1
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Tachezy J, Makki A, Hrdý I. The hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 2022; 69:e12922. [PMID: 35567536 DOI: 10.1111/jeu.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review is dedicated to the 50th anniversary of the discovery of hydrogenosomes by Miklós Müller and Donald Lindmark, which we will celebrate the following year. It was a long journey from the first observation of enigmatic rows of granules in trichomonads at the end of the 19th century to their first biochemical characterization in 1973. The key experiments by Müller and Lindmark revealed that the isolated granules contain hydrogen-producing hydrogenase, similar to some anaerobic bacteria-a discovery that gave birth to the field of hydrogenosomes. It is also important to acknowledge the parallel work of the team of Apolena Čerkasovová, Jiří Čerkasov, and Jaroslav Kulda, who demonstrated that these granules, similar to mitochondria, produce ATP. However, the evolutionary origin of hydrogenosomes remained enigmatic until the turn of the millennium, when it was finally accepted that hydrogenosomes and mitochondria evolved from a common ancestor. After a historical introduction, the review provides an overview of hydrogenosome biogenesis, hydrogenosomal protein import, and the relationship between the peculiar structure of membrane translocases and its low inner membrane potential due to the lack of respiratory complexes. Next, it summarizes the current state of knowledge on energy metabolism, the oxygen defense system, and iron/sulfur cluster assembly.
Collapse
Affiliation(s)
- Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
3
|
Zíková A. Mitochondrial adaptations throughout the Trypanosoma brucei life cycle. J Eukaryot Microbiol 2022; 69:e12911. [PMID: 35325490 DOI: 10.1111/jeu.12911] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
The unicellular parasite Trypanosoma brucei has a digenetic life cycle that alternates between a mammalian host and an insect vector. During programmed development, this extracellular parasite encounters strikingly different environments that determine its energy metabolism. Functioning as a bioenergetic, biosynthetic, and signaling center, the single mitochondrion of T. brucei is drastically remodeled to support the dynamic cellular demands of the parasite. This manuscript will provide an up-to-date overview of how the distinct T. brucei developmental stages differ in their mitochondrial metabolic and bioenergetic pathways, with a focus on the electron transport chain, proline oxidation, TCA cycle, acetate production, and ATP generation. Although mitochondrial metabolic rewiring has always been simply viewed as a consequence of the differentiation process, the possibility that certain mitochondrial activities reinforce parasite differentiation will be explored.
Collapse
Affiliation(s)
- Alena Zíková
- Biology Centre CAS, Institute of Parasitology, University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Methods to Investigate the Kinetic Profile of Cysteine Desulfurases. Methods Mol Biol 2021. [PMID: 34292550 DOI: 10.1007/978-1-0716-1605-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Biological iron-sulfur (Fe-S) clusters are essential protein prosthetic groups that promote a range of biochemical reactions. In vivo, these clusters are synthesized by specialized protein machineries involved in sulfur mobilization, cluster assembly, and cluster transfer to their target proteins. Cysteine desulfurases initiate the first step of sulfur activation and mobilization in cluster biosynthetic pathways. The reaction catalyzed by these enzymes involves the abstraction of sulfur from the amino acid L-cysteine, with concomitant formation of alanine. The presence and availability of a sulfur acceptor modulate the sulfurtransferase activity of this class of enzymes by altering their reaction profile and catalytic turnover rate. Herein, we describe two methods used to probe the reaction profile of cysteine desulfurases through quantification of alanine and sulfide production in these reactions.
Collapse
|
5
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
6
|
Hammond MJ, Nenarokova A, Butenko A, Zoltner M, Dobáková EL, Field MC, Lukeš J. A Uniquely Complex Mitochondrial Proteome from Euglena gracilis. Mol Biol Evol 2020; 37:2173-2191. [PMID: 32159766 PMCID: PMC7403612 DOI: 10.1093/molbev/msaa061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Euglena gracilis is a metabolically flexible, photosynthetic, and adaptable free-living protist of considerable environmental importance and biotechnological value. By label-free liquid chromatography tandem mass spectrometry, a total of 1,786 proteins were identified from the E. gracilis purified mitochondria, representing one of the largest mitochondrial proteomes so far described. Despite this apparent complexity, protein machinery responsible for the extensive RNA editing, splicing, and processing in the sister clades diplonemids and kinetoplastids is absent. This strongly suggests that the complex mechanisms of mitochondrial gene expression in diplonemids and kinetoplastids occurred late in euglenozoan evolution, arising independently. By contrast, the alternative oxidase pathway and numerous ribosomal subunits presumed to be specific for parasitic trypanosomes are present in E. gracilis. We investigated the evolution of unexplored protein families, including import complexes, cristae formation proteins, and translation termination factors, as well as canonical and unique metabolic pathways. We additionally compare this mitoproteome with the transcriptome of Eutreptiella gymnastica, illuminating conserved features of Euglenida mitochondria as well as those exclusive to E. gracilis. This is the first mitochondrial proteome of a free-living protist from the Excavata and one of few available for protists as a whole. This study alters our views of the evolution of the mitochondrion and indicates early emergence of complexity within euglenozoan mitochondria, independent of parasitism.
Collapse
Affiliation(s)
- Michael J Hammond
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
| | - Anna Nenarokova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| | - Anzhelika Butenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Eva Lacová Dobáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
| | - Mark C Field
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| |
Collapse
|
7
|
Ebersoll S, Bogacz M, Günter LM, Dick TP, Krauth-Siegel RL. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes. eLife 2020; 9:53227. [PMID: 32003744 PMCID: PMC7046469 DOI: 10.7554/elife.53227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Trypanosomes have a trypanothione redox metabolism that provides the reducing equivalents for numerous essential processes, most being mediated by tryparedoxin (Tpx). While the biosynthesis and reduction of trypanothione are cytosolic, the molecular basis of the thiol redox homeostasis in the single mitochondrion of these parasites has remained largely unknown. Here we expressed Tpx-roGFP2, roGFP2-hGrx1 or roGFP2 in either the cytosol or mitochondrion of Trypanosoma brucei. We show that the novel Tpx-roGFP2 is a superior probe for the trypanothione redox couple and that the mitochondrial matrix harbors a trypanothione system. Inhibition of trypanothione biosynthesis by the anti-trypanosomal drug Eflornithine impairs the ability of the cytosol and mitochondrion to cope with exogenous oxidative stresses, indicating a direct link between both thiol systems. Tpx depletion abolishes the cytosolic, but only partially affects the mitochondrial sensor response to H2O2. This strongly suggests that the mitochondrion harbors some Tpx and, another, as yet unidentified, oxidoreductase.
Collapse
Affiliation(s)
| | - Marta Bogacz
- Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Lina M Günter
- Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
8
|
Abstract
Due to its unique biology the mitochondrion of Trypanosoma brucei has attracted a lot of interest since many decades, making it arguably the best studied mitochondrion outside yeast and mammals. Here we describe a method allowing purification of mitochondria from procyclic trypanosomes that yields highly enriched and functional organelles. The method is based on isotonic lysis of cells by nitrogen cavitation, DNase I digestion, differential centrifugation and Nycodenz gradient centrifugation. The method is scalable and can be adapted to culture volumes a small as 100 mL or as large as 24 L.
Collapse
Affiliation(s)
- Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Zheng F, Colasante C, Voncken F. Characterisation of a mitochondrial iron transporter of the pathogen Trypanosoma brucei. Mol Biochem Parasitol 2019; 233:111221. [DOI: 10.1016/j.molbiopara.2019.111221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
|
10
|
Anas M, Kumari V, Gupta N, Dube A, Kumar N. Protein quality control machinery in intracellular protozoan parasites: hopes and challenges for therapeutic targeting. Cell Stress Chaperones 2019; 24:891-904. [PMID: 31228085 PMCID: PMC6717229 DOI: 10.1007/s12192-019-01016-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/28/2023] Open
Abstract
Intracellular protozoan parasites have evolved an efficient protein quality control (PQC) network comprising protein folding and degradation machineries that protect the parasite's proteome from environmental perturbations and threats posed by host immune surveillance. Interestingly, the components of PQC machinery in parasites have acquired sequence insertions which may provide additional interaction interfaces and diversify the repertoire of their biological roles. However, the auxiliary functions of PQC machinery remain poorly explored in parasite. A comprehensive understanding of this critical machinery may help to identify robust biological targets for new drugs against acute or latent and drug-resistant infections. Here, we review the dynamic roles of PQC machinery in creating a safe haven for parasite survival in hostile environments, serving as a metabolic sensor to trigger transformation into phenotypically distinct stages, acting as a lynchpin for trafficking of parasite cargo across host membrane for immune evasion and serving as an evolutionary capacitor to buffer mutations and drug-induced proteotoxicity. Versatile roles of PQC machinery open avenues for exploration of new drug targets for anti-parasitic intervention and design of strategies for identification of potential biomarkers for point-of-care diagnosis.
Collapse
Affiliation(s)
- Mohammad Anas
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Varsha Kumari
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Niharika Gupta
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Anuradha Dube
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Niti Kumar
- Academy of Scientific and Innovative Research (AcSIR), Delhi, India.
| |
Collapse
|
11
|
Tonini ML, Peña-Diaz P, Haindrich AC, Basu S, Kriegová E, Pierik AJ, Lill R, MacNeill SA, Smith TK, Lukeš J. Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei. PLoS Pathog 2018; 14:e1007326. [PMID: 30346997 PMCID: PMC6211773 DOI: 10.1371/journal.ppat.1007326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 11/01/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Fe-S clusters are ubiquitous cofactors of proteins involved in a variety of essential cellular processes. The biogenesis of Fe-S clusters in the cytosol and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. The early- and middle-acting modules of the CIA pathway concerned with the assembly and trafficking of Fe-S clusters have been previously characterised in the parasitic protist Trypanosoma brucei. In this study, we applied proteomic and genetic approaches to gain insights into the network of protein-protein interactions of the late-acting CIA targeting complex in T. brucei. All components of the canonical CIA machinery are present in T. brucei including, as in humans, two distinct CIA2 homologues TbCIA2A and TbCIA2B. These two proteins are found interacting with TbCIA1, yet the interaction is mutually exclusive, as determined by mass spectrometry. Ablation of most of the components of the CIA targeting complex by RNAi led to impaired cell growth in vitro, with the exception of TbCIA2A in procyclic form (PCF) trypanosomes. Depletion of the CIA-targeting complex was accompanied by reduced levels of protein-bound cytosolic iron and decreased activity of an Fe-S dependent enzyme in PCF trypanosomes. We demonstrate that the C-terminal domain of TbMMS19 acts as a docking site for TbCIA2B and TbCIA1, forming a trimeric complex that also interacts with target Fe-S apo-proteins and the middle-acting CIA component TbNAR1. Cytosolic and nuclear proteins containing iron-sulphur clusters (Fe-S) are essential for the survival of every extant eukaryotic cell. The biogenesis of Fe-S clusters and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. Recently, the CIA factors that generate cytosolic Fe-S clusters were characterised in T. brucei, a unicellular parasite that causes diseases in humans and animals. However, an outstanding question in this organism is the way by which the CIA machinery directs and inserts newly formed Fe-S clusters into proteins. We found that the T. brucei proteins TbCIA2B and TbCIA1 assemble at a region of the C-terminal domain of a third protein, TbMMS19, to form a complex labelled the CIA targeting complex (CTC). The CTC interacts with TbNAR1 and with Fe-S proteins, meaning that the complex assists in the transfer of Fe-S clusters from the upstream members of the pathway into target Fe-S proteins. T. brucei cells depleted of CTC had decreased levels of protein-bound cytosolic iron, and lower activities of cytosolic aconitase, an enzyme that depends upon Fe-S clusters to function.
Collapse
Affiliation(s)
- Maiko Luis Tonini
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
| | - Priscila Peña-Diaz
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Alexander C. Haindrich
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Eva Kriegová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Antonio J. Pierik
- Faculty of Chemistry–Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Zentrum für synthetische Mikrobiologie, Marburg, Germany
| | - Stuart A. MacNeill
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (SAM); (TKS); (JL)
| | - Terry K. Smith
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (SAM); (TKS); (JL)
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- * E-mail: (SAM); (TKS); (JL)
| |
Collapse
|
12
|
Sturlese M, Manta B, Bertarello A, Bonilla M, Lelli M, Zambelli B, Grunberg K, Mammi S, Comini MA, Bellanda M. The lineage-specific, intrinsically disordered N-terminal extension of monothiol glutaredoxin 1 from trypanosomes contains a regulatory region. Sci Rep 2018; 8:13716. [PMID: 30209332 PMCID: PMC6135854 DOI: 10.1038/s41598-018-31817-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Glutaredoxins (Grx) are small proteins conserved throughout all the kingdoms of life that are engaged in a wide variety of biological processes and share a common thioredoxin-fold. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (FeS) metabolism. They contain a single thiol group in their active site and use low molecular mass thiols such as glutathione as ligand for binding FeS-clusters. In this study, we investigated molecular aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei brucei, a mitochondrial class II Grx that fulfills an indispensable role in vivo. Mitochondrial 1CGrx1 from trypanosomes differs from orthologues in several features including the presence of a parasite-specific N-terminal extension (NTE) whose role has yet to be elucidated. Previously we have solved the structure of a truncated form of 1CGrx1 containing only the conserved glutaredoxin domain but lacking the NTE. Our aim here is to investigate the effect of the NTE on the conformation of the protein. We therefore solved the NMR structure of the full-length protein, which reveals subtle but significant differences with the structure of the NTE-less form. By means of different experimental approaches, the NTE proved to be intrinsically disordered and not involved in the non-redox dependent protein dimerization, as previously suggested. Interestingly, the portion comprising residues 65–76 of the NTE modulates the conformational dynamics of the glutathione-binding pocket, which may play a role in iron-sulfur cluster assembly and delivery. Furthermore, we disclosed that the class II-strictly conserved loop that precedes the active site is critical for stabilizing the protein structure. So far, this represents the first communication of a Grx containing an intrinsically disordered region that defines a new protein subgroup within class II Grx.
Collapse
Affiliation(s)
- Mattia Sturlese
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.,Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| | - Bruno Manta
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay.,Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4425, 11400, Montevideo, Uruguay.,New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Andrea Bertarello
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Mariana Bonilla
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Moreno Lelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy.,Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Barbara Zambelli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Karin Grunberg
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Stefano Mammi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marcelo A Comini
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
13
|
Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in Trypanosoma brucei. mSphere 2018; 3:3/3/e00204-18. [PMID: 29925672 PMCID: PMC6010621 DOI: 10.1128/msphere.00204-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes.IMPORTANCETrypanosoma brucei is the causative agent of African sleeping sickness. The parasite's mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei, a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei, and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei.
Collapse
|
14
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
15
|
Stehling O, Paul VD, Bergmann J, Basu S, Lill R. Biochemical Analyses of Human Iron–Sulfur Protein Biogenesis and of Related Diseases. Methods Enzymol 2018; 599:227-263. [DOI: 10.1016/bs.mie.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Zíková A, Verner Z, Nenarokova A, Michels PAM, Lukeš J. A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog 2017; 13:e1006679. [PMID: 29267392 PMCID: PMC5739487 DOI: 10.1371/journal.ppat.1006679] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| | - Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
17
|
Kumar A, Saha B, Singh S. Dataset generated for Dissection of mechanisms of Trypanothione Reductase and Tryparedoxin Peroxidase through dynamic network analysis and simulations in leishmaniasis. Data Brief 2017; 15:757-769. [PMID: 29159213 PMCID: PMC5675996 DOI: 10.1016/j.dib.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/26/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023] Open
Abstract
Leishmaniasis is the second largest parasitic killer disease caused by the protozoan parasite Leishmania, transmitted by the bite of sand flies. It's endemic in the eastern India with 165.4 million populations at risk with the current drug regimen. Three forms of leishmaniasis exist in which cutaneous is the most common form caused by Leishmania major. Trypanothione Reductase (TryR), a flavoprotein oxidoreductase, unique to thiol redox system, is considered as a potential target for chemotherapy for trypanosomatids infection. It is involved in the NADPH dependent reduction of Trypanothione disulphide to Trypanothione. Similarly, is Tryparedoxin Peroxidase (Txnpx), for detoxification of peroxides, an event pivotal for survival of Leishmania in two disparate biological environment. Fe-S plays a major role in regulating redox balance. To check for the closeness between human homologs of these proteins, we have carried the molecular clock analysis followed by molecular modeling of 3D structure of this protein, enabling us to design and test the novel drug like molecules. Molecular clock analysis suggests that human homologs of TryR i.e. Glutathione Reductase and Txnpx respectively are highly diverged in phylogenetic tree, thus, they serve as good candidates for chemotherapy of leishmaniasis. Furthermore, we have done the homology modeling of TryR using template of same protein from Leishmania infantum (PDB ID: 2JK6). This was done using Modeller 9.18 and the resultant models were validated. To inhibit this target, molecular docking was done with various screened inhibitors in which we found Taxifolin acts as common inhibitors for both TryR and Txnpx. We constructed the protein-protein interaction network for the proteins that are involved in the redox metabolism from various Interaction databases and the network was statistically analysed.
Collapse
Key Words
- BIND, Biomolecular Network Interaction Database
- DIP, Database of Interacting Protein
- GRID, General repository for Interaction Database
- Homology modeling
- KEGG, Kyoto Encyclopaedia of Genes and Genomes
- L.major
- MINT, Molecular Interaction Database
- MIPS, Munich Information Centre for Protein sequence
- Molecular clock analysis
- Network analysis
- ProSA, Protein Structure Analysis
- SAVES, Structure Analysis and Verification Server
- T(SH)2, Trypanothione
- TryR, Trypanothione Reductase
- TryS, Trypanothione synthetase
- Trypanothione Reductase
- Tryparedoxin Peroxidase
- Txnpx, Tryparedoxin Peroxidase
Collapse
Affiliation(s)
- Anurag Kumar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| |
Collapse
|
18
|
Benz C, Kovářová J, Králová-Hromadová I, Pierik AJ, Lukeš J. Roles of the Nfu Fe-S targeting factors in the trypanosome mitochondrion. Int J Parasitol 2016; 46:641-51. [PMID: 27181928 DOI: 10.1016/j.ijpara.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
Abstract
Iron-sulphur clusters (ISCs) are protein co-factors essential for a wide range of cellular functions. The core iron-sulphur cluster assembly machinery resides in the mitochondrion, yet due to export of an essential precursor from the organelle, it is also needed for cytosolic and nuclear iron-sulphur cluster assembly. In mitochondria all [4Fe-4S] iron-sulphur clusters are synthesised and transferred to specific apoproteins by so-called iron-sulphur cluster targeting factors. One of these factors is the universally present mitochondrial Nfu1, which in humans is required for the proper assembly of a subset of mitochondrial [4Fe-4S] proteins. Although most eukaryotes harbour a single Nfu1, the genomes of Trypanosoma brucei and related flagellates encode three Nfu genes. All three Nfu proteins localise to the mitochondrion in the procyclic form of T. brucei, and TbNfu2 and TbNfu3 are both individually essential for growth in bloodstream and procyclic forms, suggesting highly specific functions for each of these proteins in the trypanosome cell. Moreover, these two proteins are functional in the iron-sulphur cluster assembly in a heterologous system and rescue the growth defect of a yeast deletion mutant.
Collapse
Affiliation(s)
- Corinna Benz
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Julie Kovářová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Ivica Králová-Hromadová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Antonio J Pierik
- Faculty of Chemistry, Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Julius Lukeš
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
19
|
Zíková A, Hampl V, Paris Z, Týč J, Lukeš J. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol 2016; 209:46-57. [PMID: 26906976 DOI: 10.1016/j.molbiopara.2016.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic.
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
20
|
Martínez-García M, Campos-Salinas J, Cabello-Donayre M, Pineda-Molina E, Gálvez FJ, Orrego LM, Sánchez-Cañete MP, Malagarie-Cazenave S, Koeller DM, Pérez-Victoria JM. LmABCB3, an atypical mitochondrial ABC transporter essential for Leishmania major virulence, acts in heme and cytosolic iron/sulfur clusters biogenesis. Parasit Vectors 2016; 9:7. [PMID: 26728034 PMCID: PMC4700571 DOI: 10.1186/s13071-015-1284-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022] Open
Abstract
Background Mitochondria play essential biological functions including the synthesis and trafficking of porphyrins and iron/sulfur clusters (ISC), processes that in mammals involve the mitochondrial ATP-Binding Cassette (ABC) transporters ABCB6 and ABCB7, respectively. The mitochondrion of pathogenic protozoan parasites such as Leishmania is a promising goal for new therapeutic approaches. Leishmania infects human macrophages producing the neglected tropical disease known as leishmaniasis. Like most trypanosomatid parasites, Leishmania is auxotrophous for heme and must acquire porphyrins from the host. Methods LmABCB3, a new Leishmania major protein with significant sequence similarity to human ABCB6/ABCB7, was identified and characterized using bioinformatic tools. Fluorescent microscopy was used to determine its cellular localization, and its level of expression was modulated by molecular genetic techniques. Intracellular in vitro assays were used to demonstrate its role in amastigotes replication, and an in vivo mouse model was used to analyze its role in virulence. Functional characterization of LmABCB3 was carried out in Leishmania promastigotes and Saccharomyces cerevisiae. Structural analysis of LmABCB3 was performed using molecular modeling software. Results LmABCB3 is an atypical ABC half-transporter that has a unique N-terminal extension not found in any other known ABC protein. This extension is required to target LmABCB3 to the mitochondrion and includes a potential metal-binding domain. We have shown that LmABCB3 interacts with porphyrins and is required for the mitochondrial synthesis of heme from a host precursor. We also present data supporting a role for LmABCB3 in the biogenesis of cytosolic ISC, essential cofactors for cell viability in all three kingdoms of life. LmABCB3 fully complemented the severe growth defect shown in yeast lacking ATM1, an orthologue of human ABCB7 involved in exporting from the mitochondria a gluthatione-containing compound required for the generation of cytosolic ISC. Indeed, docking analyzes performed with a LmABCB3 structural model using trypanothione, the main thiol in this parasite, as a ligand showed how both, LmABCB3 and yeast ATM1, contain a similar thiol-binding pocket. Additionally, we show solid evidence suggesting that LmABCB3 is an essential gene as dominant negative inhibition of LmABCB3 is lethal for the parasite. Moreover, the abrogation of only one allele of the gene did not impede promastigote growth in axenic culture but prevented the replication of intracellular amastigotes and the virulence of the parasites in a mouse model of cutaneous leishmaniasis. Conclusions Altogether our results present the previously undescribed LmABCB3 as an unusual mitochondrial ABC transporter essential for Leishmania survival through its role in the generation of heme and cytosolic ISC. Hence, LmABCB3 could represent a novel target to combat leishmaniasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1284-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Francisco J Gálvez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | - María P Sánchez-Cañete
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| | | | - David M Koeller
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, PTS Granada, Granada, Spain.
| |
Collapse
|
21
|
Basu S, Horáková E, Lukeš J. Iron-associated biology of Trypanosoma brucei. Biochim Biophys Acta Gen Subj 2015; 1860:363-70. [PMID: 26523873 DOI: 10.1016/j.bbagen.2015.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Every eukaryote requires iron, which is also true for the parasitic protist Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle. T. brucei undergoes a complex life cycle during which its single mitochondrion is subject to major metabolic and morphological changes. SCOPE OF REVIEW This review covers what is known about processes associated with iron-sulfur clusters and heme metabolism in T. brucei. We discuss strategies by which iron and heme are acquired and utilized by this model parasite, emphasizing the differences between its two life cycle stages residing in the bloodstream of the mammalian host and gut of the insect vector. Finally, the role of iron in the host-parasite interactions is discussed along with their possible exploitation in fighting these deadly parasites. MAJOR CONCLUSIONS The processes associated with acquisition and utilization of iron, distinct in the two life stages of T. brucei, are fine tuned for the dramatically different host environment occupied by them. Although the composition and compartmentalization of the iron-sulfur cluster assembly seem to be conserved, some unique features of the iron acquisition strategies may be exploited for medical interventions against these parasites. GENERAL SIGNIFICANCE As early-branching protists, trypanosomes and related flagellates are known to harbor an array of unique features, with the acquisition of iron being another peculiarity. Thanks to intense research within the last decade, understanding of iron-sulfur cluster assembly and iron metabolism in T. brucei is among the most advanced of all eukaryotes.
Collapse
Affiliation(s)
- Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Eva Horáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
22
|
Schaffroth C, Bogacz M, Dirdjaja N, Nißen A, Krauth-Siegel RL. The cytosolic or the mitochondrial glutathione peroxidase-type tryparedoxin peroxidase is sufficient to protect procyclic Trypanosoma brucei from iron-mediated mitochondrial damage and lysis. Mol Microbiol 2015; 99:172-87. [PMID: 26374473 DOI: 10.1111/mmi.13223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 01/15/2023]
Abstract
African trypanosomes express three virtually identical glutathione peroxidase (Px)-type enzymes that occur in the cytosol (Px I and II) and mitochondrion (Px III) and detoxify fatty acid-derived hydroperoxides. Selective deletion of the genes revealed that procyclic Trypanosoma brucei lacking either the cytosolic or mitochondrial enzyme proliferate nearly as wild-type parasites, whereas the knockout of the complete genomic locus is lethal. Flow cytometry and immunofluorescence analyses revealed that the Px I-III-deficient parasites lose their mitochondrial membrane potential, which is followed by a loss of the lysosomal signal but not the glycosomal one. Mitochondrial damage and cell lysis are prevented by Trolox, ubiquinone derivatives and the iron chelator deferoxamine, whereas starch-deferoxamine is inefficient. In glucose-rich medium, cell death is attenuated suggesting that oxidants generated by the respiratory chain contribute to the lethal phenotype. Thus, the Px-type peroxidases protect procyclic cells from an iron-mediated oxidative membrane damage that originates at the mitochondrion. This contrasts with the situation in bloodstream cells, where the lysosome is the primarily affected organelle. Strikingly, either the cytosolic or the mitochondrial form of the peroxidases is required and sufficient to protect the mitochondrion and prevent cell lysis.
Collapse
Affiliation(s)
- Corinna Schaffroth
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Marta Bogacz
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Natalie Dirdjaja
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Amrei Nißen
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - R Luise Krauth-Siegel
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Parsons M, Ramasamy G, Vasconcelos EJR, Jensen BC, Myler PJ. Advancing Trypanosoma brucei genome annotation through ribosome profiling and spliced leader mapping. Mol Biochem Parasitol 2015; 202:1-10. [PMID: 26393539 DOI: 10.1016/j.molbiopara.2015.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
Since the initial publication of the trypanosomatid genomes, curation has been ongoing. Here we make use of existing Trypanosoma brucei ribosome profiling data to provide evidence of ribosome occupancy (and likely translation) of mRNAs from 225 currently unannotated coding sequences (CDSs). A small number of these putative genes correspond to extra copies of previously annotated genes, but 85% are novel. The median size of these novels CDSs is small (81 aa), indicating that past annotation work has excelled at detecting large CDSs. Of the unique CDSs confirmed here, over half have candidate orthologues in other trypanosomatid genomes, most of which were not yet annotated as protein-coding genes. Nonetheless, approximately one-third of the new CDSs were found only in T. brucei subspecies. Using ribosome footprints, RNA-Seq and spliced leader mapping data, we updated previous work to definitively revise the start sites for 414 CDSs as compared to the current gene models. The data pointed to several regions of the genome that had sequence errors that altered coding region boundaries. Finally, we consolidated this data with our previous work to propose elimination of 683 putative genes as protein-coding and arrive at a view of the translatome of slender bloodstream and procyclic culture form T. brucei.
Collapse
Affiliation(s)
- Marilyn Parsons
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA; Dept of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Gowthaman Ramasamy
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Elton J R Vasconcelos
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Bryan C Jensen
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Peter J Myler
- The Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA 98109, USA; Dept of Global Health, University of Washington, Seattle, WA 98195, USA; Dept of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Zaidi A, Singh KP, Anwar S, Suman SS, Equbal A, Singh K, Dikhit MR, Bimal S, Pandey K, Das P, Ali V. Interaction of frataxin, an iron binding protein, with IscU of Fe-S clusters biogenesis pathway and its upregulation in AmpB resistant Leishmania donovani. Biochimie 2015; 115:120-35. [PMID: 26032732 DOI: 10.1016/j.biochi.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/19/2015] [Indexed: 01/10/2023]
Abstract
Leishmania donovani is a unicellular protozoon parasite that causes visceral leishmaniasis (VL), which is a fatal disease if left untreated. Certain Fe-S proteins of the TCA cycle and respiratory chain have been found in the Leishmania parasite but the precise mechanisms for their biogenesis and the maturation of Fe-S clusters remains unknown. Fe-S clusters are ubiquitous cofactors of proteins that perform critical cellular functions. The clusters are biosynthesized by the mitochondrial Iron-Sulphur Cluster (ISC) machinery with core protein components that include the catalytic cysteine desulphurase IscS, the scaffold proteins IscU and IscA, and frataxin as an iron carrier/donor. However, no information regarding frataxin, its regulation, or its role in drug resistance is available for the Leishmania parasite. In this study, we characterized Ld-frataxin to investigate its role in the ISC machinery of L. donovani. We expressed and purified the recombinant Ld-frataxin protein and observed its interaction with Ld-IscU by co-purification and pull-down assay. Furthermore, we observed that the cysteine desulphurase activity of the purified Ld-IscS protein was stimulated in the presence of Ld-frataxin and Ld-IscU, particularly in the presence of iron; neither Ld-frataxin nor Ld-IscU alone had significant effects on Ld-IscS activity. Interestingly, RT-PCR and western blotting showed that Ld-frataxin is upregulated in AmpB-resistant isolates compared to sensitive strains, which may support higher Fe-S protein activity in AmpB-resistant L. donovani. Additionally, Ld-frataxin was localized in the mitochondria, as revealed by digitonin fractionation and indirect immunofluorescence. Thus, our results suggest the role of Ld-frataxin as an iron binding/carrier protein for Fe-S cluster biogenesis that physically interacts with other core components of the ISC machinery within the mitochondria.
Collapse
Affiliation(s)
- Amir Zaidi
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Shadab Anwar
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Shashi S Suman
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Kuljit Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India
| | - Manas R Dikhit
- Biomedical Informatic Centre, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Sanjeeva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna 800007, India.
| |
Collapse
|
25
|
Paul VD, Mühlenhoff U, Stümpfig M, Seebacher J, Kugler KG, Renicke C, Taxis C, Gavin AC, Pierik AJ, Lill R. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. eLife 2015; 4:e08231. [PMID: 26182403 PMCID: PMC4523923 DOI: 10.7554/elife.08231] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI:http://dx.doi.org/10.7554/eLife.08231.001 Many proteins depend on small molecules called cofactors to be able to perform their roles in cells. One class of proteins—the iron-sulfur proteins—contain cofactors that are made of clusters of iron and sulfide ions. In yeast, humans and other eukaryotes, the clusters are assembled and incorporated into their target proteins by a group of assembly factors called the CIA machinery. Several components of the CIA machinery have previously been identified and most of them appear to be core components that are needed to assemble many different proteins in cells. Since these iron-sulfur proteins are involved in important processes such as the production of proteins and the maintenance of DNA, losing of any of these CIA proteins tends to be lethal to the organism. Paul et al. used several ‘proteomic’ techniques to study the assembly of iron-sulfur proteins in yeast and identified two new proteins called Yae1 and Lto1 that are involved in this process. Unlike other CIA proteins, Yae1 and Lto1 are only required for the assembly of just one particular iron-sulfur protein called Rli1, which is essential for the production of proteins. Most newly made iron-sulfur proteins can bind directly to a group of CIA proteins called the CIA targeting complex, but Rli1 cannot. The experiments show that Lto1 binds to both the CIA targeting complex and to Yae1, which in turn recruits the Rli1 to the CIA complex. Paul et al. also show that humans have proteins that are very similar to Yae1 and Lto1. Inserting the human counterparts of Yae1 and Lto1 into yeast lacking these proteins could fully restore the assembly of iron-sulfur clusters into Rli1. This suggests that Yae1 and Lto1 proteins evolved in the common ancestors of fungi and humans and have changed little since. Taken together, Paul et al.'s findings reveal that Yae1 and Lto1 act as adaptors that link the rest of the CIA machinery to their specific target protein Rli1 in yeast and humans. A future challenge is to find out the three-dimensional structures of Yae1 and Lto1 to better understand how these proteins work and interact. DOI:http://dx.doi.org/10.7554/eLife.08231.002
Collapse
Affiliation(s)
- Viktoria Désirée Paul
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Jan Seebacher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karl G Kugler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Renicke
- Fachbereich Biologie/Genetik, Philipps-Universität Marburg, Marburg, Germany
| | - Christof Taxis
- Fachbereich Biologie/Genetik, Philipps-Universität Marburg, Marburg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio J Pierik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|