis of mycobacterium-infected macrophages Mitochondrial ROS activate lysosomal enzymes that lead to BAX activation BAX activates ER ryanodine receptors to cause Ca2+ flow into the mitochondrion Drugs preventing mitochondrial Ca2+ overload prevent pathogenic macrophage necrosis in TB
Collapse
Affiliation(s)
- Francisco J Roca
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK.
| | - Laura J Whitworth
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK
| | - Sarah Redmond
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Ana A Jones
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK; Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Wang Y, Yang F, Jiao FZ, Chen Q, Zhang WB, Wang LW, Gong ZJ. Modulations of Histone Deacetylase 2 Offer a Protective Effect through the Mitochondrial Apoptosis Pathway in Acute Liver Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8173016. [PMID: 31183000 PMCID: PMC6512023 DOI: 10.1155/2019/8173016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to investigate the modulation of histone deacetylase 2 (HDAC2) on mitochondrial apoptosis in acute liver failure (ALF). The cellular model was established with LO2 cells stimulated by tumor necrosis factor alpha (TNF-α)/D-galactosamine (D-gal). Rats were administrated by lipopolysaccharide (LPS)/D-gal as animal model. The cell and animal models were then treated by HDAC2 inhibitor CAY10683. HDAC2 was regulated up or down by lentiviral vector transfection in LO2 cells. The mRNA levels of bcl2 and bax were detected by real-time PCR. The protein levels of HDAC2, bcl2, bax, cytochrome c (cyt c) in mitochondrion and cytosol, apoptosis protease activating factor 1 (apaf1), caspase 3, cleaved-caspase 3, caspase 9, cleaved-caspase 9, acetylated histone H3 (AH3), and histone H3 (H3) were assayed by western blot. Apoptosis was detected by flow cytometry. The serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) levels were also assayed. The openness degree of the mitochondrial permeability transition pore (MPTP) was detected by ultraviolet spectrophotometry. The apoptosis of hepatocytes in liver tissues was determined by tunnel staining. The liver tissue pathology was detected by hematoxylin eosin (HE) staining. The ultrastructure of liver tissue was observed by electron microscopy. Compared with cell and rat model groups, the bax mRNA level was decreased, and bcl2 mRNA was increased in the CAY10683 treatment group. The protein levels of HDAC2, bax, cyt c in cytosol, apaf1, cleaved-caspase 3, and cleaved-caspase 9 were decreased, and the apoptosis rate was decreased (P < 0.05), whereas the protein level of bcl2 and cyt c in the mitochondrion was elevated (P < 0.05) in the CAY10683 treatment group. In the HDAC2 down- or upregulated LO2 cells, the mitochondrial apoptosis pathway was inhibited or activated, respectively. After being treated with TNF-α/D-gal in HDAC2 down- or upregulated LO2 cells, the mitochondrial apoptosis pathway was further suppressed or activated, respectively. The MPTP value was elevated in CAY10683-treated groups compared with the rat model group (P < 0.05). Liver tissue pathological damage and apoptotic index in the CAY10683-treated group were significantly reduced. In addition, AH3 was elevated in both cell and animal model groups (P < 0.05). Downregulated or overexpressed HDAC2 could accordingly increase or decrease the AH3 level, and TNF-α/D-gal could enhance the acetylation effect. These results suggested that modulations of histone deacetylase 2 offer a protective effect through the mitochondrial apoptosis pathway in acute liver failure.
Collapse
Affiliation(s)
- Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Yang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wen-Bin Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Wallach D, Kang TB. Programmed Cell Death in Immune Defense: Knowledge and Presumptions. Immunity 2019; 49:19-32. [PMID: 30021143 DOI: 10.1016/j.immuni.2018.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 01/06/2023]
Abstract
Cell-culture studies are our main source of knowledge of the various forms of programmed cell death. Yet genetic perturbations of death-protein function in animal models are almost the only source of our knowledge of the physiological roles of these programs. Shortcomings in the state of knowledge acquired by these two experimental approaches are exemplified in this Perspective by reference to research on the contribution of apoptosis to lymphocyte development, a subject on which there is already much knowledge, and on the role of necroptosis in inflammation, about which information is just beginning to emerge. To address these shortcomings, there is need to find ways to verify the notions obtained through the current experimental approaches by directly monitoring death programs within specific cells in vivo.
Collapse
Affiliation(s)
- David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chung-Ju 27478, Republic of Korea
| |
Collapse
|
35
|
Guney Eskiler G, Cecener G, Egeli U, Tunca B. BMN 673 (talazoparib): A potent PARP inhibitor for triple negative breast cancer with different genetic profile. J Biochem Mol Toxicol 2019; 33:e22286. [PMID: 30672063 DOI: 10.1002/jbt.22286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
The objective of the present study was to elucidate the effect of BMN 673 (talozoparib) on BRCA1 mutant (HCC1937) and wild-type (MDA-MB-231) triple negative breast cancer (TNBC). The in vitro cytotoxicity results indicated that BMN 673 had considerable inhibitory effects on HCC1937 and MDA-MB-231 cell lines by inducing apoptosis, multicaspase activity, G2/M arrest, and altering the expression levels of apoptosis-related genes (P < 0.01). Additionally, BMN 673 indicated no toxicity on MCF-10A control cells until a certain concentration and incubation time. However, BMN 673, a novel and selective poly ADP ribose polymerase inhibitor, was more potent in TNBC cells bearing BRCA1 mutant than those with wild-type BRCA1. In conclusion, our study, for the first time, demonstrated a molecular mechanism of the induction of apoptosis by BMN 673 in TNBC with different genetic profile. However, further investigations regarding the exact molecular mechanisms underlying BMN 673-inducing apoptotic death and gene-cell line associations are required.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
36
|
Yan X, Li Y, Choi YH, Wang C, Piao Y, Ye J, Jiang J, Li L, Xu H, Cui Q, Yan G, Jin M. Protective Effect and Mechanism of Alprostadil in Acute Respiratory Distress Syndrome Induced by Oleic Acid in Rats. Med Sci Monit 2018; 24:7186-7198. [PMID: 30296789 PMCID: PMC6190919 DOI: 10.12659/msm.909678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This study investigated the role and mechanism of alprostadil in acute respiratory distress syndrome (ARDS) induced by oleic acid (OA) in rats. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into control, OA model, and OA + Alprostadil (2.5, 5, and 10 μg/kg, respectively) groups. The ARDS model was induced by femoral vein injection of OA, and alprostadil was administrated immediately. Lung injury was evaluated by lung wet-dry weight ratio (W/D) and histological analyses. Expressions of ACE, inflammatory mediators, apoptotic-related proteins, and proteins in the MAPKs and NF-κB signaling pathways were determined by Western blot or immunohistochemical staining. RESULTS Compared with the control group, the OA model group had significantly increased W/D, lung injury score, and collagen deposition at 3 h after OA injection. However, alprostadil (10 μg/kg) treatment significantly reduced OA-induced elevation of these indicators. Additionally, OA-induced expression of TNF-α and IL-1β were suppressed by alprostadil. The OA-induced activation of nuclear factor (NF) κB p65 was also reduced by alprostadil. Furthermore, we found that Alprostadil had an inhibitory effect on the phosphorylation of JNK, ERK1/2, and p38 MAPKs. Alprostadil inhibited Bax but increased Bcl-2, indicating a suppressive role in apoptosis. Remarkably increased expression of ACE in the OA model group was observed, which was decreased by alprostadil. CONCLUSIONS Alprostadil has a protective effect on ARDS induced by OA in rats, possibly through inhibiting apoptosis, suppressing the activation of MAPKs and NF-κB signaling pathways, and decreasing ACE protein expression. Therefore, the use of alprostadil in clinical ARDS treatment is promising.
Collapse
Affiliation(s)
- Xiujuan Yan
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Yingxiu Li
- College of Marine Science, Shandong University (Weihai), Weihai, Shandong, China (mainland)
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Chongyang Wang
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Yihua Piao
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Jing Ye
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Jingzhi Jiang
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Liangchang Li
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Huixian Xu
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Qingsong Cui
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Guanghai Yan
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Minggen Jin
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| |
Collapse
|
37
|
Suraweera CD, Caria S, Järvå M, Hinds MG, Kvansakul M. A structural investigation of NRZ mediated apoptosis regulation in zebrafish. Cell Death Dis 2018; 9:967. [PMID: 30237469 PMCID: PMC6148235 DOI: 10.1038/s41419-018-0992-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/20/2023]
Abstract
Bcl-2 family proteins play a crucial role in regulating apoptosis, a process critical for development, eliminating damaged or infected cells, host-pathogen interactions and in disease. Dysregulation of Bcl-2 proteins elicits an expansive cell survival mechanism promoting cell migration, invasion and metastasis. Through a network of intra-family protein-protein interactions Bcl-2 family members regulate the release of cell death factors from mitochondria. NRZ is a novel zebrafish pro-survival Bcl-2 orthologue resident on mitochondria and the endoplasmic reticulum (ER). However, the mechanism of NRZ apoptosis inhibition has not yet been clarified. Here we examined the interactions of NRZ with pro-apoptotic members of the Bcl-2 family using a combination of isothermal calorimetry and mutational analysis of NRZ. We show that NRZ binds almost all zebrafish pro-apoptotic proteins and displays a broad range of affinities. Furthermore, we define the structural basis for apoptosis inhibition of NRZ by solving the crystal structure of both apo-NRZ and a holo form bound to a peptide spanning the binding motif of the pro-apoptotic zBad, a BH3-only protein orthologous to mammalian Bad. The crystal structure of NRZ revealed that it adopts the conserved Bcl-2 like fold observed for other cellular pro-survival Bcl-2 proteins and employs the canonical ligand binding groove to bind Bad BH3 peptide. NRZ engagement of Bad BH3 involves the canonical ionic interaction between NRZ R86 and Bad D104 and an additional ionic interaction between NRZ D79 and Bad R100, and substitution of either NRZ R86 or D79 to Ala reduces the binding to Bad BH3 tenfold or more. Our findings provide a detailed mechanistic understanding for NRZ mediated anti-apoptotic activity in zebrafish by revealing binding to both Bad and Noxa, suggesting that NRZ is likely to occupy a unique mechanistic role in zebrafish apoptosis regulation by acting as a highly promiscuous pro-apoptotic Bcl-2 binder.
Collapse
Affiliation(s)
- Chathura D Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Sofia Caria
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Michael Järvå
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Mark G Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia.
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
38
|
Paupe V, Prudent J. New insights into the role of mitochondrial calcium homeostasis in cell migration. Biochem Biophys Res Commun 2018; 500:75-86. [PMID: 28495532 PMCID: PMC5930976 DOI: 10.1016/j.bbrc.2017.05.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 01/23/2023]
Abstract
Mitochondria are dynamic organelles involved in numerous physiological functions. Beyond their function in ATP production, mitochondria regulate cell death, reactive oxygen species (ROS) generation, immunity and metabolism. Mitochondria also play a key role in the buffering of cytosolic calcium, and calcium transported into the matrix regulates mitochondrial metabolism. Recently, the identification of the mitochondrial calcium uniporter (MCU) and associated regulators has allowed the characterization of new physiological roles for calcium in both mitochondrial and cellular homeostasis. Indeed, recent work has highlighted the importance of mitochondrial calcium homeostasis in regulating cell migration. Cell migration is a property common to all metazoans and is critical to embryogenesis, cancer progression, wound-healing and immune surveillance. Previous work has established that cytoplasmic calcium is a key regulator of cell migration, as oscillations in cytosolic calcium activate cytoskeletal remodelling, actin contraction and focal adhesion (FA) turnover necessary for cell movement. Recent work using animal models and in cellulo experiments to genetically modulate MCU and partners have shed new light on the role of mitochondrial calcium dynamics in cytoskeletal remodelling through the modulation of ATP and ROS production, as well as intracellular calcium signalling. This review focuses on MCU and its regulators in cell migration during physiological and pathophysiological processes including development and cancer. We also present hypotheses to explain the molecular mechanisms by which MCU may regulate mitochondrial dynamics and motility to drive cell migration.
Collapse
Affiliation(s)
- Vincent Paupe
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
39
|
Demelash A, Pfannenstiel LW, Liu L, Gastman BR. Mcl-1 regulates reactive oxygen species via NOX4 during chemotherapy-induced senescence. Oncotarget 2018; 8:28154-28168. [PMID: 28423654 PMCID: PMC5438639 DOI: 10.18632/oncotarget.15962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023] Open
Abstract
Mcl-1, a Bcl-2 family member, is highly expressed in a variety of human cancers and is believed to enhance tumorigenic potential and chemotherapy resistance through the inhibition of apoptosis and senescence. We previously reported that Mcl-1′s regulation of chemotherapy-induced senescence (CIS) is dependent on its ability to prevent reactive oxygen species (ROS) generation. In this report, we demonstrate that Mcl-1-regulated CIS requires not only ROS, but specifically mitochondrial ROS, and that these events are upstream of activation of the DNA damage response, another necessary step toward senescence. Mcl-1′s anti-senescence activity also involves the unique ability to inhibit ROS formation by preventing the upregulation of pro-oxidants. Specifically, we found that NADPH oxidases (NOXs) are regulated by Mcl-1 and that NOX4 expression in particular is a required step for CIS induction that is blocked by Mcl-1. Lastly, we illustrate that by preventing expression of NOX4, Mcl-1 limits its availability in the mitochondria, thereby lowering the production of mitochondrial ROS during CIS. Our studies not only define the essential role of Mcl-1 in chemoresistance, but also for the first time link a key pro-survival Bcl-2 family member with the NOX protein family, both of which have significant ramifications in cancer progression.
Collapse
Affiliation(s)
- Abeba Demelash
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lukas W Pfannenstiel
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Li Liu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian R Gastman
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Institutes of Head and Neck, Dermatology and Plastic Surgery, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
40
|
Popgeorgiev N, Jabbour L, Gillet G. Subcellular Localization and Dynamics of the Bcl-2 Family of Proteins. Front Cell Dev Biol 2018; 6:13. [PMID: 29497611 PMCID: PMC5819560 DOI: 10.3389/fcell.2018.00013] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are recognized as major regulators of the mitochondrial pathway of apoptosis. They control the mitochondrial outer membrane permeabilization (MOMP) by directly localizing to this organelle. Further investigations demonstrated that Bcl-2 related proteins are also found in other intracellular compartments such as the endoplasmic reticulum, the Golgi apparatus, the nucleus and the peroxisomes. At the level of these organelles, Bcl-2 family proteins not only regulate MOMP in a remote fashion but also participate in major cellular processes including calcium homeostasis, cell cycle control and cell migration. With the advances of live cell imaging techniques and the generation of fluorescent recombinant proteins, it became clear that the distribution of Bcl-2 proteins inside the cell is a dynamic process which is profoundly affected by changes in the cellular microenvironment. Here, we describe the current knowledge related to the subcellular distribution of the Bcl-2 family of proteins and further emphasize on the emerging concept that this highly dynamic process is critical for cell fate determination.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 Institut National de la Santé et de la Recherche Médicale, UMR Centre National de la Recherche Scientifique 5286, Université Lyon I, Centre Léon Bérard, Lyon, France
| | - Lea Jabbour
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 Institut National de la Santé et de la Recherche Médicale, UMR Centre National de la Recherche Scientifique 5286, Université Lyon I, Centre Léon Bérard, Lyon, France
| | - Germain Gillet
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 Institut National de la Santé et de la Recherche Médicale, UMR Centre National de la Recherche Scientifique 5286, Université Lyon I, Centre Léon Bérard, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| |
Collapse
|
41
|
Nougarede A, Popgeorgiev N, Kassem L, Omarjee S, Borel S, Mikaelian I, Lopez J, Gadet R, Marcillat O, Treilleux I, Villoutreix BO, Rimokh R, Gillet G. Breast Cancer Targeting through Inhibition of the Endoplasmic Reticulum-Based Apoptosis Regulator Nrh/BCL2L10. Cancer Res 2018; 78:1404-1417. [PMID: 29330143 DOI: 10.1158/0008-5472.can-17-0846] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/03/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
Drug resistance and metastatic relapse remain a top challenge in breast cancer treatment. In this study, we present preclinical evidence for a strategy to eradicate advanced breast cancers by targeting the BCL-2 homolog Nrh/BCL2L10, which we discovered to be overexpressed in >45% of a large cohort of breast invasive carcinomas. Nrh expression in these tumors correlated with reduced metastasis-free survival, and we determined it to be an independent marker of poor prognosis. Nrh protein localized to the endoplasmic reticulum. Mechanistic investigations showed that Nrh made BH4 domain-dependent interactions with the ligand-binding domain of the inositol-1,4,5-triphosphate receptor (IP3R), a type 1/3 Ca2+ channel, allowing Nrh to negatively regulate ER-Ca2+ release and to mediate antiapoptosis. Notably, disrupting Nrh/IP3R complexes by BH4 mimetic peptides was sufficient to inhibit the growth of breast cancer cells in vitro and in vivo Taken together, our results highlighted Nrh as a novel prognostic marker and a candidate therapeutic target for late stage breast cancers that may be addicted to Nrh.Significance: These findings offer a comprehensive molecular model for the activity of Nrh/BCL2L10, a little studied antiapoptotic molecule, prognostic marker, and candidate drug target in breast cancer. Cancer Res; 78(6); 1404-17. ©2018 AACR.
Collapse
Affiliation(s)
- Adrien Nougarede
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Nikolay Popgeorgiev
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Loay Kassem
- Department of Clinical Oncology, Cairo University Hospitals, Al-Saray Street, Al-Maniel, Cairo, Egypt
| | - Soleilmane Omarjee
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Stephane Borel
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Ivan Mikaelian
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Jonathan Lopez
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France.,Hospices civils de Lyon, Centre de Biologie Sud, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, Pierre Bénite, France
| | - Rudy Gadet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Olivier Marcillat
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | | | | | - Ruth Rimokh
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France.
| | - Germain Gillet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France. .,Hospices civils de Lyon, Laboratoire d'anatomie et cytologie pathologiques, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, Pierre Bénite, France
| |
Collapse
|
42
|
|
43
|
Chen HH, Chen SP, Zheng QL, Nie SP, Li WJ, Hu XJ, Xie MY. Genistein Promotes Proliferation of Human Cervical Cancer Cells Through Estrogen Receptor-Mediated PI3K/Akt-NF-κB Pathway. J Cancer 2018; 9:288-295. [PMID: 29344275 PMCID: PMC5771336 DOI: 10.7150/jca.20499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/25/2017] [Indexed: 01/12/2023] Open
Abstract
Phytoestrogens are polyphenol compounds which have similar structure to 17β-estradiol (E2), a kind of main estrogen in women. Thus, phytoestrogens may affect the reproductive and endocrine systems, leading to the development of estrogen-related cancers. The effect of genistein (Gen), one of the most studied phytoestrogens, on human cervical cancer cells (HeLa) was investigated in this study. It was found that Gen at concentrations of 0.001, 0.01, 0.1 and 1 µmol·L-1 promoted the proliferation of HeLa cells in a dose-dependent manner. Gen increased the portion of HeLa cells in S phase and decreased the portion of the cells in G1 phase. Besides, apoptosis rate of the cells was significantly lower when treated with Gen compared with the control group. It was also found that the expression of ERα, Akt or nuclear NF-κB p65 protein was activated by Gen. The correlation between these three proteins may be as following: ERα was the upstream, followed by Akt, and then nuclear NF-κB p65 protein. In addition, the downstream genes of activated nuclear NF-κB p65 were found to be associated with cell cycle and apoptosis of cancer cells. Our results suggested that Gen may stimulate cell proliferation partially through the estrogen receptor-mediated PI3K/Akt-NF-κB pathway and the further activation of the downstream genes of nuclear NF-κB p65.
Collapse
Affiliation(s)
| | | | | | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| | | | | | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China
| |
Collapse
|
44
|
Park KC, Kim SW, Jeon JY, Jo AR, Choi HJ, Kim J, Lee HG, Kim Y, Mills GB, Noh SH, Lee MG, Park ES, Cheong JH. Survival of Cancer Stem-Like Cells Under Metabolic Stress via CaMK2α-mediated Upregulation of Sarco/Endoplasmic Reticulum Calcium ATPase Expression. Clin Cancer Res 2017; 24:1677-1690. [DOI: 10.1158/1078-0432.ccr-17-2219] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
|
45
|
Abstract
AKAP79/150 is essential for coordinating second messenger-responsive enzymes in processes including synaptic long-term depression. Ca2+ directly regulates AKAP79 through its effector calmodulin (CaM), but the molecular basis of this regulation was previously unknown. Here, we report that CaM recognizes a ‘1-4-7-8’ pattern of hydrophobic amino acids starting at Trp79 in AKAP79. Cross-linking coupled to mass spectrometry assisted mapping of the interaction site. Removal of the CaM-binding sequence in AKAP79 prevents formation of a Ca2+-sensitive interface between AKAP79 and calcineurin, and increases resting cellular PKA phosphorylation. We determined a crystal structure of CaM bound to a peptide encompassing its binding site in AKAP79. CaM adopts a highly compact conformation in which its open Ca2+-activated C-lobe and closed N-lobe cooperate to recognize a mixed α/310 helix in AKAP79. The structure guided a bioinformatic screen to identify potential sites in other proteins that may employ similar motifs for interaction with CaM. The A-kinase anchoring protein AKAP79 is regulated by calmodulin (CaM). Here, the authors use crosslinking coupled to mass spectrometry to identify the CaM-binding site in AKAP79 and present the structure of CaM bound to an AKAP79 peptide. The structure shows that CaM adopts a highly compact conformation to interact with a mixed α/310 helix in AKAP79.
Collapse
|
46
|
Rosania R, Varbanova M, Wex T, Langner C, Bornschein J, Giorgio F, Ierardi E, Malfertheiner P. Regulation of apoptosis is impaired in atrophic gastritis associated with gastric cancer. BMC Gastroenterol 2017; 17:84. [PMID: 28662697 PMCID: PMC5492920 DOI: 10.1186/s12876-017-0640-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/22/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Gastric premalignant conditions, atrophic gastritis (AG) and intestinal metaplasia (IM) are characterized by an increase of proliferation and a reduction of apoptosis in epithelial cells. The epithelial cell kinetics in AG and IM in gastric mucosa adjacent to gastric cancer is still unclear. The aim of this study was to evaluate the epithelial cell turnover and expression of proliferation and apoptosis-related genes in gastric cancer (GC) and adjacent mucosa with atrophic gastritis or intestinal metaplasia (AG/IM GC+), as well as in atrophic gastritis or intestinal metaplasia mucosa of patients without GC (AG/IM GC-) and in control biopsy samples of non-transformed gastric mucosa (Control). METHODS We selected 58 patients (M: F = 34:24; age range 20-84 years, median 61.06 years) with 4 well defined histological conditions: 20 controls with histological finding of non-transformed gastric mucosa, 20 patients with AG or IM (AG/IM GC-), and 18 patients with intestinal type gastric adenocarcinoma (GC) and AG or IM in the adjacent mucosa (3 cm from the macroscopic tumour margin, AG/IM GC+). We performed an immunohistochemical staining of Ki67 and TUNEL and quantitative RT-PCR to determine the expression of PCNA and Bax/Bcl-2. RESULTS The immunohistochemical expression of Ki67 and TUNEL in AG/IM GC- was significantly increased compared to not transformed gastric mucosa (p < 0.0001) but not compared to AG/IM in gastric mucosa adjacent to GC. Levels of Bcl-2 were reduced in GC and AG/IM GC- compared to controls as well as in AG/IM GC- compared to AG/IM in mucosa adjacent to GC+ (p < 0.05). Proliferation and apoptosis markers did not correlate with H.pylori status in our study population. CONCLUSIONS In AG/IM associated with GC, no significant changes in the epithelial cell turnover were detected. Decreased Bcl-2 gene expression signified atrophic gastritis and IM in presence of cancer, as well as intestinal type gastric adenocarcinoma.
Collapse
Affiliation(s)
- R Rosania
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy.
| | - M Varbanova
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - T Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - C Langner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - J Bornschein
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - F Giorgio
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - E Ierardi
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - P Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
47
|
Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 2017; 74:1-20. [PMID: 28093238 DOI: 10.1016/j.neubiorev.2017.01.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
48
|
Izquierdo-Torres E, Rodríguez G, Meneses-Morales I, Zarain-Herzberg A. ATP2A3 gene as an important player for resveratrol anticancer activity in breast cancer cells. Mol Carcinog 2017; 56:1703-1711. [PMID: 28150875 DOI: 10.1002/mc.22625] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 02/05/2023]
Abstract
The Ca2+ -ATPases from the Sarco/endoplasmic reticulum (SERCA) are fundamental for maintaining intracellular [Ca2+ ] homeostasis by pumping Ca2+ into the endoplasmic reticulum (ER) of eukaryotic cells. SERCA enzymes are encoded by three different genes (ATP2A1-3), whose expression occurs in a tissue and development stage-specific manner. It has been reported alterations in the expression of SERCA2 and SERCA3 pumps in different types of cancer: oral, lung, colon, stomach, central nervous system, thyroid, breast, and prostate. Resveratrol (RSV), a phytoalexin produced by a wide variety of plants in response to stress situations can modulate cellular processes involved in all stages of carcinogenesis. In this work, we used breast cancer cell lines (MCF-7 and MDA-MB-231) to evaluate mRNA levels of ATP2A2 and ATP2A3 genes in response to RSV treatment. Our results demonstrate that RSV treatment induced the expression of ATP2A3 gene in both cell lines in a time and concentration-dependent manner, while the expression of ATP2A2 gene remained unaffected. The RSV-induced expression of SERCA3 in these breast cancer cell lines produced decreased cell viability, triggered apoptosis and changes in cytosolic Ca2+ levels, as well as changes in the capacity for Ca2+ release by the ER. These data suggest an important participation of SERCA3 genes in RSV-mediated anti-tumor effect in breast cancer cell lines. Nevertheless, further research is needed to elucidate the molecular mechanisms underlying this effect.
Collapse
Affiliation(s)
- Eduardo Izquierdo-Torres
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gabriela Rodríguez
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Iván Meneses-Morales
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Angel Zarain-Herzberg
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
49
|
Hatok J, Racay P. Bcl-2 family proteins: master regulators of cell survival. Biomol Concepts 2017; 7:259-70. [PMID: 27505095 DOI: 10.1515/bmc-2016-0015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival.
Collapse
|
50
|
Danese A, Patergnani S, Bonora M, Wieckowski MR, Previati M, Giorgi C, Pinton P. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:615-627. [PMID: 28087257 DOI: 10.1016/j.bbabio.2017.01.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/30/2016] [Accepted: 01/08/2017] [Indexed: 02/08/2023]
Abstract
Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca2+) release from the ER allows selective Ca2+ uptake by the mitochondria. The perturbation of Ca2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Alberto Danese
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | - Maurizio Previati
- Department of Morphology, Surgery and Experimental Medicine, Section of Human Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|