1
|
Ma Y, Wan J, Hao S, Chen QY, Zhuo M. Recruitment of cortical silent responses by forskolin in the anterior cingulate cortex of adult mice. Mol Pain 2024; 20:17448069241258110. [PMID: 38744422 PMCID: PMC11119478 DOI: 10.1177/17448069241258110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.
Collapse
Affiliation(s)
- Yujie Ma
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
| | - Jinjin Wan
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
| | - Shun Hao
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
| | - Qi-Yu Chen
- Zhuomin Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Min Zhuo
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
- Zhuomin Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Ivanova VO, Balaban PM, Bal NV. Modulation of AMPA Receptors by Nitric Oxide in Nerve Cells. Int J Mol Sci 2020; 21:ijms21030981. [PMID: 32024149 PMCID: PMC7038066 DOI: 10.3390/ijms21030981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is a gaseous molecule with a large number of functions in living tissue. In the brain, NO participates in numerous intracellular mechanisms, including synaptic plasticity and cell homeostasis. NO elicits synaptic changes both through various multi-chain cascades and through direct nitrosylation of targeted proteins. Along with the N-methyl-d-aspartate (NMDA) glutamate receptors, one of the key components in synaptic functioning are α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors—the main target for long-term modifications of synaptic effectivity. AMPA receptors have been shown to participate in most of the functions important for neuronal activity, including memory formation. Interactions of NO and AMPA receptors were observed in important phenomena, such as glutamatergic excitotoxicity in retinal cells, synaptic plasticity, and neuropathologies. This review focuses on existing findings that concern pathways by which NO interacts with AMPA receptors, influences properties of different subunits of AMPA receptors, and regulates the receptors’ surface expression.
Collapse
|
3
|
Summers KC, Bogard AS, Tavalin SJ. Preferential generation of Ca 2+-permeable AMPA receptors by AKAP79-anchored protein kinase C proceeds via GluA1 subunit phosphorylation at Ser-831. J Biol Chem 2019; 294:5521-5535. [PMID: 30737285 DOI: 10.1074/jbc.ra118.004340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/06/2019] [Indexed: 01/01/2023] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission in the mammalian central nervous system. Preferential AMPAR subunit assembly favors heteromeric GluA1/GluA2 complexes. The presence of the GluA2 subunit generates Ca2+-impermeable (CI) AMPARs that have linear current-voltage (I-V) relationships. However, diverse forms of synaptic plasticity and pathophysiological conditions are associated with shifts from CI to inwardly rectifying, GluA2-lacking, Ca2+-permeable (CP) AMPARs on time scales ranging from minutes to days. These shifts have been linked to GluA1 phosphorylation at Ser-845, a protein kinase A (PKA)-targeted site within its intracellular C-terminal tail, often in conjunction with protein kinase A anchoring protein 79 (AKAP79; AKAP150 in rodents), which targets PKA to GluA1. However, AKAP79 may impact GluA1 phosphorylation at other sites by interacting with other signaling enzymes. Here, we evaluated the ability of AKAP79, its signaling components, and GluA1 phosphorylation sites to induce CP-AMPARs under conditions in which CI-AMPARs normally predominate. We found that GluA1 phosphorylation at Ser-831 is sufficient for the appearance of CP-AMPARs and that AKAP79-anchored protein kinase C (PKC) primarily drives the appearance of these receptors via this site. In contrast, other AKAP79-signaling components and C-terminal tail GluA1 phosphorylation sites exhibited a permissive role, limiting the extent to which AKAP79 promotes CP-AMPARs. This may reflect the need for these sites to undergo active phosphorylation/dephosphorylation cycles that control their residency within distinct subcellular compartments. These findings suggest that AKAP79, by orchestrating phosphorylation, represents a key to a GluA1 phosphorylation passcode, which allows the GluA1 subunit to escape GluA2 dominance and promote the appearance of CP-AMPARs.
Collapse
Affiliation(s)
- Kyle C Summers
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| | - Amy S Bogard
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| | - Steven J Tavalin
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| |
Collapse
|
4
|
Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci 2018; 39:876-887. [PMID: 30530507 DOI: 10.1523/jneurosci.1918-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) is a neurotransmitter synthesized in the brain by neuronal nitric oxide synthase (nNOS). Using immunohistochemistry and confocal imaging in the inferior colliculus (IC, auditory midbrain) of the guinea pig (Cavia porcellus, male and female), we show that nNOS occurs in two distinct cellular distributions. We confirm that, in the cortices of the IC, a subset of neurons show cytoplasmic labeling for nNOS, whereas in the central nucleus (ICc), such neurons are not present. However, we demonstrate that all neurons in the ICc do in fact express nNOS in the form of discrete puncta found at the cell membrane. Our multi-labeling studies reveal that nNOS puncta form multiprotein complexes with NMDA receptors, soluble guanylyl cyclase (sGC), and PSD95. These complexes are found apposed to glutamatergic terminals, which is indicative of synaptic function. Interestingly, these glutamatergic terminals express both vesicular glutamate transporters 1 and 2 denoting a specific source of brainstem inputs. With in vivo electrophysiological recordings of multiunit activity in the ICc, we found that local application of NMDA enhances sound-driven activity in a concentration-dependent and reversible fashion. This response is abolished by blockade of nNOS or sGC, indicating that the NMDA effect is mediated solely via the NO and cGMP signaling pathway. This discovery of a ubiquitous, but highly localized, expression of nNOS throughout the ICc and demonstration of the dramatic influence of the NMDA activated NO pathway on sound-driven neuronal activity imply a key role for NO signaling in auditory processing.SIGNIFICANCE STATEMENT We show that neuronal nitric oxide synthase (nNOS), the enzyme that synthesizes nitric oxide (NO), occurs as puncta in apparently all neurons in the central nucleus of the inferior colliculus (ICc) in the auditory midbrain. Punctate nNOS appears at glutamatergic synapses in a complex with glutamate NMDA receptors (NMDA-Rs), soluble guanylyl cyclase (sGC, the NO receptor), and PSD95 (a protein that anchors receptors and enzymes at the postsynaptic density). We show that NMDA-R modulation of sound-driven activity in the ICc is solely mediated by activation of nNOS and sGC. The presence of nNOS throughout this sensory nucleus argues for a major role of NO in hearing. Furthermore, this punctate form of nNOS expression may exist and have gone unnoticed in other brain regions.
Collapse
|
5
|
Lameth J, Gervais A, Colin C, Lévêque P, Jay TM, Edeline JM, Mallat M. Acute Neuroinflammation Promotes Cell Responses to 1800 MHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotox Res 2017; 32:444-459. [PMID: 28578480 DOI: 10.1007/s12640-017-9756-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/08/2023]
Abstract
Mobile phone communications are conveyed by radiofrequency (RF) electromagnetic fields, including pulse-modulated global system for mobile communications (GSM)-1800 MHz, whose effects on the CNS affected by pathological states remain to be specified. Here, we investigated whether a 2-h head-only exposure to GSM-1800 MHz could impact on a neuroinflammatory reaction triggered by lipopolysaccharide (LPS) in 2-week-old or adult rats. We focused on the cerebral cortex in which the specific absorption rate (SAR) of RF averaged 2.9 W/kg. In developing rats, 24 h after GSM exposure, the levels of cortical interleukin-1ß (IL1ß) or NOX2 NADPH oxidase transcripts were reduced by 50 to 60%, in comparison with sham-exposed animals (SAR = 0), as assessed by RT-qPCR. Adult rats exposed to GSM also showed a 50% reduction in the level of IL1ß mRNA, but they differed from developing rats by the lack of NOX2 gene suppression and by displaying a significant growth response of microglial cell processes imaged in anti-Iba1-stained cortical sections. As neuroinflammation is often associated with changes in excitatory neurotransmission, we evaluated changes in expression and phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult cerebral cortex by Western blot analyses. We found that GSM exposure decreased phosphorylation at two residues on the GluA1 AMPAR subunit (serine 831 and 845). The GSM-induced changes in gene expressions, microglia, and GluA1 phosphorylation did not persist 72 h after RF exposure and were not observed in the absence of LPS pretreatment. Together, our data provide evidence that GSM-1800 MHz can modulate CNS cell responses triggered by an acute neuroinflammatory state.
Collapse
Affiliation(s)
- Julie Lameth
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Annie Gervais
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Catherine Colin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Philippe Lévêque
- Université de Limoges, CNRS, XLIM, UMR 7252, 123 avenue Albert Thomas, F-87000, Limoges, France
| | - Thérèse M Jay
- Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR_S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Jean-Marc Edeline
- Paris Saclay Institute of Neuroscience, Neuro-PSI, UMR 9197 CNRS, Université Paris-Sud, 91405, Orsay cedex, France
| | - Michel Mallat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France.
| |
Collapse
|
6
|
Caioli S, Severini C, Ciotti T, Florenzano F, Pimpinella D, Petrocchi Passeri P, Balboni G, Polisca P, Lattanzi R, Nisticò R, Negri L, Zona C. Prokineticin system modulation as a new target to counteract the amyloid beta toxicity induced by glutamatergic alterations in an in vitro model of Alzheimer's disease. Neuropharmacology 2017; 116:82-97. [DOI: 10.1016/j.neuropharm.2016.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 12/28/2022]
|
7
|
Shariatpanahi M, Khodagholi F, Ashabi G, Bonakdar Yazdi B, Hassani S, Azami K, Abdollahi M, Noorbakhsh F, Taghizadeh G, Sharifzadeh M. The involvement of protein kinase G inhibitor in regulation of apoptosis and autophagy markers in spatial memory deficit induced by Aβ. Fundam Clin Pharmacol 2016; 30:364-75. [DOI: 10.1111/fcp.12196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Marjan Shariatpanahi
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Fariba Khodagholi
- NeuroBiology Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Ghorbangol Ashabi
- Department of Physiology; Physiology Research Center; School of Medicine; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Behnoosh Bonakdar Yazdi
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Kian Azami
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Farshid Noorbakhsh
- Department of Immunology; Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Ghorban Taghizadeh
- Department of Neuroscience; Faculty of Advanced Science and Technology in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
- Department of Neuroscience; Faculty of Advanced Science and Technology in Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
8
|
The regulation of synaptic vesicle recycling by cGMP-dependent protein kinase type II in cerebellar granule cells under strong and sustained stimulation. J Neurosci 2014; 34:8788-99. [PMID: 24966379 DOI: 10.1523/jneurosci.0103-14.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
From the early periods of neurogenesis and migration, up until synaptogenesis, both nitric oxide (NO) and its downstream messenger, cGMP, are thought to influence the development of neurons. The NO/cGMP/cGMP-dependent protein kinase (cGK) pathway regulates the clustering and recruitment of synaptic proteins and vesicles to the synapse, adjusting the exoendocytic cycle to the intensity of activity and accelerating endocytosis following large-scale exocytosis. Here, we show that blockage of the N-methyl-D-aspartate receptor impairs the cycling of synaptic vesicles in a subset of boutons on cerebellar granule cells, an effect that was reversed by increasing cGMP. Furthermore, we demonstrate that presynaptic cGK type II (cGKII) plays a major role in this process. Using the FM1-43 dye to track vesicle recycling, we found that knockdown of cGKII and/or the application of a cGK inhibitor reduced the efficiency of synaptic vesicle recycling to a similar extent. Likewise, in cerebellar granule cells transfected with vGlut1-pHluorin to follow the exoendocytotic cycle, application of a cGK inhibitor slowed vesicle endocytosis when exocytosis was accelerated through strong and sustained stimulation. Additionally, ultrastructural analysis showed that cGKII knockdown or inhibition favored the formation of endosomal-like structures after strong and sustained stimulation. We conclude that cGKII controls the homeostatic balance of vesicle exocytosis and endocytosis in synaptic boutons of rat cerebellar granule cells.
Collapse
|
9
|
Mao LM, Hastings JM, Fibuch EE, Wang JQ. Propofol selectively alters GluA1 AMPA receptor phosphorylation in the hippocampus but not prefrontal cortex in young and aged mice. Eur J Pharmacol 2014; 738:237-44. [PMID: 24907515 DOI: 10.1016/j.ejphar.2014.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
Propofol is a commonly used general anesthetic agent which has been previously shown to enhance the inhibitory GABAergic transmission in the central nervous system. In addition to the GABAergic element, the excitatory transmission may be another central molecular site impacted by propofol. Increasing evidence implies that the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor represents an excitatory amino acid receptor subtype subjected to the regulation by propofol. Indeed, in this study, we found that a single injection of propofol at an anesthetic dose increased AMPA receptor GluA1 subunit phosphorylation in young (2-3 months old) and aged (20-21 months old) mice in vivo. Propofol caused an increase in GluA1 phosphorylation in the hippocampus but not in the prefrontal cortex. The propofol effect was also site-selective as the drug elevated GluA1 phosphorylation at serine 831 (S831) but not serine 845. Interestingly, while propofol induced a moderate and transient increase in S831 phosphorylation in young mice, the drug caused a substantial and sustained S831 phosphorylation in aged animals. Total GluA1 abundance remained stable in the hippocampus and prefrontal cortex in both young and aged mice in response to propofol. These results provide evidence supporting the sensitivity of GluA1 AMPA receptors to propofol. A single dose of propofol was able to upregulate GluA1 phosphorylation in the confined hippocampus in an age-dependent manner.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, MO 64108, USA
| | - James M Hastings
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Eugene E Fibuch
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
10
|
Wincott CM, Abera S, Vunck SA, Tirko N, Choi Y, Titcombe RF, Antoine SO, Tukey DS, DeVito LM, Hofmann F, Hoeffer CA, Ziff EB. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits. Neurobiol Learn Mem 2014; 114:32-9. [PMID: 24752151 DOI: 10.1016/j.nlm.2014.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 11/18/2022]
Abstract
Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response.
Collapse
Affiliation(s)
- Charlotte M Wincott
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, United States.
| | - Sinedu Abera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Sarah A Vunck
- The Ohio State University, Departments of Psychology and Neuroscience, Columbus, OH 43210, United States
| | - Natasha Tirko
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, United States
| | - Yoon Choi
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States
| | - Roseann F Titcombe
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, United States
| | - Shannon O Antoine
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, United States
| | - David S Tukey
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Loren M DeVito
- Center for Memory and Brain, Boston University, Boston, MA 02215, United States
| | - Franz Hofmann
- Technical University of Munich, Biedersteiner Str. 29, 80802 Munich, Germany
| | - Charles A Hoeffer
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States; Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, United States
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|
11
|
Roles of subunit phosphorylation in regulating glutamate receptor function. Eur J Pharmacol 2013; 728:183-7. [PMID: 24291102 DOI: 10.1016/j.ejphar.2013.11.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/10/2013] [Accepted: 11/15/2013] [Indexed: 12/21/2022]
Abstract
Protein phosphorylation is an important mechanism for regulating ionotropic glutamate receptors (iGluRs). Early studies have established that major iGluR subtypes, including α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and N-methyl-d-aspartate (NMDA) receptors, are subject to phosphorylation. Multiple serine, threonine, and tyrosine residues predominantly within the C-terminal regions of AMPA receptor and NMDA receptor subunits have been identified as sensitive phosphorylation sites. These distinct sites undergo either constitutive phosphorylation or activity-dependent phosphorylation induced by changing cellular and synaptic inputs. An increasing number of synapse-enriched protein kinases have been found to phosphorylate iGluRs The common kinases include protein kinase A, protein kinase C, Ca(2+)/calmodulin-dependent protein kinase II, Src/Fyn non-receptor tyrosine kinases, and cyclin dependent kinase-5. Regulated phosphorylation plays a well-documented role in modulating the biochemical, biophysical, and functional properties of the receptor. In the future, identifying the precise mechanisms how phosphorylation regulates iGluR activities and finding the link between iGluR phosphorylation and the pathogenesis of various brain diseases, including psychiatric and neurodegenerative diseases, chronic pain, stroke, Alzheimer's disease and substance addiction, will be hot topics and could contribute to the development of novel pharmacotherapies, by targeting the defined phosphorylation process, for suppressing iGluR-related disorders.
Collapse
|