1
|
Strutynskyi R, Strutynska N, Mys L, Goshovska Y, Korkach Y, Fedichkina R, Okhai I, Strutynskyi V, Sagach V. Glutathione Upregulates the Expression of K ATP Channels and Vasorelaxation Responses and Inhibits mPTP Opening and Oxidative Stress in the Heart Mitochondria of Old Rats. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3562847. [PMID: 37265475 PMCID: PMC10232108 DOI: 10.1155/2023/3562847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Background In the present work, we investigated the effect of exogenous glutathione in old rats on the expression of ATP-sensitive potassium (KATP) channels, the mitochondrial permeability transition pore (mPTP) opening in the heart, and the vasorelaxation responses of isolated aortic rings to activation of KATP channels. Methods Experiments were performed on adult (6 months) and old (24 months) male Wistar rats, which were divided into three groups: adult, old, and glutathione-treated old rats. Glutathione was injected intraperitoneally at a dose of 52 mg/kg 1 hour before the studies. The mRNA expression of KATP channels was determined using reverse transcription and real-time polymerase chain reaction analysis. The effect of glutathione administration on mPTP opening, relaxation responses of isolated aortic rings, and oxidative stress markers was studied. Results It was shown that the expression levels of Kir6.1, Kir6.2, and SUR1 subunits of KATP channels and levels of reduced glutathione were significantly increased in glutathione-treated old rats (by 8.3, 2.8, 13.1, and 1.5-fold, respectively), whereas the levels of oxidative stress markers (hydrogen peroxide, diene conjugates, malondialdehyde, and rate of superoxide generation) in heart mitochondria and mPTP opening were significantly reduced. Relaxation of aortic rings was significantly increased in response to the actions of KATP channel openers flocalin and pinacidil in glutathione-treated animals, which was prevented by glibenclamide. Conclusions Thus, the administration of exogenous glutathione to old rats resulted in a significant increase in the expression levels of the Kir6.1, Kir6.2, and SUR1 subunits of KATP channels and a decrease in oxidative stress. This was accompanied by inhibition of mPTP opening and enhancement of vasorelaxation responses to activation of KATP channels.
Collapse
Affiliation(s)
- Ruslan Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Nataliіa Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Lidiia Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Yulia Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Yuliia Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Raisa Fedichkina
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Iryna Okhai
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Vladyslav Strutynskyi
- Department of Immunophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Vadym Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| |
Collapse
|
2
|
Strutynskyi RB, Strutynska NA, Piven OO, Mys LA, Goshovska YV, Fedichkina RA, Okhai IY, Strutynskyi VR, Dosenko VE, Dobrzyn P, Sagach VF. Upregulation of ATP-Sensitive Potassium Channels as the Potential Mechanism of Cardioprotection and Vasorelaxation Under the Action of Pyridoxal-5-Phosphate in Old Rats. J Cardiovasc Pharmacol Ther 2023; 28:10742484231213175. [PMID: 37946524 DOI: 10.1177/10742484231213175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Background: The aging process is accompanied by the weakening of the protective systems of the organism, in particular by the decrease in the expression of ATP-sensitive potassium (KATP) channels and in the synthesis of H2S. The aim of our work was to investigate the role of KATP channels in the cardioprotection induced by pyridoxal-5-phosphate (PLP) in aging. Methods: Experiments were performed on adult and old (aged 24 months) male Wistar rats, which were divided into 3 groups: adults, old, and old PLP-treated rats. PLP was administered orally once a day for 14 days at a dose of 0.7 mg/kg. The levels of mRNA expression of subunits KATP channels were determined by reverse transcription and real-time polymerase chain reaction analysis. Protein expression levels were determined by the Western blot. Cardiac tissue morphology was determined using transverse 6 μm deparaffinized sections stained with picrosirius red staining. Vasorelaxation responses of isolated aortic rings and the function of Langendorff-perfused isolated hearts during ischemia-reperfusion, H2S levels, and markers of oxidative stress were also studied. Results: Administration of PLP to old rats reduces cardiac fibrosis and improves cardiac function during ischemia-reperfusion and vasorelaxation responses to KATP channels opening. At the same time, there was a significant increase in mRNA and protein expression of SUR2 and Kir6.1 subunits of KATP channels, H2S production, and reduced markers of oxidative stress. The specific KATP channel inhibitor-glibenclamide prevented the enhancement of vasodilator responses and anti-ischemic protection in PLP-treated animals. Conclusions: We suggest that this potential therapeutic effect of PLP in old animals may be a result of increased expression of KATP channels and H2S production.
Collapse
Affiliation(s)
- Ruslan B Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nataliіa A Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana O Piven
- The Laboratory of Molecular Medical Biochemistry of Nencki, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lidiia A Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yulia V Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raisa A Fedichkina
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna Y Okhai
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vladyslav R Strutynskyi
- Department of Immunophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Victor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Pawel Dobrzyn
- The Laboratory of Molecular Medical Biochemistry of Nencki, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Vadim F Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Mahdi H, Jovanović A. SUR2A as a base for cardioprotective therapeutic strategies. Mol Biol Rep 2022; 49:6717-6723. [PMID: 35301655 DOI: 10.1007/s11033-022-07281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND ATP-sensitive K+ (KATP) channels link the metabolic state of the cell with membrane excitability and SUR2A serves as a regulatory subunit of sarcolemmal KATP channels. The aim of the present study was to review SUR2A-mediated cardioprotection. METHODS AND RESULTS A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science direct was performed. Levels of SUR2A regulate number of fully assembled KATP channels in the sarcolemma. Increased numbers of sarcolemmal KATP channels protect cardiomyocytes against different types of stress by improving the timing of KATP channels opening, but, also, by catalyzing ATP production in subsarcolemmal space. Fully-assembled sarcolemmal KATP channels protein complex contain ATP-producing enzymes in addition to channel subunits, SUR2A and Kir6.2. An increase in the number of fully-assembled channels results in increased levels of ATP-producing enzymes and subsarcolemmal ATP, which is beneficial in ischemia. Expression of SUR2A is regulated by diverse mechanisms, including AMPK, PI3K/Akt, and ERK1/2 as well as intracellular levels of NAD+/NADH and ATP. There are many compounds and treatments that can be used to regulate SUR2A and some of them seem to be clinically viable options. The most suitable medication to use to increase SUR2A and confer cardioprotection in the clinical setting seems to be nicotinamide. It is one of the safest compounds used in clinical practice and all pre-clinical studies demonstrated that it is an efficient cardioprotective agent. CONCLUSIONS Taken all together, SUR2A-based cardioprotection is a likely efficient and safe cardioprotective strategy that can be quickly introduced into clinical practice.
Collapse
Affiliation(s)
- Habib Mahdi
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou Engomi, P.O. Box 24005, 2414, CY-1700, Nicosia, Cyprus
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou Engomi, P.O. Box 24005, 2414, CY-1700, Nicosia, Cyprus. .,Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
4
|
Mys L, Goshovska Y, Strutynska N, Fedichkina R, Korkach Y, Strutynskyi R, Sagach V. Pyridoxal-5-phosphate induced cardioprotection in aging associated with up-expression of cystathionine-γ-lyase, 3-mercaptopyruvate sulfurtransferase, and ATP-sensitive potassium channels. Eur J Clin Invest 2022; 52:e13683. [PMID: 34587304 DOI: 10.1111/eci.13683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND In the present work, we investigated the cardioprotective potential of pyridoxal-5-phosphate (PLP) in old rats as a cofactor of enzymes that synthesize hydrogen sulphide (H2 S). MATERIALS AND METHODS PLP was administered per os in a dose of 0.7 mg per kg daily for 2 weeks. Rats were divided into three groups (adult, old and old +PLP) of 20 animals. The cardiac mRNA levels of genes encoding H2 S-synthesizing enzymes cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), uncoupling proteins (UCP3), subunits of ATP-sensitive potassium (KATP ) channels were determined using real-time polymerase chain reaction analysis. We also studied the effect of PLP-administration on the content of H2 S, oxidative stress, the activities of inducible and constitutive NO-synthase (iNOS, cNOS), arginase and nitrate reductase in the heart homogenates as well as cardiac resistance to ischemia-reperfusion in Langendorff-isolated heart model. RESULTS It was shown that PLP restored mRNA levels of CSE, 3-MST and UCP3 genes, and H2 S content and also significantly increased the expression of SUR2 and Kir6.1 (2.2 and 3.3 times, respectively) in the heart of old rats. PLP significantly reduced the formation of superoxide, malondialdehyde, diene conjugates as well as the activity of iNOS and arginase. PLP significantly increased constitutive synthesis of NO and prevented reperfusion disturbances of the heart function after ischemia. CONCLUSIONS Thus, PLP-administration in old rats was associated with up-expression of CSE, 3-MST, UCP3 and SUR2 and Kir6.1 subunits of KATP channels, and also increased cNOS activity and reduced oxidative stress and prevented reperfusion dysfunction of the heart in ischemia-reperfusion.
Collapse
Affiliation(s)
- Lidiia Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yulia Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nataliia Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raisa Fedichkina
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ruslan Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vadim Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
5
|
Sudhir R, Jaafar N, Du Q, Sukhodub A, Jovanović S, Kreouzi M, Jovanović A. Increase in cardioprotective SUR2A does not alter heart rate and heart rate regulation by physical activity and diurnal rhythm. J Basic Clin Physiol Pharmacol 2021; 33:619-624. [PMID: 34870381 DOI: 10.1515/jbcpp-2021-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES SUR2A is an ABC protein serving as a regulatory subunit of ATP-sensitive (KATP) channels. An increase in SUR2A levels is cardioprotective and it is a potential therapeutic strategy against ischaemic heart disease, heart failure and other diseases. However, whether overexpression of this protein has any adverse effects is yet to be fully understood. Here, we examined the heart rate and the heart rate diurnal variation in mice overexpressing SUR2A (SUR2A+) and their littermate controls (WT) using ECG telemetry that was continuously recorded for 14 days (days 8-23 post-radiotransmitter implantation). METHODS Using SigmaPlot 14.0 and Microsoft Excel, Area Under the Curve (AUC) for each parameter was calculated and plotted in a graph. RESULTS Both WT and SUR2A+ mice were more physically active during nights and there were no significant differences between two phenotypes. Physical activity was associated with increased heart rate in both phenotypes, but there were no differences in heart rate between phenotypes irrespective of physical activity or time of the day. A diurnal heart rate variation was preserved in the SUR2A+ mice. As area under the curve (AUC) analysis has the potential to reveal differences that are invisible with other statistical methods, we compared AUC of heart rate in SUR2A+ and WT mice. This analysis did not yield anything different from traditional analysis. CONCLUSIONS We conclude that increased SUR2A levels are not associated with changes in physical activity, heart rate and/or circadian rhythm influence on the heart rate. This lack of adverse effects supports a notion that manipulation with SUR2A levels is a promising cardioprotective strategy.
Collapse
Affiliation(s)
- Rajni Sudhir
- Department of Molecular and Clinical Medicine, University of Dundee, Dundee, Scotland, UK
| | - Nadim Jaafar
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Qingyou Du
- Department of Molecular and Clinical Medicine, University of Dundee, Dundee, Scotland, UK
| | - Andriy Sukhodub
- Department of Molecular and Clinical Medicine, University of Dundee, Dundee, Scotland, UK
| | - Sofija Jovanović
- Department of Molecular and Clinical Medicine, University of Dundee, Dundee, Scotland, UK
| | - Magdalini Kreouzi
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.,Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
6
|
Strutynskyi RB, Goncharov SV, Tumanovska LV, Nagibin VS, Dosenko VE. Cardiac dysfunction in spontaneously hypertensive old rats is associated with a significant decrease of SUR2 expression. Mol Cell Biochem 2021; 476:4343-4349. [PMID: 34455535 DOI: 10.1007/s11010-021-04237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
ATP-sensitive potassium (KATP) channels are participants of mechanisms of pathological myocardial remodeling containment. The aim of our work was to find the association of changes in the expression of Kir6.1, Kir6.2, SUR1, and SUR2 subunits of KATP channels with changes in heart function and structure during aging under conditions of the constant increase of vascular pressure. The experiments were carried out on young and old spontaneously hypertensive rats (SHR) and Wistar rats. The expression levels of KATP channels subunits were determined using reverse transcription and quantitative PCR. It is shown that the mRNA expression level of Kir6.1 in young SHR rats is significantly lower (6.3-fold, p = 0.035) than that of young Wistar rats that may be one of the causes of arterial hypertension in SHR. At the same time, mRNA expression of both Kir6.1 and Kir6.2 in old SHR rats was significantly higher (6.8-fold, p = 0.003, and 5.9-fold, p = 0.006, respectively) than in young hypertensive animals. In both groups of old animals, SUR2 expression was significantly reduced compared to young animals, in Wistar rats at 3.87-fold (p = 0.028) and in SHR rats at 48.2-fold (p = 0.033). Changes in SUR1 expression were not significant. Thus, significant changes in the cardiovascular system, including impaired function and structure of the heart in old SHR rats, were associated with a significant decrease in SUR2 expression that may be one of the mechanisms of heart failure decompensation. Therefore, it can be assumed that increased expression of SUR2 may be one of the protective mechanisms against pathological myocardial remodeling.
Collapse
Affiliation(s)
- Ruslan B Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| | - Serhii V Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| | - Lesya V Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| | - Vasyl S Nagibin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine.
| | - Victor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| |
Collapse
|
7
|
Abdul KSM, Faiz N, Jovanović A, Tan W. Isosteviol Protects H9c2 Cells Against Hypoxia-reoxygenation by Activating ERK1/2. Cardiovasc Hematol Disord Drug Targets 2021; 21:73-77. [PMID: 33593268 DOI: 10.2174/1871529x21666210216122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
AIMS In the present study, we have investigated the cardioprotective properties of Isosteviol (STV) under conditions of hypoxia-reoxygenation and elucidated the underlying mechanism. BACKGROUND In our previous studies, we have determined that STV exhibits neuro- and cardio-protective properties. However, the mechanism underlying STV-induced cardioprotection has not yet been fully understood. METHODS All experiments were performed on rat heart embryonic H9c2 cell line. To induce hypoxia- reoxygenation, cells were exposed to 1% oxygen (in no glucose and no sodium pyruvate DMEM) following by reoxygenation (using fully supplemented MEM). Cells viability was tested by MTT assay, and protein levels were compared by Western blotting. RESULTS Treatment of heart embryonic H9c2 cells with STV (10 μM) significantly increased the survival of cells exposed to hypoxia-reoxygenation. STV (10 μM) activated ERK1/2 and DRP1 in hypoxia-reoxygenation, but did not have any effects on ERK1/2 or DRP1 in normoxia. STV (10 μM) did not regulate CAMKII, AKT or AMPK signaling pathways. CONCLUSION Taken all together, our findings demonstrate that 1) STV protects H9c2 cells against hypoxia-reoxygenation and that 2) this effect is mediated via ERK1/2. The property of STV that selectively activates ERK1/2 in cells exposed to stress, but not in cells under non-stress conditions, makes this compound a promising candidate-drug for therapy against myocardial ischemia-reperfusion in clinical practice.
Collapse
Affiliation(s)
- Khaja S M Abdul
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Neha Faiz
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia CY-1700, Cyprus
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Mohammed Abdul KS, Rayadurgam J, Faiz N, Jovanović A, Tan W. Cardioprotection by isosteviol derivate JC105: A unique drug property to activate ERK1/2 only when cells are exposed to hypoxia-reoxygenation. J Cell Mol Med 2020; 24:10924-10934. [PMID: 32794652 PMCID: PMC7521240 DOI: 10.1111/jcmm.15721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 01/19/2023] Open
Abstract
In the present study, we have investigated potential cardioprotective properties of Isosteviol analogue we recently synthesized and named JC105. Treatment of heart embryonic H9c2 cells with JC105 (10 μM) significantly increased survival of cells exposed to hypoxia‐reoxygenation. JC105 (10 μM) activated ERK1/2, DRP1 and increased levels of cardioprotective SUR2A in hypoxia‐reoxygenation, but did not have any effects on ERK1/2, DRP1 and/or SUR2A in normoxia. U0126 (10 μM) inhibited JC105‐mediated phosphorylation of ERK1/2 and DRP1 without affecting AKT or AMPK, which were also not regulated by JC105. Seahorse bioenergetic analysis demonstrated that JC105 (10 μM) did not affect mitochondria at rest, but it counteracted all mitochondrial effects of hypoxia‐reoxygenation. Cytoprotection afforded by JC105 was inhibited by U0126 (10 μM). Taken all together, these demonstrate that (a) JC105 protects H9c2 cells against hypoxia‐reoxygenation and that (b) this effect is mediated via ERK1/2. The unique property of JC105 is that selectively activates ERK1/2 in cells exposed to stress, but not in cells under non‐stress conditions.
Collapse
Affiliation(s)
| | - Jayachandra Rayadurgam
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Neha Faiz
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.,Centre for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Jovanović A. SUR2A: How to exploit this protein to treat ischaemic heart disease? ARHIV ZA FARMACIJU 2020. [DOI: 10.5937/arhfarm2001001j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
10
|
Pyrazinamide may possess cardioprotective properties. J Antibiot (Tokyo) 2019; 72:714-717. [PMID: 31243346 PMCID: PMC6760625 DOI: 10.1038/s41429-019-0202-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/14/2019] [Accepted: 06/09/2019] [Indexed: 11/21/2022]
Abstract
Pyrazinamide is an anti-tubercular agent, used as a part of a three-drug regime (any three of the following: rifampicin, isoniazid, pyrazinamide, streptomycin or ethambutol) for the initial phase of treatment. One of the effects pyrazinamide has on mammalian cells is to regulate NAD+/NADH levels. We have recently found that changes in NAD+/NADH are associated with regulation of expression levels of SUR2A, a cardioprotective protein serving as a regulatory subunit of cardiac ATP-sensitive K+ (KATP) channels. Here, we have tested whether pyrazinamide regulate expression of SUR2A/KATP channel subunits and resistance to metabolic stress in embryonic heart-derived H9c2 cells. We have found that 24-h-long treatment with pyrazinamide (3 mcg/ml) increased mRNA levels of SUR2A, SUR2B and Kir6.1 without affecting mRNA levels of other KATP channel subunits. This treatment with pyrazinamide (3 mcg/ml) protected H9c2 cells against stress induced by 10 mM 2,4-dinitrophenol (DNP). The survival rate of DNP-treated cells was 45.6 ± 2.3% (n = 5) if not treated with pyrazinamide and 90.8 ± 2.3% (n = 5; P < 0.001) if treated with pyrazinamide. We conclude that pyrazinamide increases resistance to metabolic stress in heart H9c2 cells probably by increasing SUR2A and SUR2B expression. Our results of this study indicate that pyrazinamide should be seriously considered as a drug of choice for patients with tuberculosis and ischaemic heart disease.
Collapse
|
11
|
Du Q, Jovanović S, Sukhodub A, Ngoi YS, Lal A, Zheleva M, Jovanović A. Insulin down-regulates cardioprotective SUR2A in the heart-derived H9c2 cells: A possible explanation for some adverse effects of insulin therapy. Biochem Biophys Rep 2018; 16:12-18. [PMID: 30211323 PMCID: PMC6132176 DOI: 10.1016/j.bbrep.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/28/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
Some recent studies associated insulin therapy with negative cardiovascular events and shorter lifespan. SUR2A, a KATP channel subunit, regulate cardioprotection and cardiac ageing. Here, we have tested whether glucose and insulin regulate expression of SUR2A/KATP channel subunits and resistance to metabolic stress in heart H9c2 cells. Absence of glucose in culture media decreased SUR2A mRNA, while mRNAs of Kir6.2, Kir6.1, SUR1 and IES SUR2B were increased. 2-deoxyglucose (50 mM) decreased mRNAs of SUR2A, SUR2B and SUR1, did not affect IES SUR2A and IES SUR2B mRNAs and increased Kir6.2 mRNA. No glucose and 2-deoxyglucose (50 mM) decreased resistance to an inhibitor of oxidative phosphorylation, DNP (10 mM). 50 mM glucose did not alter KATP channel subunits nor cellular resistance to DNP (10 mM). Insulin (20 ng/ml) in both physiological and high glucose (50 mM) down-regulated SUR2A while upregulating Kir6.1 and Kir6.2 (in high glucose only). Insulin (20 ng/ml) in physiological and high glucose decreased cell survival in DNP (10 mM). As opposed to Kir6.2, infection with SUR2A resulted in titre-dependent cytoprotection. We conclude that insulin decreases resistance to metabolic stress in H9c2 cells by decreasing SUR2A expression. Lower cardiac SUR2A levels underlie increased myocardial susceptibility to metabolic stress and shorter lifespan.
Collapse
Affiliation(s)
- Qingyou Du
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, United Kingdom
| | - Sofija Jovanović
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, United Kingdom
| | - Andriy Sukhodub
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, United Kingdom
| | - Yong Shi Ngoi
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, United Kingdom
| | - Aashray Lal
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, United Kingdom
| | - Marina Zheleva
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, United Kingdom
| | | |
Collapse
|
12
|
Jovanović A. Cardioprotective signalling: Past, present and future. Eur J Pharmacol 2018; 833:314-319. [PMID: 29935170 DOI: 10.1016/j.ejphar.2018.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 11/29/2022]
Abstract
A few decades ago, cardiac muscle was discovered to possess signalling pathways that, when activated, protect the myocardium against the damage induced by ischaemia-reperfusion. The ability of cardiac muscle to protect itself against injury has been termed 'cardioprotection'. Many compounds and procedures can trigger cardioprotection including conditionings (exposure to brief episodes of ischaemia-reperfusion to protect against sustained ischaemia-reperfusion), hypoxia, adenosine, acetylcholine, adrenomedullin, angiotensin, bradykinin, catecholamines, endothelin, estrogens, phenylephrine, opioids, testosterone, and many more. These triggers activate many intracellular signalling factors including protein kinases, different enzymes, transcription factors and defined signalling pathways to target structures in mitochondria, sarcoplasmic reticulum, nucleus and sarcolemma to mediate cardioprotection. Although a lot of information about cardioprotection has been acquired, there are still two major outstanding issues to be addressed in the future 1) better understanding of spatio-temporal relationships between signalling elements, and; 2) devising therapeutic strategies against myocardial diseases based on cardioprotective signalling. Further research is required to paint integral picture of cardioprotective signalling and more clinical studies are required to properly test clinical efficacy and safety of potential cardioprotective strategies. Therapies against cardiac diseases based on cardioprotective strategies would be a perfect adjunct to current therapeutic strategies based on restitution of coronary blood flow and regulation of myocardial metabolic demands.
Collapse
Affiliation(s)
- Aleksandar Jovanović
- University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, CY-1700 Nicosia, Cyprus.
| |
Collapse
|
13
|
Guerrero-Orriach JL, Escalona Belmonte JJ, Ramirez Fernandez A, Ramirez Aliaga M, Rubio Navarro M, Cruz Mañas J. Cardioprotection with halogenated gases: how does it occur? Drug Des Devel Ther 2017; 11:837-849. [PMID: 28352158 PMCID: PMC5358986 DOI: 10.2147/dddt.s127916] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Numerous studies have studied the effect of halogenated agents on the myocardium, highlighting the beneficial cardiac effect of the pharmacological mechanism (preconditioning and postconditioning) when employed before and after ischemia in patients with ischemic heart disease. Anesthetic preconditioning is related to the dose-dependent signal, while the degree of protection is related to the concentration of the administered drug and the duration of the administration itself. Triggers for postconditioning and preconditioning might have numerous pathways in common; mitochondrial protection and a decrease in inflammatory mediators could be the major biochemical elements. Several pathways have been identified, including attenuation of NFκB activation and reduced expression of TNFα, IL-1, intracellular adhesion molecules, eNOS, the hypercontraction reduction that follows reperfusion, and antiapoptotic activating kinases (Akt, ERK1/2). It appears that the preconditioning and postconditioning triggers have numerous similar paths. The key biochemical elements are protection of the mitochondria and reduction in inflammatory mediators, both of which are developed in various ways. We have studied this issue, and have published several articles on cardioprotection with halogenated gases. Our results confirm greater cardioprotection through myocardial preconditioning in patients anesthetized with sevoflurane compared with propofol, with decreasing levels of troponin and N-terminal brain natriuretic peptide prohormone. The difference between our studies and previous studies lies in the use of sedation with sevoflurane in the postoperative period. The results could be related to a prolonged effect, in addition to preconditioning and postconditioning, which could enhance the cardioprotective effect of sevoflurane in the postoperative period. With this review, we aim to clarify the importance of various mechanisms involved in preconditioning and postconditioning with halogenated gases, as supported by our studies.
Collapse
Affiliation(s)
- Jose Luis Guerrero-Orriach
- Department of Cardioanesthesiology, Virgen de la Victoria University Hospital
- Instituto de Investigación Biomédica de Málaga (IBIMA)
- Department of Pharmacology and Pediatrics, University of Malaga, Malaga, Spain
| | | | | | | | | | - Jose Cruz Mañas
- Department of Cardioanesthesiology, Virgen de la Victoria University Hospital
| |
Collapse
|
14
|
Mohammed Abdul KS, Jovanović S, Jovanović A. Exposure to 15% oxygen in vivo up-regulates cardioprotective SUR2A without affecting ERK1/2 and AKT: a crucial role for AMPK. J Cell Mol Med 2017; 21:1342-1350. [PMID: 28121062 PMCID: PMC5487919 DOI: 10.1111/jcmm.13064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/15/2016] [Indexed: 11/28/2022] Open
Abstract
SUR2A is an 'atypical' ABC protein that forms sarcolemmal ATP-sensitive K+ (KATP ) channels by binding to inward rectifier Kir6.2. Manipulation with SUR2A levels has been suggested to be a promising therapeutic strategy against ischaemic heart diseases and other diseases where increased heart resistance to stress is beneficial. Some years ago, it has been reported that high-altitude residents have lower mortality rates for ischaemic heart disease. The purpose of this study was to determine whether SUR2A is regulated by mild-to-severe hypoxic conditions (15% oxygen; oxygen tension equivalent to 3000 m above sea level) and elucidate the underlying mechanism. Mice were exposed to either to 21% (control) or 15% concentration of oxygen for 24 hrs. Twenty-four hours long exposure to 15% oxygen decreased partial pressure of O2 (PO2 ), but did not affect blood CO2 (PCO2 ), haematocrit nor levels of ATP, lactate and NAD+/NADH in the heart. Cardiac SUR2A levels were significantly increased while Kir6.2 levels were not affected. Hypoxia did not induce phosphorylation of extracellular signal-regulated kinases (ERK1/2) or protein kinase B (Akt), but triggered phosphorylation of AMP activated protein kinase (AMPK). AICAR, an activator of AMPK, increased the level of SUR2A in H9c2 cells. We conclude that oxygen increases SUR2A level by activating AMPK. This is the first account of AMPK-mediated regulation of SUR2A.
Collapse
Affiliation(s)
- Khaja Shameem Mohammed Abdul
- Division of Molecular & Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Sofija Jovanović
- Division of Molecular & Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Aleksandar Jovanović
- Division of Molecular & Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
15
|
Salameh A, Dhein S, Dähnert I, Klein N. Neuroprotective Strategies during Cardiac Surgery with Cardiopulmonary Bypass. Int J Mol Sci 2016; 17:ijms17111945. [PMID: 27879647 PMCID: PMC5133939 DOI: 10.3390/ijms17111945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 12/27/2022] Open
Abstract
Aortocoronary bypass or valve surgery usually require cardiac arrest using cardioplegic solutions. Although, in principle, in a number of cases beating heart surgery (so-called off-pump technique) is possible, aortic or valve surgery or correction of congenital heart diseases mostly require cardiopulmonary arrest. During this condition, the heart-lung machine also named cardiopulmonary bypass (CPB) has to take over the circulation. It is noteworthy that the invention of a machine bypassing the heart and lungs enabled complex cardiac operations, but possible negative effects of the CPB on other organs, especially the brain, cannot be neglected. Thus, neuroprotection during CPB is still a matter of great interest. In this review, we will describe the impact of CPB on the brain and focus on pharmacological and non-pharmacological strategies to protect the brain.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic for Paediatric Cardiology Heart Centre, University of Leipzig, 04289 Leipzig, Germany.
| | - Stefan Dhein
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany.
| | - Ingo Dähnert
- Clinic for Paediatric Cardiology Heart Centre, University of Leipzig, 04289 Leipzig, Germany.
| | - Norbert Klein
- Department of Cardiology, Angiology and Internal Intensive Care Medicine, St. Georg Hospital, Academic Medical Centre, University of Leipzig, 04129 Leipzig, Germany.
| |
Collapse
|
16
|
Bhide A, Vuolteenaho O, Haapsamo M, Erkinaro T, Rasanen J, Acharya G. Effect of Hypoxemia with or without Increased Placental Vascular Resistance on Fetal Left and Right Ventricular Myocardial Performance Index in Chronically Instrumented Sheep. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2589-2598. [PMID: 27544438 DOI: 10.1016/j.ultrasmedbio.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Myocardial performance index (MPI) is increased in growth-restricted fetuses with placental insufficiency, but it is unknown if this is due to fetal hypoxemia or increased placental vascular resistance (Rplac). We used chronically instrumented sheep fetuses (n = 24). In 12 fetuses, placental embolization was performed 24 h before experiments. On the day of the experiment, left (LV) and right (RV) ventricular MPIs were obtained by pulsed Doppler at baseline and in the hypoxemia and recovery phases. At baseline, Rplac was greater and fetal pO2 lower in the placental embolization group, but RV and LV MPIs were comparable to those of the control group. During hypoxemia, mean LV MPI increased significantly only in fetuses with an intact placenta (0.34 vs. 0.46), returning to baseline during the recovery phase. Right ventricular MPI was unaffected. We conclude that fetal LV function is sensitive to acute hypoxemia. Exposure to chronic hypoxemia could pre-condition the fetal heart and protect its function with worsening hypoxemia.
Collapse
Affiliation(s)
- Amar Bhide
- Women's Health & Perinatal Research Group, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Obstetrics and Gynecology, University Hospital of Northern Norway, Tromsø, Norway.
| | - Olli Vuolteenaho
- Biomedicine Unit, Department of Physiology, University Hospital of Oulu, Oulu, Finland
| | - Mervi Haapsamo
- Department of Obstetrics and Gynecology, University Hospital of Oulu, Oulu, Finland
| | - Tiina Erkinaro
- Department of Anesthesiology, University Hospital of Oulu, Oulu, Finland
| | - Juha Rasanen
- Department of Obstetrics and Gynecology, University of Eastern Finland, Kuopio, Finland; Oregon Health and Sciences University, Portland, Oregon, USA
| | - Ganesh Acharya
- Women's Health & Perinatal Research Group, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Obstetrics and Gynecology, University Hospital of Northern Norway, Tromsø, Norway; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Chang YM, Chang HH, Kuo WW, Lin HJ, Yeh YL, Padma Viswanadha V, Tsai CC, Chen RJ, Chang HN, Huang CY. Anti-Apoptotic and Pro-Survival Effect of Alpinate Oxyphyllae Fructus (AOF) in a d-Galactose-Induced Aging Heart. Int J Mol Sci 2016; 17:466. [PMID: 27043531 PMCID: PMC4848922 DOI: 10.3390/ijms17040466] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Aging, a natural biological/physiological phenomenon, is accelerated by reactive oxygen species (ROS) accumulation and identified by a progressive decrease in physiological function. Several studies have shown a positive relationship between aging and chronic heart failure (HF). Cardiac apoptosis was found in age-related diseases. We used a traditional Chinese medicine, Alpinate Oxyphyllae Fructus (AOF), to evaluate its effect on cardiac anti-apoptosis and pro-survival. Male eight-week-old Sprague–Dawley (SD) rats were segregated into five groups: normal control group (NC), d-Galactose-Induced aging group (Aging), and AOF of 50 (AL (AOF low)), 100 (AM (AOF medium)), 150 (AH (AOF high)) mg/kg/day. After eight weeks, hearts were measured by an Hematoxylin–Eosin (H&E) stain, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-assays and Western blotting. The experimental results show that the cardiomyocyte apoptotic pathway protein expression increased in the d-Galactose-Induced aging groups, with dose-dependent inhibition in the AOF treatment group (AL, AM, and AH). Moreover, the expression of the pro-survival p-Akt (protein kinase B (Akt)), Bcl-2 (B-cell lymphoma 2), anti-apoptotic protein (Bcl-xL) protein decreased significantly in the d-Galactose-induced aging group, with increased performance in the AOF treatment group with levels of p-IGFIR and p-PI3K (Phosphatidylinositol-3′ kinase (PI3K)) to increase by dosage and compensatory performance. On the other hand, the protein of the Sirtuin 1 (SIRT1) pathway expression decreased in the aging groups and showed improvement in the AOF treatment group. Our results suggest that AOF strongly works against ROS-induced aging heart problems.
Collapse
Affiliation(s)
- Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
- 1PT Biotechnology Co., Ltd., Taichung 433, Taiwan.
| | - Hen-Hong Chang
- Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan.
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40447, Taiwan.
| | - Hung-Jen Lin
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Lan Yeh
- Department of pathology, Changhua Christian Hospital, Changhua 50506, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35665, Taiwan.
| | | | - Chin-Chuan Tsai
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
| | - Hsin-Nung Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
18
|
Fernandes G, Dasai N, Kozlova N, Mojadadi A, Gall M, Drew E, Barratt E, Madamidola OA, Brown SG, Milne AM, Martins da Silva SJ, Whalley KM, Barratt CLR, Jovanović A. A spontaneous increase in intracellular Ca2+ in metaphase II human oocytes in vitro can be prevented by drugs targeting ATP-sensitive K+ channels. Hum Reprod 2016; 31:287-97. [PMID: 26682579 PMCID: PMC4716808 DOI: 10.1093/humrep/dev300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023] Open
Abstract
STUDY QUESTION Could drugs targeting ATP-sensitive K(+) (K(ATP)) channels prevent any spontaneous increase in intracellular Ca(2+) that may occur in human metaphase II (MII) oocytes under in vitro conditions? SUMMARY ANSWER Pinacidil, a K(ATP) channel opener, and glibenclamide, a K(ATP) channel blocker, prevent a spontaneous increase in intracellular Ca(2+) in human MII oocytes. WHAT IS KNOWN ALREADY The quality of the oocyte and maintenance of this quality during in vitro processing in the assisted reproductive technology (ART) laboratory is of critical importance to successful embryo development and a healthy live birth. Maintenance of Ca(2+) homeostasis is crucial for cell wellbeing and increased intracellular Ca(2+) levels is a well-established indicator of cell stress. STUDY DESIGN, SIZE, DURATION Supernumerary human oocytes (n = 102) collected during IVF/ICSI treatment that failed to fertilize were used from October 2013 to July 2015. All experiments were performed on mature (MII) oocytes. Dynamics of intracellular Ca(2+) levels were monitored in oocytes in the following experimental groups: (i) Control, (ii) Dimethyl sulfoxide (DMSO; used to dissolve pinacidil, glibenclamide and 2,4-Dinitrophenol (DNP)), (iii) Pinacidil, (iv) Glibenclamide, (v) DNP: an inhibitor of oxidative phosphorylation, (vi) Pinacidil and DNP and (vii) Glibenclamide and DNP. PARTICIPANTS/MATERIALS/SETTINGS/METHODS Oocytes were collected under sedation as part of routine treatment at an assisted conception unit from healthy women (mean ± SD) age 34.1 ± 0.6 years, n = 41. Those surplus to clinical use were donated for research. Oocytes were loaded with Fluo-3 Ca(2+)-sensitive dye, and monitored by laser confocal microscopy for 2 h at 10 min intervals. Time between oocyte collection and start of Ca(2+) monitoring was 80.4 ± 2.1 h. MAIN RESULTS AND THE ROLE OF CHANCE Intracellular levels of Ca(2+) increased under in vitro conditions with no deliberate challenge, as shown by Fluo-3 fluorescence increasing from 61.0 ± 11.8 AU (AU = arbitrary units; n = 23) to 91.8 ± 14.0 AU (n = 19; P < 0.001) after 2 h of monitoring. Pinacidil (100 µM) inhibited this increase in Ca(2+) (85.3 ± 12.3 AU at the beginning of the experiment, 81.7 ± 11.0 AU at the end of the experiment; n = 13; P = 0.616). Glibenclamide (100 µM) also inhibited the increase in Ca(2+) (74.7 ± 10.6 AU at the beginning and 71.8 ± 10.9 AU at the end of the experiment; n = 13; P = 0.851. DNP (100 mM) induced an increase in intracellular Ca(2+) that was inhibited by glibenclamide (100 µM; n = 9) but not by pinacidil (100 µM; n = 5). LIMITATIONS, REASONS FOR CAUTION Owing to clinical and ethical considerations, it was not possible to monitor Ca(2+) in MII oocytes immediately after retrieval. MII oocytes were available for our experimentation only after unsuccessful IVF or ICSI, which was, on average, 80.4 ± 2.1 h (n = 102 oocytes) after the moment of retrieval. As the MII oocytes used here were those that were not successfully fertilized, it is possible that they may have been abnormal with impaired Ca(2+) homeostasis and, furthermore, the altered Ca(2+) homeostasis might have been associated solely with the protracted incubation. WIDER IMPLICATIONS OF THE FINDINGS These results show that maintenance of oocytes under in vitro conditions is associated with intracellular increase in Ca(2+), which can be counteracted by drugs targeting K(ATP) channels. As Ca(2+) homeostasis is crucial for contributing to a successful outcome of ART, these results suggest that K(ATP) channel openers and blockers should be tested as drugs for improving success rates of ART. STUDY FUNDING/COMPETING INTERESTS University of Dundee, MRC (MR/K013343/1, MR/012492/1), NHS Tayside. Funding NHS fellowship (Dr Sarah Martins da Silva), NHS Scotland. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Gonçalo Fernandes
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Navin Dasai
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Natalia Kozlova
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Albaraa Mojadadi
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK Department of Anatomy and Clinical Embryology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mandy Gall
- Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | - Ellen Drew
- Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | - Evelyn Barratt
- Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | - Oladipo A Madamidola
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee University of Abertay, Dundee, UK
| | | | - Alison M Milne
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Sarah J Martins da Silva
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | | | - Christopher L R Barratt
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK Assisted Conception Unit, NHS Tayside, Ninewells Hospital, Dundee
| | - Aleksandar Jovanović
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
19
|
Chen WK, Kuo WW, Hsieh DJY, Chang HN, Pai PY, Lin KH, Pan LF, Ho TJ, Viswanadha VP, Huang CY. CREB Negatively Regulates IGF2R Gene Expression and Downstream Pathways to Inhibit Hypoxia-Induced H9c2 Cardiomyoblast Cell Death. Int J Mol Sci 2015; 16:27921-30. [PMID: 26610485 PMCID: PMC4661925 DOI: 10.3390/ijms161126067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/23/2015] [Indexed: 01/18/2023] Open
Abstract
During hypoxia, gene expression is altered by various transcription factors. Insulin-like growth factor-II (IGF2) is known to be induced by hypoxia, which binds to IGF2 receptor IGF2R that acts like a G protein-coupled receptor, might cause pathological hypertrophy or activation of the mitochondria-mediated apoptosis pathway. Cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB) is central to second messenger-regulated transcription and plays a critical role in the cardiomyocyte survival pathway. In this study, we found that IGF2R level was enhanced in H9c2 cardiomyoblasts exposed to hypoxia in a time-dependent manner but was down-regulated by CREB expression. The over-expression of CREB in H9c2 cardiomyoblasts suppressed the induction of hypoxia-induced IGF2R expression levels and reduced cell apoptosis. Gel shift assay results further indicated that CREB binds to the promoter sequence of IGF2R. With a luciferase assay method, we further observed that CREB represses IGF2R promoter activity. These results suggest that CREB plays an important role in the inhibition of IGF2R expression by binding to the IGF2R promoter and further suppresses H9c2 cardiomyoblast cell apoptosis induced by IGF2R signaling under hypoxic conditions.
Collapse
Affiliation(s)
- Wei-Kung Chen
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Hsin-Nung Chang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan.
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
- College of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Lung-Fa Pan
- Cardiology Department, Taichung Armed Forces General Hospital. Taichung 41152, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan.
| | - Tsung-Jung Ho
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Chinese Medicine Department, China Medical University Beigang Hospital, Yunlin 651, Taiwan.
| | | | - Chih-Yang Huang
- Chinese Medicine Department, China Medical University Beigang Hospital, Yunlin 651, Taiwan.
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
20
|
Jovanović S, Ballantyne T, Du Q, Blagojević M, Jovanović A. Phenylephrine preconditioning in embryonic heart H9c2 cells is mediated by up-regulation of SUR2B/Kir6.2: A first evidence for functional role of SUR2B in sarcolemmal KATP channels and cardioprotection. Int J Biochem Cell Biol 2015; 70:23-8. [PMID: 26556311 PMCID: PMC4711337 DOI: 10.1016/j.biocel.2015.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/22/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023]
Abstract
ATP-sensitive K+ (KATP) channels were originally described in cardiomyocytes, where physiological levels of intracellular ATP keep them in a closed state. Structurally, these channels are composed of pore-forming inward rectifier, Kir6.1 or Kir6.2, and a regulatory, ATP-binding subunit, SUR1, SUR2A or SUR2B. SUR1 and Kir6.2 form pancreatic type of KATP channels, SUR2A and Kir6.2 form cardiac type of KATP channels, SUR2B and Kir6.1 form vascular smooth muscle type of KATP channels. The presence of SUR2B has been described in cardiomyocytes, but its functional significance and role has remained unknown. Pretreatment with phenylephrine (100 nM) for 24 h increased mRNA levels of SUR2B and Kir6.2, without affecting those levels of SUR1, SUR2A and Kir6.1 in embryonic heart H9c2 cells. Such increase was associated with increased K+ current through KATP channels and Kir6.2/SUR2B protein complexes as revealed by whole cell patch clamp electrophysiology and immunoprecipitation/Western blotting respectively. Pretreatment with phenylephrine (100 nM) generated a cellular phenotype that acquired resistance to chemical hypoxia induced by 2,4-dinitrophenol (DNP; 10 mM), which was accompanied by increased in K+ current in response to DNP (10 mM). Cytoprotection afforded by phenylephrine (100 nM) was abolished by infection of H9c2 cells with adenovirus containing Kir6.2AFA, a mutant form of Kir6.2 with largely reduced K+ conductance. Taking all together, the present findings demonstrate that the activation of α1-adrenoceptors up-regulates SUR2B/Kir6.2 to confer cardioprotection. This is the first account of possible physiological role of SUR2B in cardiomyocytes.
Collapse
Affiliation(s)
- Sofija Jovanović
- Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, UK
| | - Thomas Ballantyne
- Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, UK
| | - Qingyou Du
- Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, UK
| | - Miloš Blagojević
- Department of Anatomy, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Jovanović
- Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, UK.
| |
Collapse
|
21
|
Mohammed Abdul KS, Jovanović S, Du Q, Sukhodub A, Jovanović A. A link between ATP and SUR2A: A novel mechanism explaining cardioprotection at high altitude. Int J Cardiol 2015; 189:73-6. [PMID: 25885875 PMCID: PMC4461008 DOI: 10.1016/j.ijcard.2015.04.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Khaja Shameem Mohammed Abdul
- Medical Research Institute, Division of Cardiovascular and Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Sofija Jovanović
- Medical Research Institute, Division of Cardiovascular and Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Qingyou Du
- Medical Research Institute, Division of Cardiovascular and Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andriy Sukhodub
- Medical Research Institute, Division of Cardiovascular and Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Aleksandar Jovanović
- Medical Research Institute, Division of Cardiovascular and Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
22
|
Mohammed Abdul KS, Jovanović S, Du Q, Sukhodub A, Jovanović A. Mild hypoxia in vivo regulates cardioprotective SUR2A: A role for Akt and LDH. Biochim Biophys Acta Mol Basis Dis 2015; 1852:709-19. [PMID: 25576887 PMCID: PMC4547089 DOI: 10.1016/j.bbadis.2015.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 01/01/2015] [Indexed: 12/13/2022]
Abstract
High-altitude residents have lower mortality rates for ischaemic heart disease and this is ascribed to cardiac gene remodelling by chronic hypoxia. SUR2A is a cardioprotective ABC protein serving as a subunit of sarcolemmal ATP-sensitive K+ channels. The purpose of this study was to determine whether SUR2A is regulated by mild hypoxia in vivo and to elucidate the underlying mechanism. Mice were exposed to either 21% (control) or 18% (mild hypoxia) oxygen for 24 h. Exposure to 18% oxygen did not affect partial pressure of O2 (PO2) and CO2 (PCO2) in the blood, haematocrit or level of ATP in the heart. However, hypoxia increased myocardial lactate dehydrogenase (LDH) and lactate as well as NAD+ without affecting total NAD. SUR2A levels were significantly increased as well as myocardial resistance to ischaemia–reperfusion. Exposure to 18% oxygen did not phosphorylate extracellular signal regulated kinases (ERK1/2) or AMP activated protein kinase (AMPK), but it phosphorylated protein kinase B (Akt). An inhibitor of phosphoinositide 3-kinases (PI3K), LY294002 (0.2 mg/mouse), abolished all observed effects of hypoxia. LDH inhibitors, galloflavin (50 μM) and sodium oxamate (80 mM) significantly decreased levels of SUR2A in heart embryonic H9c2 cells, while inactive mutant LDH form, gly193-M-LDH increased cellular sensitivity towards stress induced by 2,4-dinitrophenol (10 mM). Treatment of H9c2 cells with sodium lactate (30 mM) increased intracellular lactate, but did not affect LDH activity or SUR2A levels. We conclude that PI3K/Akt signalling pathway and LDH play a crucial role in increase of cardiac SUR2A induced by in vivo exposure to 18% oxygen. Mild hypoxia increases levels of cardioprotective SUR2A in the heart. Phosphorylation of Akt mediates mild hypoxia-induced increase in SUR2A. Phosphorylation of ERK1/2 and AMPK is not involved in observed increase in SUR2A. PI3K/Akt target LDH to regulate SUR2A levels in the myocardium. LDH mediates regulation of SUR2A in a lactate-independent manner.
Collapse
Affiliation(s)
- Khaja Shameem Mohammed Abdul
- Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Sofija Jovanović
- Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Qingyou Du
- Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andriy Sukhodub
- Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Aleksandar Jovanović
- Medical Research Institute, Division of Cardiovascular & Diabetic Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|