1
|
Mostafavi S, Eskandari N. Mitochondrion: Main organelle in orchestrating cancer escape from chemotherapy. Cancer Rep (Hoboken) 2024; 7:e1942. [PMID: 38151790 PMCID: PMC10849933 DOI: 10.1002/cnr2.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Chemoresistance is a challenging barrier to cancer therapy, and in this context, the role of mitochondria is significant. We put emphasis on key biological characteristics of mitochondria, contributing to tumor escape from various therapies, to find the "Achilles' Heel" of cancer cells for future drug design. RECENT FINDINGS The mitochondrion is a dynamic organelle, and its existence is important for tumor growth. Its metabolites also cooperate with cell signaling in tumor proliferation and drug resistance. CONCLUSION Biological characteristics of this organelle, such as redox balance, DNA depletion, and metabolic reprogramming, provide flexibility to cancer cells to cope with therapy-induced stress.
Collapse
Affiliation(s)
- Samaneh Mostafavi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Nahid Eskandari
- Department of Immunology, Faculty of MedicineIsfahan University of Medical ScienceIsfahanIran
| |
Collapse
|
2
|
Goetzman E, Gong Z, Zhang B, Muzumdar R. Complex II Biology in Aging, Health, and Disease. Antioxidants (Basel) 2023; 12:1477. [PMID: 37508015 PMCID: PMC10376733 DOI: 10.3390/antiox12071477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is associated with a decline in mitochondrial function which may contribute to age-related diseases such as neurodegeneration, cancer, and cardiovascular diseases. Recently, mitochondrial Complex II has emerged as an important player in the aging process. Mitochondrial Complex II converts succinate to fumarate and plays an essential role in both the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). The dysfunction of Complex II not only limits mitochondrial energy production; it may also promote oxidative stress, contributing, over time, to cellular damage, aging, and disease. Intriguingly, succinate, the substrate for Complex II which accumulates during mitochondrial dysfunction, has been shown to have widespread effects as a signaling molecule. Here, we review recent advances related to understanding the function of Complex II, succinate signaling, and their combined roles in aging and aging-related diseases.
Collapse
Affiliation(s)
- Eric Goetzman
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhenwei Gong
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bob Zhang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Radhika Muzumdar
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Mitrevska K, Merlos Rodrigo MA, Cernei N, Michalkova H, Splichal Z, Hynek D, Zitka O, Heger Z, Kopel P, Adam V, Milosavljevic V. Chick chorioallantoic membrane (CAM) assay for the evaluation of the antitumor and antimetastatic activity of platinum-based drugs in association with the impact on the amino acid metabolism. Mater Today Bio 2023; 19:100570. [PMID: 36824411 PMCID: PMC9941372 DOI: 10.1016/j.mtbio.2023.100570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
The combination of in ovo and ex ovo chorioallantoic membrane (CAM) assay provides an excellent platform which extends its relevance in studying carcinogenesis to the field of screening of anticancer activity of platinum nanoparticles (PtNPs) and further study of the amino acids' fluctuations in liver and brain. PtNPs are promising candidates for replacing cisplatin (CDDP); however, insufficient data of their antitumor efficiency and activity on the cancer-related amino acid metabolism are available, and the assessment of the in vivo performance has barely scratched the surface. Herein, we used CAM assay as in vivo model for screening of novel therapeutic modalities, and we conducted a comparative study of the effects of CDDP and polyvinylpyrrolidone coated PtNPs on MDA-MB-231 breast cancer xenograft. PtNPs showed a higher efficiency to inhibit the tumor growth and metastasis compared to CDDP. The amino acids profiling in the MDA-MB-231 cells revealed that the PtNPs had an overall depleting effect on the amino acids content. Noteworthy, more side effects to amino acid metabolism were deduced from the depletion of the amino acids in tumor, brain, and liver upon CDDP treatment. Different sets of enzymes of the tricarboxylic acid (TCA) cycle were targeted by PtNPs and CDDP, and while mRNA encoding multiple enzymes was downregulated by PtNPs, the treatment with CDDP affected only two TCA enzymes, indicating a different mechanism of action. Taken together, CAM assay represents and invaluable model, demonstrating the PtNPs capability of repressing angiogenesis, decrease amino acid contents and disrupt the TCA cycle.
Collapse
Affiliation(s)
- Katerina Mitrevska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-779 00, Olomouc, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Corresponding author. Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
4
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
5
|
Seo DY, Bae JH, Zhang D, Song W, Kwak HB, Heo JW, Jung SJ, Yun HR, Kim TN, Lee SH, Kim AH, Jeong DH, Kim HK, Han J. Effects of cisplatin on mitochondrial function and autophagy-related proteins in skeletal muscle of rats. BMB Rep 2021. [PMID: 34674798 PMCID: PMC8633523 DOI: 10.5483/bmbrep.2021.54.11.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cisplatin is widely known as an anti-cancer drug. However, the effects of cisplatin on mitochondrial function and autophagy-related proteins levels in the skeletal muscle are unclear. The purpose of this study was to investigate the effect of different doses of cisplatin on mitochondrial function and autophagy-re-lated protein levels in the skeletal muscle of rats. Eight-week-old male Wistar rats (n = 24) were assigned to one of three groups; the first group was administered a saline placebo (CON, n = 10), and the second and third groups were given 0.1 mg/kg body weight (BW) (n = 6), and 0.5 mg/kg BW (n = 8) of cisplatin, respectively. The group that had been administered 0.5 mg cisplatin exhibited a reduced BW, skeletal muscle tissue weight, and mitochondrial function and upregulated levels of autophagy-related proteins, including LC3II, Beclin 1, and BNIP3. Moreover, this group had a high LC3 II/I ratio in the skeletal muscle; i.e., the administration of a high dose of cisplatin decreased the muscle mass and mitochondrial function and increased the levels of autophagy-related proteins. These results, thus, suggest that reducing mitochondrial dysfunction and autophagy pathways may be important for preventing skeletal muscle atrophy following cisplatin administration.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jun Hyun Bae
- Health & Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
- Department of Biomedical Science and Engineering, Inha University, Incheon 22212, Korea
| | - Didi Zhang
- School of Physical Education, Xiang Minzu University, Xianyang 712082, China
| | - Wook Song
- Health & Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
- Institute of Aging, Seoul National University, Seoul 08826, Korea
| | - Hyo-Bum Kwak
- Department of Biomedical Science and Engineering, Inha University, Incheon 22212, Korea
| | - Jun-Won Heo
- Department of Biomedical Science and Engineering, Inha University, Incheon 22212, Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul 02192, Korea
| | - Hyeong Rok Yun
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Tae Nyun Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Sang Ho Lee
- Department of Taekwondo, Dong-A University, Busan 49315, Korea
| | - Amy Hyein Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Dae Hoon Jeong
- Department of Obstetrics and Gynecology, Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
6
|
Abdrakhmanov A, Yapryntseva MA, Kaminskyy VO, Zhivotovsky B, Gogvadze V. Receptor-Mediated Mitophagy Rescues Cancer Cells under Hypoxic Conditions. Cancers (Basel) 2021; 13:cancers13164027. [PMID: 34439183 PMCID: PMC8394032 DOI: 10.3390/cancers13164027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Targeting mitochondria with thenoyltrifluoroacetone (TTFA), an inhibitor of Complex II in the respiratory chain, stimulated cisplatin-induced apoptosis in various cell lines in normoxia but not in hypoxia. This can be explained by the elimination of mitochondria involved in triggering apoptotic cell death by mitophagy, either Parkin-dependent or receptor-mediated. Treatment with TTFA alone or in combination with cisplatin did not cause accumulation of PINK1, meaning that under hypoxic conditions cells survive through activation of a receptor-mediated pathway. Hypoxia triggers the accumulation of BNIP3 and BNIP3L (also known as NIX), key participants in receptor-mediated mitophagy. Under hypoxic conditions, stimulation of autophagy, as assessed by the accumulation of lipidated form of LC3 (LC3II), was observed. To exclude the contribution of canonical macroautophagy in LC3II accumulation, experiments were performed using U1810 cells lacking ATG13, a key enzyme of macroautophagy. Despite the absence of ATG13, hypoxia-mediated accumulation of LC3II was not affected, underlying the importance of the receptor-mediated pathway. In order to prove the protective role of BNIP3 against cisplatin-induced apoptosis, BNIP3-deficient A549 cells were used. Surprisingly, a BNIP3 knockout did not abolish hypoxia-induced protection; however, in cells lacking BNIP3, a compensatory upregulation of BNIP3L was detected. Thus, in the absence of BNIP3, mitophagy could be maintained by BNIP3L and lead to cell death suppression due to the elimination of proapoptotic mitochondria. When both BNIP3 and BNIP3L were knocked out, the inhibitory effect of hypoxia on apoptosis was diminished, although not abolished completely. Undoubtedly, receptor-mediated mitophagy is likely to be one of the mechanisms responsible for cell death suppression under hypoxic conditions.
Collapse
Affiliation(s)
- Alibek Abdrakhmanov
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (M.A.Y.); (B.Z.)
| | - Maria A. Yapryntseva
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (M.A.Y.); (B.Z.)
| | - Vitaliy O. Kaminskyy
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden;
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (M.A.Y.); (B.Z.)
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden;
| | - Vladimir Gogvadze
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (M.A.Y.); (B.Z.)
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden;
- Correspondence:
| |
Collapse
|
7
|
Hadrava Vanova K, Kraus M, Neuzil J, Rohlena J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep 2021; 25:26-32. [PMID: 32290794 PMCID: PMC7178880 DOI: 10.1080/13510002.2020.1752002] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead to ROS generation in cells, with a relevant impact on the development of pathophysiological conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII involvement in ROS production has been defined, the fine details still await clarification. It is important to resolve these aspects to fully understand the role of CII in pathology and to explore its therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
| | - Michal Kraus
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| |
Collapse
|
8
|
Chen L, Hao M, Yan J, Sun L, Tai G, Cheng H, Zhou Y. Citrus-derived DHCP inhibits mitochondrial complex II to enhance TRAIL sensitivity via ROS-induced DR5 upregulation. J Biol Chem 2021; 296:100515. [PMID: 33676890 PMCID: PMC8050394 DOI: 10.1016/j.jbc.2021.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 10/29/2022] Open
Abstract
Heat-modified citrus pectin, a water-soluble indigestible polysaccharide fiber derived from citrus fruits and modified by temperature treatment, has been reported to exhibit anticancer effects. However, the bioactive fractions and their mechanisms remain unclear. In this current study, we isolated an active compound, trans-4,5-dihydroxy-2-cyclopentene-l-one (DHCP), from heat-treated citrus pectin, and found that is induces cell death in colon cancer cells via induction of mitochondrial ROS. On the molecular level, DHCP triggers ROS production by inhibiting the activity of succinate ubiquinone reductase (SQR) in mitochondrial complex II. Furthermore, cytotoxicity, apoptotic activity, and activation of caspase cascades were determined in HCT116 and HT-29 cell-based systems, the results indicated that DHCP enhances the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with DHCP-induced ROS accounting for the synergistic effect between DHCP and TRAIL. Furthermore, the combination of DHCP and TRAIL inhibits the growth of HCT116 and HT-29 xenografts synergistically. ROS significantly increases the expression of TRAIL death receptor 5 (DR5) via the p53 and C/EBP homologous protein pathways. Collectively, our findings indicate that DHCP has a favorable toxicity profile and is a new TRAIL sensitizer that shows promise in the development of pectin-based pharmaceuticals, nutraceuticals, and dietary agents aimed at combating human colon cancer.
Collapse
Affiliation(s)
- Lei Chen
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Miao Hao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jingmin Yan
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| |
Collapse
|
9
|
Metabolic Cancer-Macrophage Crosstalk in the Tumor Microenvironment. BIOLOGY 2020; 9:biology9110380. [PMID: 33171762 PMCID: PMC7694986 DOI: 10.3390/biology9110380] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
Tumors consist of a wide variety of cells, including immune cells, that affect tumor progression. Macrophages are abundant innate immune cells in the tumor microenvironment (TME) and are crucial in regulating tumorigenicity. Specific metabolic conditions in the TME can alter the phenotype of tumor-associated macrophages (TAMs) in a direction that supports their pro-tumor functions. One of these conditions is the accumulation of metabolites, also known as oncometabolites. Interactions of oncometabolites with TAMs can promote a pro-tumorigenic phenotype, thereby sustaining cancer cell growth and decreasing the chance of eradication. This review focuses on the metabolic cancer-macrophage crosstalk in the TME. We discuss how cancer cell metabolism and oncometabolites affect macrophage phenotype and function, and conversely how macrophage metabolism can impact tumor progression. Lastly, we propose tumor-secreted exosome-mediated metabolic signaling as a potential factor in tumorigenesis. Insight in these processes may contribute to the development of novel cancer therapies.
Collapse
|
10
|
Moreno C, Santos RM, Burns R, Zhang WC. Succinate Dehydrogenase and Ribonucleic Acid Networks in Cancer and Other Diseases. Cancers (Basel) 2020; 12:cancers12113237. [PMID: 33153035 PMCID: PMC7693138 DOI: 10.3390/cancers12113237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Although the dysfunction of the succinate dehydrogenase complex in mitochondria leads to cancer and other diseases due to aberrant metabolic reactions and signaling pathways, it is not well known how the succinate dehydrogenase complex is regulated. Our review highlights that non-coding ribonucleic acids (RNAs), RNA editing enzymes, and RNA modifying enzymes regulate expressions and functions of the succinate dehydrogenase complex. This research will provide new strategies for treating succinate dehydrogenase-relevant diseases in a clinic. Abstract Succinate dehydrogenase (SDH) complex connects both the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) in the mitochondria. However, SDH mutation or dysfunction-induced succinate accumulation results in multiple cancers and non-cancer diseases. The mechanistic studies show that succinate activates hypoxia response and other signal pathways via binding to 2-oxoglutarate-dependent oxygenases and succinate receptors. Recently, the increasing knowledge of ribonucleic acid (RNA) networks, including non-coding RNAs, RNA editors, and RNA modifiers has expanded our understanding of the interplay between SDH and RNA networks in cancer and other diseases. Here, we summarize recent discoveries in the RNA networks and their connections to SDH. Additionally, we discuss current therapeutics targeting SDH in both pre-clinical and clinical trials. Thus, we propose a new model of SDH–RNA network interaction and bring promising RNA therapeutics against SDH-relevant cancer and other diseases.
Collapse
|
11
|
Kim MS, Gernapudi R, Cedeño YC, Polster BM, Martinez R, Shapiro P, Kesari S, Nurmemmedov E, Passaniti A. Targeting breast cancer metabolism with a novel inhibitor of mitochondrial ATP synthesis. Oncotarget 2020; 11:3863-3885. [PMID: 33196708 PMCID: PMC7597410 DOI: 10.18632/oncotarget.27743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of mitochondrial respiration and ATP synthesis may promote the selective killing of respiration-competent cancer cells that are critical for tumor progression. We previously reported that CADD522, a small molecule inhibitor of the RUNX2 transcription factor, has potential for breast cancer treatment. In the current study, we show that CADD522 inhibits mitochondrial oxidative phosphorylation by decreasing the mitochondrial oxygen consumption rate (OCR) and ATP production in human breast cancer cells in a RUNX2-independent manner. The enzyme activity of mitochondrial ATP synthase was inhibited by CADD522 treatment. Importantly, results from cellular thermal shift assays that detect drug-induced protein stabilization revealed that CADD522 interacts with both α and β subunits of the F1-ATP synthase complex. Differential scanning fluorimetry also demonstrated interaction of α subunits of the F1-ATP synthase to CADD522. These results suggest that CADD522 might target the enzymatic F1 subunits in the ATP synthase complex. CADD522 increased the levels of intracellular reactive oxygen species (ROS), which was prevented by MitoQ, a mitochondria-targeted antioxidant, suggesting that cancer cells exposed to CADD522 may elevate ROS from mitochondria. CADD522-increased mitochondrial ROS levels were enhanced by exogenously added pro-oxidants such as hydrogen peroxide or tert-butyl hydroperoxide. Conversely, CADD522-mediated cell growth inhibition was blocked by N-acetyl-l-cysteine, a general ROS scavenger. Therefore, CADD522 may exert its antitumor activity by increasing mitochondrial driven cellular ROS levels. Collectively, our data suggest in vitro proof-of-concept that supports inhibition of mitochondrial ATP synthase and ROS generation as contributors to the effectiveness of CADD522 in suppression of tumor growth.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| | - Ramon Martinez
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Antonino Passaniti
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| |
Collapse
|
12
|
Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Biochim Biophys Acta Rev Cancer 2020; 1874:188427. [PMID: 32961257 DOI: 10.1016/j.bbcan.2020.188427] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Macrophages are innate phagocytic leukocytes that are highly present in solid tumors, where they are referred to as tumor-associated macrophages (TAMs). In solid tumors, the microenvironment is often immunosuppressive and hypoxic regions are prevalent. These hypoxic conditions impose tumor cells to reprogram their metabolism, shifting from oxidative phosphorylation to anaerobic glycolysis. This so-called glycolytic switch enables hypoxic tumor cells to survive, proliferate, and eventually to outcompete untransformed cells. The hypoxia-induced change in tumor cell metabolism leads to the production of oncometabolites, among which are the glycolytic end-metabolite lactate and the tricarboxylic acid cycle intermediate succinate. TAMs can react to these oncometabolites, resulting in an altered maturation and the adoption of pro-angiogenic features. These angiogenesis-promoting TAMs have been reported to cooperate with tumor cells in the formation of new vessels, and even have been considered an important cause of resistance against anti-angiogenic therapies. For a long time, the mechanisms by which lactate and succinate activated pro-angiogenic TAMs were not understood. Researchers now start to unravel and understand some of the underlying mechanisms. Here, the importance of microenvironmental cues in inducing different macrophage activation states is discussed, as well as the role of hypoxia in the recruitment and activation of pro-angiogenic macrophages. In addition, the latest findings on the oncometabolites lactate and succinate in the activation of angiogenesis supporting macrophages are reviewed. Finally, various oncometabolite-targeting therapeutic strategies are proposed that could improve the response to anti-angiogenic therapies. SIGNIFICANCE STATEMENT: Tumor-associated macrophages (TAMs) are known promotors of tumor neovascularization, and significantly contribute to the emergence of resistance to anti-angiogenic therapies. Recent evidence suggests that the angiogenesis promoting phenotype of TAMs can be activated by hypoxic tumor cell-derived oncometabolites, including lactate and succinate. Here, the latest findings into the lactate- and succinate-mediated mechanistic activation of pro-angiogenic TAMs are reviewed, and therapeutic strategies that interfere with this mechanism and may delay or even prevent acquired resistance to anti-angiogenic agents are discussed.
Collapse
|
13
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
14
|
Delgado-Deida Y, Alula KM, Theiss AL. The influence of mitochondrial-directed regulation of Wnt signaling on tumorigenesis. Gastroenterol Rep (Oxf) 2020; 8:215-223. [PMID: 32665853 PMCID: PMC7333924 DOI: 10.1093/gastro/goaa025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic organelles that play a key role in integrating cellular signaling. Mitochondrial alterations are evident in all stages of tumorigenesis and targeting mitochondrial pathways has emerged as an anticancer therapeutic strategy. The Wnt-signaling pathway regulates many fundamental cellular functions such as proliferation, survival, migration, stem-cell maintenance, and mitochondrial metabolism and dynamics. Emerging evidence demonstrates that mitochondrial-induced regulation of Wnt signaling provides an additional mechanism to influence cell-fate decisions. Crosstalk between mitochondria and Wnt signaling presents a feedforward loop in which Wnt activation regulates mitochondrial function that, in turn, drives Wnt signaling. In this mini-review, we will discuss the recent evidence revealing the mitochondrial control of Wnt signaling and its implications for tumorigenesis and anticancer therapeutic targeting.
Collapse
Affiliation(s)
- Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kibrom M Alula
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Valter K, Maximchik P, Abdrakhmanov A, Senichkin V, Zhivotovsky B, Gogvadze V. Distinct effects of etoposide on glutamine-addicted neuroblastoma. Cell Mol Life Sci 2020; 77:1197-1207. [PMID: 31392350 PMCID: PMC7109159 DOI: 10.1007/s00018-019-03232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
The majority of anticancer drugs are DNA-damaging agents, and whether or not they may directly target mitochondria remains unclear. In addition, tumors such as neuroblastoma exhibit addiction to glutamine in spite of it being a nonessential amino acid. Our aim was to evaluate the direct effect of widely used anticancer drugs on mitochondrial activity in combination with glutamine withdrawal, and possible apoptotic effects of such interaction. Our results revealed that etoposide inhibits mitochondrial respiratory chain Complex I causing the leakage of electrons and the superoxide radical formation. However, it was not sufficient to induce apoptosis, and apoptotic manifestation was detectable only alongside the withdrawal of glutamine, a precursor for antioxidant glutathione. Thus, the simultaneous depletion of glutathione and destabilization of mitochondria by ROS can compromise the barrier properties of the mitochondrial membrane, leading to cytochrome c release and the activation of the mitochondrial apoptotic pathway. Thus, the depletion of antioxidants or the inhibition of the pathways responsible for cellular antioxidant response can enhance mitochondrial targeting and strengthen antitumor therapy.
Collapse
Affiliation(s)
- Kadri Valter
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
| | - Polina Maximchik
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Alibek Abdrakhmanov
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Viacheslav Senichkin
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Boris Zhivotovsky
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Vladimir Gogvadze
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
16
|
Evolutionarily conserved susceptibility of the mitochondrial respiratory chain to SDHI pesticides and its consequence on the impact of SDHIs on human cultured cells. PLoS One 2019; 14:e0224132. [PMID: 31697708 PMCID: PMC6837341 DOI: 10.1371/journal.pone.0224132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Succinate dehydrogenase (SDH) inhibitors (SDHIs) are used worldwide to limit the proliferation of molds on plants and plant products. However, as SDH, also known as respiratory chain (RC) complex II, is a universal component of mitochondria from living organisms, highly conserved through evolution, the specificity of these inhibitors toward fungi warrants investigation. We first establish that the human, honeybee, earthworm and fungal SDHs are all sensitive to the eight SDHIs tested, albeit with varying IC50 values, generally in the micromolar range. In addition to SDH, we observed that five of the SDHIs, mostly from the latest generation, inhibit the activity of RC complex III. Finally, we show that the provision of glucose ad libitum in the cell culture medium, while simultaneously providing sufficient ATP and reducing power for antioxidant enzymes through glycolysis, allows the growth of RC-deficient cells, fully masking the deleterious effect of SDHIs. As a result, when glutamine is the major carbon source, the presence of SDHIs leads to time-dependent cell death. This process is significantly accelerated in fibroblasts derived from patients with neurological or neurodegenerative diseases due to RC impairment (encephalopathy originating from a partial SDH defect) and/or hypersensitivity to oxidative insults (Friedreich ataxia, familial Alzheimer’s disease).
Collapse
|
17
|
Costa R, Peruzzo R, Bachmann M, Montà GD, Vicario M, Santinon G, Mattarei A, Moro E, Quintana-Cabrera R, Scorrano L, Zeviani M, Vallese F, Zoratti M, Paradisi C, Argenton F, Brini M, Calì T, Dupont S, Szabò I, Leanza L. Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction. Cell Rep 2019; 28:1949-1960.e6. [PMID: 31433973 DOI: 10.1016/j.celrep.2019.07.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/01/2019] [Accepted: 07/16/2019] [Indexed: 02/02/2023] Open
Abstract
Wnt signaling affects fundamental development pathways and, if aberrantly activated, promotes the development of cancers. Wnt signaling is modulated by different factors, but whether the mitochondrial energetic state affects Wnt signaling is unknown. Here, we show that sublethal concentrations of different compounds that decrease mitochondrial ATP production specifically downregulate Wnt/β-catenin signaling in vitro in colon cancer cells and in vivo in zebrafish reporter lines. Accordingly, fibroblasts from a GRACILE syndrome patient and a generated zebrafish model lead to reduced Wnt signaling. We identify a mitochondria-Wnt signaling axis whereby a decrease in mitochondrial ATP reduces calcium uptake into the endoplasmic reticulum (ER), leading to endoplasmic reticulum stress and to impaired Wnt signaling. In turn, the recovery of the ATP level or the inhibition of endoplasmic reticulum stress restores Wnt activity. These findings reveal a mechanism that links mitochondrial energetic metabolism to the control of the Wnt pathway that may be beneficial against several pathologies.
Collapse
Affiliation(s)
- Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Mattia Vicario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giulia Santinon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Rubén Quintana-Cabrera
- Department of Biology, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Padova, Italy
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy; CNR Institute of Neuroscience, Padova, Italy.
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
18
|
Badrinath N, Yoo SY. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 2019; 39:1419-1430. [PMID: 30357389 DOI: 10.1093/carcin/bgy148] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023] Open
Abstract
Mitochondria play pivotal roles in most eukaryotic cells, ranging from energy production to regulation of apoptosis. As sites of cellular respiration, mitochondria experience accumulation of reactive oxygen species (ROS) due to damage in electron transport chain carriers. Mutations in mitochondrial DNA (mtDNA) as well as nuclear DNA are reported in various cancers. Mitochondria have a dual role in cancer: the development of tumors due to mutations in mitochondrial genome and the generation of ROS. Impairment in the mitochondria-regulated apoptosis pathway accelerates tumorigenesis. Numerous strategies targeting mitochondria have been developed to induce the mitochondrial (i.e. intrinsic) apoptosis pathway in cancer cells. This review elaborates the roles of mitochondria in cancer with respect to mutations and apoptosis and discusses mitochondria-targeting strategies as cancer therapies to enhance the killing of cancer cells.
Collapse
Affiliation(s)
- Narayanasamy Badrinath
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - So Young Yoo
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,BIO-IT Foundry Technology Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
19
|
Lin KH, Xie A, Rutter JC, Ahn YR, Lloyd-Cowden JM, Nichols AG, Soderquist RS, Koves TR, Muoio DM, MacIver NJ, Lamba JK, Pardee TS, McCall CM, Rizzieri DA, Wood KC. Systematic Dissection of the Metabolic-Apoptotic Interface in AML Reveals Heme Biosynthesis to Be a Regulator of Drug Sensitivity. Cell Metab 2019; 29:1217-1231.e7. [PMID: 30773463 PMCID: PMC6506362 DOI: 10.1016/j.cmet.2019.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/28/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022]
Abstract
Crosstalk between metabolic and survival pathways is critical for cellular homeostasis, but the connectivity between these processes remains poorly defined. We used loss-of-function CRISPR/Cas9 knockout screening to identify metabolic genes capable of influencing cellular commitment to apoptosis, using sensitization to the BCL-2 inhibitor ABT-199 in BCL-2-dependent acute myeloid leukemia (AML) cell lines as a proxy for apoptotic disposition. This analysis revealed metabolic pathways that specifically cooperate with BCL-2 to sustain survival. In particular, our analysis singled out heme biosynthesis as an unappreciated apoptosis-modifying pathway. Although heme is broadly incorporated into the proteome, reduction of heme biosynthesis potentiates apoptosis through the loss of ETC activity, resulting in baseline depolarization of the mitochondrial membrane and an increased propensity to undergo apoptosis. Collectively, our findings chart the first apoptotic map of metabolism, motivating the design of metabolically engaged combination chemotherapies and nominating heme biosynthesis as an apoptotic modulator in AML.
Collapse
Affiliation(s)
- Kevin H Lin
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Abigail Xie
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Justine C Rutter
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yeong-Ran Ahn
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Amanda G Nichols
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ryan S Soderquist
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Timothy S Pardee
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Chad M McCall
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - David A Rizzieri
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Kris C Wood
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Belyaeva EA. Respiratory complex II in mitochondrial dysfunction-mediated cytotoxicity: Insight from cadmium. J Trace Elem Med Biol 2018; 50:80-92. [PMID: 30262321 DOI: 10.1016/j.jtemb.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023]
Abstract
In the present work we studied action of several inhibitors of respiratory complex II (CII) of mitochondrial electron transport chain, namely malonate and thenoyltrifluoroacetone (TTFA) on Cd2+-induced toxicity and cell mortality, using two rat cell lines, pheochromocytoma PC12 and ascites hepatoma AS-30D and isolated rat liver mitochondria (RLM). It was shown that malonate, an endogenous competitive inhibitor of dicarboxylate-binding site of CII, restored in part RLM respiratory function disturbed by Cd2+. In particular, malonate increased both phosphorylating and maximally uncoupled respiration rates in KCl medium in the presence of CI substrates as well as palliated changes in basal and resting state respiration rates produced by the heavy metal on the mitochondria energized by CI or CII substrates. Notably, malonate enhanced Cd2+-induced swelling of the mitochondria energized by CI substrates in KCl and, in a much lesser extent and at higher [Cd2+], in sucrose media but did not influence on the Cd2+ effects in NaCl medium. Besides, malonate did not affect swelling in sucrose media of RLM energized by CIV substrates under using of Cd2+ or Ca2+ whereas it strongly increased the mitochondrial swelling produced by selenite. In addition, malonate produced some protection against Cd2+-promoted necrotic death of AS-30D and PC12 cells and reduced intracellular reactive oxygen species (ROS) formation evoked by Cd2+ in PC12 cells. Importantly, TTFA, an irreversible competitive inhibitor of Q-binding site of CII, per se induced apoptosis of AS-30D cells which was inhibited by co-treatment with Cd2+ as well as decreased the Cd2+-enhanced intracellular ROS formation. In turn, decylubiquinone (dUb) at low μM concentrations did not protect AS-30D cells against the Cd2+-induced necrosis and enhanced the Cd2+-induced apoptosis of the cells. High μM concentrations of dUb were highly toxic for the cells. As consequence, the findings give new evidence indicative of critical involvement of CII in mechanism(s) of Cd2+-produced cytotoxicity and support the notion on CII as a perspective pharmacological target in mitochondria dysfunction-mediated conditions and diseases.
Collapse
Affiliation(s)
- Elena A Belyaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Thorez pr. 44, 194223, St.-Petersburg, Russia.
| |
Collapse
|
21
|
Abstract
Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be given to combined therapies that show more effective results with fewer side effects than drugs targeting only one specific protein or pathway.
Collapse
|