1
|
He Q, Zhao X, Wu D, Jia S, Liu C, Cheng Z, Huang F, Chen Y, Lu T, Lu S. Hydrophobic tag-based protein degradation: Development, opportunity and challenge. Eur J Med Chem 2023; 260:115741. [PMID: 37607438 DOI: 10.1016/j.ejmech.2023.115741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
Higashi S, Imamura Y, Kikuma T, Matoba T, Orita S, Yamaguchi Y, Ito Y, Takeda Y. Analysis of Selenoprotein F Binding to UDP-Glucose:Glycoprotein Glucosyltransferase (UGGT) by a Photoreactive Crosslinker. Chembiochem 2023; 24:e202200444. [PMID: 36219527 DOI: 10.1002/cbic.202200444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Indexed: 11/06/2022]
Abstract
In the endoplasmic reticulum glycoprotein quality control system, UDP-glucose : glycoprotein glucosyltransferase (UGGT) functions as a folding sensor. Although it is known to form a heterodimer with selenoprotein F (SelenoF), the details of the complex formation remain obscure. A pulldown assay using co-transfected SelenoF and truncated mutants of human UGGT1 (HUGT1) revealed that SelenoF binds to the TRXL2 domain of HUGT1. Additionally, a newly developed photoaffinity crosslinker was selectively introduced into cysteine residues of recombinant SelenoF to determine the spatial orientation of SelenoF to HUGT1. The crosslinking experiments showed that SelenoF formed a covalent bond with amino acids in the TRXL3 region and the interdomain between βS2 and GT24 of HUGT1 via the synthetic crosslinker. SelenoF might play a role in assessing and refining the disulfide bonds of misfolded glycoproteins in the hydrophobic cavity of HUGT1 as it binds to the highly flexible region of HUGT1 to reach its long hydrophobic cavity. Clarification of the SelenoF-binding domain of UGGT and its relative position will help predict and reveal the function of SelenoF from a structural perspective.
Collapse
Affiliation(s)
- Sayaka Higashi
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yuki Imamura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Takashi Kikuma
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Takahiro Matoba
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Saya Orita
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.,RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Yoichi Takeda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
3
|
Takeda Y, Kikuma T. UDP-glucose:Glycoprotein Glucosyltransferase–Selenof Complex: A Potential Glycoprotein-folding Machine. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2118.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoichi Takeda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University
| | - Takashi Kikuma
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University
| |
Collapse
|
4
|
Takeda Y, Kikuma T. UDP-glucose:Glycoprotein Glucosyltransferase–Selenof Complex: A Potential Glycoprotein-folding Machine. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2118.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoichi Takeda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University
| | - Takashi Kikuma
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University
| |
Collapse
|
5
|
Brown AI, Koslover EF. Design principles for the glycoprotein quality control pathway. PLoS Comput Biol 2021; 17:e1008654. [PMID: 33524026 PMCID: PMC7877790 DOI: 10.1371/journal.pcbi.1008654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/11/2021] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Newly-translated glycoproteins in the endoplasmic reticulum (ER) often undergo cycles of chaperone binding and release in order to assist in folding. Quality control is required to distinguish between proteins that have completed native folding, those that have yet to fold, and those that have misfolded. Using quantitative modeling, we explore how the design of the quality-control pathway modulates its efficiency. Our results show that an energy-consuming cyclic quality-control process, similar to the observed physiological system, outperforms alternative designs. The kinetic parameters that optimize the performance of this system drastically change with protein production levels, while remaining relatively insensitive to the protein folding rate. Adjusting only the degradation rate, while fixing other parameters, allows the pathway to adapt across a range of protein production levels, aligning with in vivo measurements that implicate the release of degradation-associated enzymes as a rapid-response system for perturbations in protein homeostasis. The quantitative models developed here elucidate design principles for effective glycoprotein quality control in the ER, improving our mechanistic understanding of a system crucial to maintaining cellular health. We explore the architecture and limitations of the quality-control pathway responsible for efficient folding of secretory proteins. Newly-synthesized proteins are tagged by the attachment of a ‘glycan’ sugar chain which facilitates their binding to a chaperone that assists protein folding. Removal of a specific sugar group on the glycan ends the interaction with the chaperone, and not-yet-folded proteins can be re-tagged for another round of chaperone binding. A degradation pathway acts in parallel with the folding cycle, to remove those proteins that have remained unfolded for a sufficiently long time. We develop and solve a mathematical model of this quality-control system, showing that the cyclical design found in living cells is uniquely able to maximize folded protein throughput while avoiding accumulation of unfolded proteins. Although this physiological model provides the best performance, its parameters must be adjusted to perform optimally under different protein production loads, and any single fixed set of parameters leads to poor performance when production rate is altered. We find that a single adjustable parameter, the protein degradation rate, is sufficient to allow optimal performance across a range of conditions. Interestingly, observations of living cells suggest that the degradation speed is indeed rapidly adjusted.
Collapse
Affiliation(s)
- Aidan I. Brown
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Glycan dependent refolding activity of ER glucosyltransferase (UGGT). Biochim Biophys Acta Gen Subj 2020; 1864:129709. [DOI: 10.1016/j.bbagen.2020.129709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/21/2023]
|
7
|
Origin and Evolution of Two Independently Duplicated Genes Encoding UDP- Glucose: Glycoprotein Glucosyltransferases in Caenorhabditis and Vertebrates. G3-GENES GENOMES GENETICS 2020; 10:755-768. [PMID: 31796523 PMCID: PMC7003075 DOI: 10.1534/g3.119.400868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UDP- glucose: glycoprotein glucosyltransferase (UGGT) is a protein that operates as the gatekeeper for the endoplasmic reticulum (ER) quality control mechanism of glycoprotein folding. It is known that vertebrates and Caenorhabditis genomes harbor two uggt gene copies that exhibit differences in their properties. Bayesian phylogenetic inference based on 195 UGGT and UGGT-like protein sequences of an ample spectrum of eukaryotic species showed that uggt genes went through independent duplications in Caenorhabditis and vertebrates. In both lineages, the catalytic domain of the duplicated genes was subjected to a strong purifying selective pressure, while the recognition domain was subjected to episodic positive diversifying selection. Selective relaxation in the recognition domain was more pronounced in Caenorhabditis uggt-b than in vertebrates uggt-2. Structural bioinformatics analysis revealed that Caenorhabditis UGGT-b protein lacks essential sequences proposed to be involved in the recognition of unfolded proteins. When we assayed glucosyltrasferase activity of a chimeric protein composed by Caenorhabditis uggt-b recognition domain fused to S. pombe catalytic domain expressed in yeast, no activity was detected. The present results support the conservation of the UGGT activity in the catalytic domain and a putative divergent function of the recognition domain for the UGGT2 protein in vertebrates, which would have gone through a specialization process. In Caenorhabditis, uggt-b evolved under different constraints compared to uggt-a which, by means of a putative neofunctionalization process, resulted in a non-redundant paralog. The non-canonical function of uggt-b in the worm lineage highlights the need to take precautions before generalizing gene functions in model organisms.
Collapse
|
8
|
Ortíz-Rentería M, Juárez-Contreras R, González-Ramírez R, Islas LD, Sierra-Ramírez F, Llorente I, Simon SA, Hiriart M, Rosenbaum T, Morales-Lázaro SL. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain. Proc Natl Acad Sci U S A 2018; 115:E1657-E1666. [PMID: 29378958 PMCID: PMC5816171 DOI: 10.1073/pnas.1715972115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.
Collapse
Affiliation(s)
- Miguel Ortíz-Rentería
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Rebeca Juárez-Contreras
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Ricardo González-Ramírez
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General Dr. Manuel Gea González, Secretaría de Salud, 14080 Tlalpan, Ciudad de México, México
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Félix Sierra-Ramírez
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Sidney A Simon
- Department of Neurobiology, Duke University, Durham, NC 27710
| | - Marcia Hiriart
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México;
| |
Collapse
|
9
|
Functional analysis of endoplasmic reticulum glucosyltransferase (UGGT): Synthetic chemistry's initiative in glycobiology. Semin Cell Dev Biol 2015; 41:90-8. [DOI: 10.1016/j.semcdb.2014.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023]
|
10
|
Takeda Y, Seko A, Hachisu M, Daikoku S, Izumi M, Koizumi A, Fujikawa K, Kajihara Y, Ito Y. Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active. Glycobiology 2014; 24:344-50. [DOI: 10.1093/glycob/cwt163] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|