1
|
Citron F, Ho IL, Balestrieri C, Liu Z, Yen EY, Cecchetto L, Perelli L, Zhang L, Montanez LC, Blazanin N, Dyke CA, Shah R, Attanasio S, Srinivasan S, Chen KC, Chen Z, Scognamiglio I, Pham N, Khan H, Jiang S, Pan J, Vanderkruk B, Leung CS, Mattohti M, Rai K, Chu Y, Wang L, Gao S, Deem AK, Carugo A, Wang H, Yao W, Tonon G, Xiong Y, Lorenzi PL, Bonini C, Anna Zal M, Hoffman BG, Heffernan T, Giuliani V, Jeter CR, Lissanu Y, Genovese G, Pilato MD, Viale A, Draetta GF. WRAD core perturbation impairs DNA replication fidelity promoting immunoediting in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619543. [PMID: 39484624 PMCID: PMC11526913 DOI: 10.1101/2024.10.21.619543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is unclear how cells counteract the potentially harmful effects of uncoordinated DNA replication in the context of oncogenic stress. Here, we identify the WRAD (WDR5/RBBP5/ASH2L/DPY30) core as a modulator of DNA replication in pancreatic ductal adenocarcinoma (PDAC) models. Molecular analyses demonstrated that the WRAD core interacts with the replisome complex, with disruption of DPY30 resulting in DNA re-replication, DNA damage, and chromosomal instability (CIN) without affecting cancer cell proliferation. Consequently, in immunocompetent models, DPY30 loss induced T cell infiltration and immune-mediated clearance of highly proliferating cancer cells with complex karyotypes, thus improving anti-tumor efficacy upon anti-PD-1 treatment. In PDAC patients, DPY30 expression was associated with high tumor grade, worse prognosis, and limited response to immune checkpoint blockade. Together, our findings indicate that the WRAD core sustains genome stability and suggest that low intratumor DPY30 levels may identify PDAC patients who will benefit from immune checkpoint inhibitors.
Collapse
|
2
|
Sustar AE, Strand LG, Zimmerman SG, Berg CA. Imaginal disk growth factors are Drosophila chitinase-like proteins with roles in morphogenesis and CO2 response. Genetics 2023; 223:iyac185. [PMID: 36576887 PMCID: PMC9910413 DOI: 10.1093/genetics/iyac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/18/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022] Open
Abstract
Chitinase-like proteins (CLPs) are members of the family 18 glycosyl hydrolases, which include chitinases and the enzymatically inactive CLPs. A mutation in the enzyme's catalytic site, conserved in vertebrates and invertebrates, allowed CLPs to evolve independently with functions that do not require chitinase activity. CLPs normally function during inflammatory responses, wound healing, and host defense, but when they persist at excessive levels at sites of chronic inflammation and in tissue-remodeling disorders, they correlate positively with disease progression and poor prognosis. Little is known, however, about their physiological function. Drosophila melanogaster has 6 CLPs, termed Imaginal disk growth factors (Idgfs), encoded by Idgf1, Idgf2, Idgf3, Idgf4, Idgf5, and Idgf6. In this study, we developed tools to facilitate characterization of the physiological roles of the Idgfs by deleting each of the Idgf genes using the CRISPR/Cas9 system and assessing loss-of-function phenotypes. Using null lines, we showed that loss of function for all 6 Idgf proteins significantly lowers viability and fertility. We also showed that Idgfs play roles in epithelial morphogenesis, maintaining proper epithelial architecture and cell shape, regulating E-cadherin and cortical actin, and remarkably, protecting these tissues against CO2 exposure. Defining the normal molecular mechanisms of CLPs is a key to understanding how deviations tip the balance from a physiological to a pathological state.
Collapse
Affiliation(s)
- Anne E Sustar
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Liesl G Strand
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Sandra G Zimmerman
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Celeste A Berg
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| |
Collapse
|
3
|
Mir MA, Qayoom H, Sofi S, Jan N. Proteomics: A groundbreaking development in cancer biology. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
4
|
Wani S, Humaira, Farooq I, Ali S, Rehman MU, Arafah A. Proteomic profiling and its applications in cancer research. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
5
|
Cancer proteomics: An overview. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
6
|
Firdous P, Hassan T, Farooq S, Nissar K. Applications of proteomics in cancer diagnosis. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
7
|
Acón M, Geiß C, Torres-Calvo J, Bravo-Estupiñan D, Oviedo G, Arias-Arias JL, Rojas-Matey LA, Edwin B, Vásquez-Vargas G, Oses-Vargas Y, Guevara-Coto J, Segura-Castillo A, Siles-Canales F, Quirós-Barrantes S, Régnier-Vigouroux A, Mendes P, Mora-Rodríguez R. MYC dosage compensation is mediated by miRNA-transcription factor interactions in aneuploid cancer. iScience 2021; 24:103407. [PMID: 34877484 PMCID: PMC8627999 DOI: 10.1016/j.isci.2021.103407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesize that dosage compensation of critical genes arises from systems-level properties for cancer cells to withstand the negative effects of aneuploidy. We identified several candidate genes in cancer multiomics data and developed a biocomputational platform to construct a mathematical model of their interaction network with micro-RNAs and transcription factors, where the property of dosage compensation emerged for MYC and was dependent on the kinetic parameters of its feedback interactions with three micro-RNAs. These circuits were experimentally validated using a genetic tug-of-war technique to overexpress an exogenous MYC, leading to overexpression of the three microRNAs involved and downregulation of endogenous MYC. In addition, MYC overexpression or inhibition of its compensating miRNAs led to dosage-dependent cytotoxicity in MYC-amplified colon cancer cells. Finally, we identified negative correlation of MYC dosage compensation with patient survival in TCGA breast cancer patients, highlighting the potential of this mechanism to prevent aneuploid cancer progression.
Collapse
Affiliation(s)
- ManSai Acón
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Carsten Geiß
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Jorge Torres-Calvo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Diana Bravo-Estupiñan
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Ph.D. Program in Sciences, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Guillermo Oviedo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Jorge L Arias-Arias
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Luis A Rojas-Matey
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Baez Edwin
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Gloriana Vásquez-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Yendry Oses-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - José Guevara-Coto
- School of Computer Sciences and Informatics (ECCI), University of Costa Rica, San Jose Costa Rica, 11501-2060 San José, Costa Rica
| | - Andrés Segura-Castillo
- Laboratorio de Investigación e Innovación Tecnológica, Universidad Estatal a Distancia (UNED), 474-2050 San José, Costa Rica
| | - Francisco Siles-Canales
- Pattern Recognition and Intelligent Systems Laboratory, Department of Electrical Engineering, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Steve Quirós-Barrantes
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Pedro Mendes
- Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030 CT, USA
| | - Rodrigo Mora-Rodríguez
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
8
|
Andreychuk YV, Zadorsky SP, Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 2020. [DOI: 10.1134/s0026893320050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Scarpato R, Testi S, Colosimo V, Garcia Crespo C, Micheli C, Azzarà A, Tozzi MG, Ghirri P. Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108295. [DOI: 10.1016/j.mrrev.2019.108295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
|
10
|
Ried T, Meijer GA, Harrison DJ, Grech G, Franch-Expósito S, Briffa R, Carvalho B, Camps J. The landscape of genomic copy number alterations in colorectal cancer and their consequences on gene expression levels and disease outcome. Mol Aspects Med 2019; 69:48-61. [PMID: 31365882 DOI: 10.1016/j.mam.2019.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Aneuploidy, the unbalanced state of the chromosome content, represents a hallmark of most solid tumors, including colorectal cancer. Such aneuploidies result in tumor specific genomic imbalances, which emerge in premalignant precursor lesions. Moreover, increasing levels of chromosomal instability have been observed in adenocarcinomas and are maintained in distant metastases. A number of studies have systematically integrated copy number alterations with gene expression changes in primary carcinomas, cell lines, and experimental models of aneuploidy. In fact, chromosomal aneuploidies target a number of genes conferring a selective advantage for the metabolism of the cancer cell. Copy number alterations not only have a positive correlation with expression changes of the majority of genes on the altered genomic segment, but also have effects on the transcriptional levels of genes genome-wide. Finally, copy number alterations have been associated with disease outcome; nevertheless, the translational applicability in clinical practice requires further studies. Here, we (i) review the spectrum of genetic alterations that lead to colorectal cancer, (ii) describe the most frequent copy number alterations at different stages of colorectal carcinogenesis, (iii) exemplify their positive correlation with gene expression levels, and (iv) discuss copy number alterations that are potentially involved in disease outcome of individual patients.
Collapse
Affiliation(s)
- Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, Bethesda, MD, USA.
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| | - Godfrey Grech
- Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sebastià Franch-Expósito
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain
| | - Romina Briffa
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK; Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain; Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
11
|
Brennan CM, Vaites LP, Wells JN, Santaguida S, Paulo JA, Storchova Z, Harper JW, Marsh JA, Amon A. Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells. Genes Dev 2019; 33:1031-1047. [PMID: 31196865 PMCID: PMC6672052 DOI: 10.1101/gad.327494.119] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022]
Abstract
In this study, Brennan et al. identify protein complex stoichiometry imbalances as a major cause of protein aggregation in aneuploid cells. They propose that proteotoxic stress is a universal feature of aneuploid cells and show that degradation and aggregation of excess polypeptides function as a form of dosage compensation. Aneuploidy, a condition characterized by chromosome gains and losses, causes reduced fitness and numerous cellular stresses, including increased protein aggregation. Here, we identify protein complex stoichiometry imbalances as a major cause of protein aggregation in aneuploid cells. Subunits of protein complexes encoded on excess chromosomes aggregate in aneuploid cells, which is suppressed when expression of other subunits is coordinately altered. We further show that excess subunits are either degraded or aggregate and that protein aggregation is nearly as effective as protein degradation at lowering levels of excess proteins. Our study explains why proteotoxic stress is a universal feature of the aneuploid state and reveals protein aggregation as a form of dosage compensation to cope with disproportionate expression of protein complex subunits.
Collapse
Affiliation(s)
- Christopher M Brennan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Laura Pontano Vaites
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Stefano Santaguida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zuzana Storchova
- Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Paul F. Glenn Center for Biology of Aging Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
12
|
Simões-Sousa S, Littler S, Thompson SL, Minshall P, Whalley H, Bakker B, Belkot K, Moralli D, Bronder D, Tighe A, Spierings DCJ, Bah N, Graham J, Nelson L, Green CM, Foijer F, Townsend PA, Taylor SS. The p38α Stress Kinase Suppresses Aneuploidy Tolerance by Inhibiting Hif-1α. Cell Rep 2018; 25:749-760.e6. [PMID: 30332653 PMCID: PMC6205844 DOI: 10.1016/j.celrep.2018.09.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/25/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
Deviating from the normal karyotype dramatically changes gene dosage, in turn decreasing the robustness of biological networks. Consequently, aneuploidy is poorly tolerated by normal somatic cells and acts as a barrier to transformation. Paradoxically, however, karyotype heterogeneity drives tumor evolution and the emergence of therapeutic drug resistance. To better understand how cancer cells tolerate aneuploidy, we focused on the p38 stress response kinase. We show here that p38-deficient cells upregulate glycolysis and avoid post-mitotic apoptosis, leading to the emergence of aneuploid subclones. We also show that p38 deficiency upregulates the hypoxia-inducible transcription factor Hif-1α and that inhibiting Hif-1α restores apoptosis in p38-deficent cells. Because hypoxia and aneuploidy are both barriers to tumor progression, the ability of Hif-1α to promote cell survival following chromosome missegregation raises the possibility that aneuploidy tolerance coevolves with adaptation to hypoxia.
Collapse
Affiliation(s)
- Susana Simões-Sousa
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Samantha Littler
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Sarah L Thompson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Paul Minshall
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Helen Whalley
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Klaudyna Belkot
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Daniela Moralli
- Wellcome Centre Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Daniel Bronder
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Nourdine Bah
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Joshua Graham
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Louisa Nelson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Catherine M Green
- Wellcome Centre Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Paul A Townsend
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK.
| |
Collapse
|
13
|
Griffiths JA, Scialdone A, Marioni JC. Mosaic autosomal aneuploidies are detectable from single-cell RNAseq data. BMC Genomics 2017; 18:904. [PMID: 29178830 PMCID: PMC5702132 DOI: 10.1186/s12864-017-4253-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/01/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Aneuploidies are copy number variants that affect entire chromosomes. They are seen commonly in cancer, embryonic stem cells, human embryos, and in various trisomic diseases. Aneuploidies frequently affect only a subset of cells in a sample; this is known as "mosaic" aneuploidy. A cell that harbours an aneuploidy exhibits disrupted gene expression patterns which can alter its behaviour. However, detection of aneuploidies using conventional single-cell DNA-sequencing protocols is slow and expensive. METHODS We have developed a method that uses chromosome-wide expression imbalances to identify aneuploidies from single-cell RNA-seq data. The method provides quantitative aneuploidy calls, and is integrated into an R software package available on GitHub and as an Additional file of this manuscript. RESULTS We validate our approach using data with known copy number, identifying the vast majority of aneuploidies with a low rate of false discovery. We show further support for the method's efficacy by exploiting allele-specific gene expression levels, and differential expression analyses. CONCLUSIONS The method is quick and easy to apply, straightforward to interpret, and represents a substantial cost saving compared to single-cell genome sequencing techniques. However, the method is less well suited to data where gene expression is highly variable. The results obtained from the method can be used to investigate the consequences of aneuploidy itself, or to exclude aneuploidy-affected expression values from conventional scRNA-seq data analysis.
Collapse
Affiliation(s)
- Jonathan A. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, Cambridge, UK
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD UK
- Present Address: Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, Cambridge, UK
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, CB10 1SA, Cambridge, UK
| |
Collapse
|
14
|
Domingues PH, Nanduri LSY, Seget K, Venkateswaran SV, Agorku D, Viganó C, von Schubert C, Nigg EA, Swanton C, Sotillo R, Bosio A, Storchová Z, Hardt O. Cellular Prion Protein PrP C and Ecto-5'-Nucleotidase Are Markers of the Cellular Stress Response to Aneuploidy. Cancer Res 2017; 77:2914-2926. [PMID: 28377454 DOI: 10.1158/0008-5472.can-16-3052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/23/2017] [Accepted: 03/20/2017] [Indexed: 11/16/2022]
Abstract
Aneuploidy is a hallmark of most human tumors, but the molecular physiology of aneuploid cells is not well characterized. In this study, we screened cell surface biomarkers of approximately 300 proteins by multiparameter flow cytometry using multiple aneuploid model systems such as cell lines, patient samples, and mouse models. Several new biomarkers were identified with altered expression in aneuploid cells, including overexpression of the cellular prion protein CD230/PrPC and the immunosuppressive cell surface enzyme ecto-5'-nucleotidase CD73. Functional analyses associated these alterations with increased cellular stress. An increased number of CD73+ cells was observed in confluent cultures in aneuploid cells relative to their diploid counterparts. An elevated expression in CD230/PrPC was observed in serum-deprived cells in association with increased generation of reactive oxygen species. Overall, our work identified biomarkers of aneuploid karyotypes, which suggest insights into the underlying molecular physiology of aneuploid cells. Cancer Res; 77(11); 2914-26. ©2017 AACR.
Collapse
Affiliation(s)
| | - Lalitha S Y Nanduri
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.,Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Katarzyna Seget
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sharavan V Venkateswaran
- Division of Molecular Thoracic Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - David Agorku
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Francis Crick Institute, London, United Kingdom
| | - Rocío Sotillo
- Division of Molecular Thoracic Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Zuzana Storchová
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Olaf Hardt
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| |
Collapse
|
15
|
Post-Translational Dosage Compensation Buffers Genetic Perturbations to Stoichiometry of Protein Complexes. PLoS Genet 2017; 13:e1006554. [PMID: 28121980 PMCID: PMC5266272 DOI: 10.1371/journal.pgen.1006554] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
Understanding buffering mechanisms for various perturbations is essential for understanding robustness in cellular systems. Protein-level dosage compensation, which arises when changes in gene copy number do not translate linearly into protein level, is one mechanism for buffering against genetic perturbations. Here, we present an approach to identify genes with dosage compensation by increasing the copy number of individual genes using the genetic tug-of-war technique. Our screen of chromosome I suggests that dosage-compensated genes constitute approximately 10% of the genome and consist predominantly of subunits of multi-protein complexes. Importantly, because subunit levels are regulated in a stoichiometry-dependent manner, dosage compensation plays a crucial role in maintaining subunit stoichiometries. Indeed, we observed changes in the levels of a complex when its subunit stoichiometries were perturbed. We further analyzed compensation mechanisms using a proteasome-defective mutant as well as ribosome profiling, which provided strong evidence for compensation by ubiquitin-dependent degradation but not reduced translational efficiency. Thus, our study provides a systematic understanding of dosage compensation and highlights that this post-translational regulation is a critical aspect of robustness in cellular systems. Cells are exposed to environmental changes leading to fluctuations in biological processes. For example, changes in gene copy number are a source of such fluctuations. An increase in gene copy number generally leads to a linear increase in the amount of protein; however, a small number of genes do not show a proportional increase in protein level. We investigated how many of the genes exhibit this nonlinearity between gene copy number and protein level. Our screen of chromosome I suggests that genes with such nonlinear relationships constitute approximately 10% of the genome and consist predominantly of subunits of multi-protein complexes. Because previous studies showed that an imbalance of complex subunits is very toxic for cell growth, a function of the nonlinear relationship may be to correct the balance of complex subunits. We also investigated the underlying mechanisms of the nonlinearity by focusing on protein synthesis and degradation. Our data indicate that protein degradation, but not synthesis, is responsible for maintaining a balance of complex subunits. Thus, this study provides insight into the mechanisms for coping with the fluctuations in biological processes.
Collapse
|
16
|
Tůmová P, Uzlíková M, Jurczyk T, Nohýnková E. Constitutive aneuploidy and genomic instability in the single-celled eukaryote Giardia intestinalis. Microbiologyopen 2016; 5:560-74. [PMID: 27004936 PMCID: PMC4985590 DOI: 10.1002/mbo3.351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 11/23/2022] Open
Abstract
Giardia intestinalis is an important single‐celled human pathogen. Interestingly, this organism has two equal‐sized transcriptionally active nuclei, each considered diploid. By evaluating condensed chromosome numbers and visualizing homologous chromosomes by fluorescent in situ hybridization, we determined that the Giardia cells are constitutively aneuploid. We observed karyotype inter‐and intra‐population heterogeneity in eight cell lines from two clinical isolates, suggesting constant karyotype evolution during in vitro cultivation. High levels of chromosomal instability and frequent mitotic missegregations observed in four cell lines correlated with a proliferative disadvantage and growth retardation. Other cell lines, although derived from the same clinical isolate, revealed a stable yet aneuploid karyotype. We suggest that both chromatid missegregations and structural rearrangements contribute to shaping the Giardia genome, leading to whole‐chromosome aneuploidy, unequal gene distribution, and a genomic divergence of the two nuclei within one cell. Aneuploidy in Giardia is further propagated without p53‐mediated cell cycle arrest and might have been a key mechanism in generating the genetic diversity of this human pathogen.
Collapse
Affiliation(s)
- Pavla Tůmová
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Praha 2, 12800, Czech Republic
| | - Magdalena Uzlíková
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Praha 2, 12800, Czech Republic
| | - Tomáš Jurczyk
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, Praha 2, Czech Republic
| | - Eva Nohýnková
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Praha 2, 12800, Czech Republic
| |
Collapse
|
17
|
Dürrbaum M, Storchová Z. Effects of aneuploidy on gene expression: implications for cancer. FEBS J 2015; 283:791-802. [DOI: 10.1111/febs.13591] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/02/2015] [Accepted: 11/05/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Milena Dürrbaum
- Group Maintenance of Genome Stability; Max Planck Institute of Biochemistry; Martinsried Germany
- Center for Integrated Protein Science Munich; Ludwig-Maximilian-University Munich; Germany
| | - Zuzana Storchová
- Group Maintenance of Genome Stability; Max Planck Institute of Biochemistry; Martinsried Germany
- Center for Integrated Protein Science Munich; Ludwig-Maximilian-University Munich; Germany
| |
Collapse
|
18
|
Donnelly N, Storchová Z. Causes and consequences of protein folding stress in aneuploid cells. Cell Cycle 2015; 14:495-501. [PMID: 25602365 DOI: 10.1080/15384101.2015.1006043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Imbalanced chromosomal content, or aneuploidy, strongly affects the physiology of eukaryotic cells. The consequences of these effects are frequently detrimental, in particular in Metazoans. In humans, aneuploidy has been causatively linked to pathological conditions such as spontaneous abortions, trisomy syndromes and cancer. However, only in recent years have we witnessed an unraveling of the complex phenotypes that are caused by aneuploidy. Importantly, it has become apparent that aneuploidy evokes global and uniform changes that cannot be explained by the altered expression of the specific genes located on aneuploid chromosomes. Recent discoveries show that aneuploidy negatively affects protein folding; in particular, the functions of the molecular chaperone Heat Shock Protein 90 (HSP90) and the upstream regulator of heat shock-induced transcription, Heat Shock Factor 1 (HSF1), are impaired. Here we discuss the possible causes and consequences of this impairment and propose that the protein folding stress instigated by aneuploidy may be a common feature of conditions as variable as cancer and trisomy syndromes.
Collapse
Affiliation(s)
- Neysan Donnelly
- a Group Maintenance of Genome Stability; Max Planck Institute of Biochemistry ; Martinsried , Germany
| | | |
Collapse
|
19
|
Stepanenko A, Dmitrenko V. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 2015; 569:182-90. [DOI: 10.1016/j.gene.2015.05.065] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023]
|
20
|
Proteomics in cancer biomarkers discovery: challenges and applications. DISEASE MARKERS 2015; 2015:321370. [PMID: 25999657 PMCID: PMC4427011 DOI: 10.1155/2015/321370] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/15/2015] [Accepted: 02/18/2015] [Indexed: 01/28/2023]
Abstract
With the introduction of recent high-throughput technologies to various fields of science and medicine, it is becoming clear that obtaining large amounts of data is no longer a problem in modern research laboratories. However, coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation, in accordance with the evidence-based systems biology, are critical factors in ensuring the emergence of good science out of these recent technologies. This review focuses on the proteomics field and its new perspectives on cancer research. Cornerstone publications that have tremendously helped scientists and clinicians to better understand cancer pathogenesis; to discover novel diagnostic and/or prognostic biomarkers; and to suggest novel therapeutic targets will be presented. The author of this review aims at presenting some of the relevant literature data that helped as a step forward in bridging the gap between bench work results and bedside potentials. Undeniably, this review cannot include all the work that is being produced by expert research groups all over the world.
Collapse
|
21
|
Veitia RA, Potier MC. Gene dosage imbalances: action, reaction, and models. Trends Biochem Sci 2015; 40:309-17. [PMID: 25937627 DOI: 10.1016/j.tibs.2015.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/17/2015] [Accepted: 03/27/2015] [Indexed: 12/29/2022]
Abstract
Single-gene deletions, duplications, and misregulation, as well as aneuploidy, can lead to stoichiometric imbalances within macromolecular complexes and cellular networks, causing their malfunction. Such alterations can be responsible for inherited or somatic genetic disorders including Mendelian diseases, aneuploid syndromes, and cancer. We review the effects of gene dosage alterations at the transcriptomic and proteomic levels, and the various responses of the cell to counteract their effects. Furthermore, we explore several biochemical models and ideas that can provide the rationale for treatments modulating the effects of gene dosage imbalances.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Paris, France; Université Paris Diderot, Paris, France.
| | - Marie Claude Potier
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| |
Collapse
|
22
|
Abstract
Cancer cells differ from normal healthy cells in multiple aspects ranging from altered cellular signaling through metabolic changes to aberrant chromosome content, so called aneuploidy. The large-scale changes in copy numbers of chromosomes or large chromosomal regions due to aneuploidy alter significantly the gene expression, as several hundreds of genes are gained or lost. Comparison of quantitative genome, transcriptome and proteome data enables dissection of the molecular causes that underlie the gene expression changes observed in cancer cells and provides a new perspective on the molecular consequences of aneuploidy. Here, we will map to what degree aneuploidy affects the expression of genes located on the affected chromosomes. We will also address the effects of aneuploidy on global gene expression in cancer cells as well as whether and how it may contribute to the physiology of cancer cells.
Collapse
Affiliation(s)
- Milena Dürrbaum
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Zuzana Storchová
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
- Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, 80336, Munich, Germany.
| |
Collapse
|
23
|
Stepanenko A, Andreieva S, Korets K, Mykytenko D, Huleyuk N, Vassetzky Y, Kavsan V. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells. Mutat Res 2015; 771:56-69. [PMID: 25771981 DOI: 10.1016/j.mrfmmm.2014.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
The pattern of genome evolution can be divided into two phases: the step-wise continuous phase (step-wise clonal evolution, stable dominant clonal chromosome aberrations (CCAs), and low frequency of non-CCAs, NCCAs) and punctuated phase (marked by elevated NCCAs and transitional CCAs). Depending on the phase, system stresses (the diverse CIN promoting factors) may lead to the very different phenotype responses. To address the contribution of chromosome instability (CIN) to phenotype changes of tumor cells, we characterized CCAs/NCCAs of HeLa and HEK293 cells, and their derivatives after genotoxic stresses (a stable plasmid transfection, ectopic expression of cancer-associated CHI3L1 gene or treatment with temozolomide) by conventional cytogenetics, copy number alterations (CNAs) by array comparative genome hybridization, and phenotype changes by cell viability and soft agar assays. Transfection of either the empty vector pcDNA3.1 or pcDNA3.1_CHI3L1 into 293 cells initiated the punctuated genome changes. In contrast, HeLa_CHI3L1 cells demonstrated the step-wise genome changes. Increased CIN correlated with lower viability of 293_pcDNA3.1 cells but higher colony formation efficiency (CFE). Artificial CHI3L1 production in 293_CHI3L1 cells increased viability and further contributed to CFE. The opposite growth characteristics of 293_CHI3L1 and HeLa_CHI3L1 cells were revealed. The effect and function of a (trans)gene can be opposite and versatile in cells with different genetic network, which is defined by genome context. Temozolomide treatment of 293_pcDNA3.1 cells intensified the stochastic punctuated genome changes and CNAs, and significantly reduced viability and CFE. In contrast, temozolomide treatment of HeLa_CHI3L1 cells promoted the step-wise genome changes, CNAs, and increased viability and CFE, which did not correlate with the ectopic CHI3L1 production. Thus, consistent coevolution of karyotypes and phenotypes was observed. CIN as a driving force of genome evolution significantly influences growth characteristics of tumor cells and should be always taken into consideration during the different experimental manipulations.
Collapse
Affiliation(s)
- Aleksei Stepanenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine.
| | - Svitlana Andreieva
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Kateryna Korets
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Dmytro Mykytenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79008, Ukraine
| | - Yegor Vassetzky
- CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, Villejuif 94805, France
| | - Vadym Kavsan
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| |
Collapse
|
24
|
Donnelly N, Passerini V, Dürrbaum M, Stingele S, Storchová Z. HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells. EMBO J 2014; 33:2374-87. [PMID: 25205676 DOI: 10.15252/embj.201488648] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aneuploidy is a hallmark of cancer and is associated with malignancy and poor prognosis. Recent studies have revealed that aneuploidy inhibits proliferation, causes distinct alterations in the transcriptome and proteome and disturbs cellular proteostasis. However, the molecular mechanisms underlying the changes in gene expression and the impairment of proteostasis are not understood. Here, we report that human aneuploid cells are impaired in HSP90-mediated protein folding. We show that aneuploidy impairs induction of the heat shock response suggesting that the activity of the transcription factor heat shock factor 1 (HSF1) is compromised. Indeed, increased levels of HSF1 counteract the effects of aneuploidy on HSP90 expression and protein folding, identifying HSF1 overexpression as the first aneuploidy-tolerating mutation in human cells. Thus, impaired HSF1 activity emerges as a critical factor underlying the phenotypes linked to aneuploidy. Finally, we demonstrate that deficient protein folding capacity directly shapes gene expression in aneuploid cells. Our study provides mechanistic insight into the causes of the disturbed proteostasis in aneuploids and deepens our understanding of the role of HSF1 in cytoprotection and carcinogenesis.
Collapse
Affiliation(s)
- Neysan Donnelly
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Verena Passerini
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Milena Dürrbaum
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Silvia Stingele
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Zuzana Storchová
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
25
|
Storchova Z. Ploidy changes and genome stability in yeast. Yeast 2014; 31:421-30. [DOI: 10.1002/yea.3037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Zuzana Storchova
- Group Maintenance of Genome Stability; Max Planck Institute of Biochemistry; Martinsried Germany
| |
Collapse
|