1
|
Huang CJ, Choo KB. Circular RNAs and host genes act synergistically in regulating cellular processes and functions in skeletal myogenesis. Gene 2025; 940:149189. [PMID: 39724991 DOI: 10.1016/j.gene.2024.149189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages. This review aims to provide an integrated interpretations on methodologies, regulatory mechanisms and possible host gene-circRNA synergistic functional relationships in skeletal myogenesis, focusing on myoblast differentiation and proliferation, core drivers of muscle formation in myogenesis, while other myogenic processes that play supportive roles in the structure, maintenance and function of muscle tissues are also briefly discussed. On literature review,thirty-two circRNAs derived from thirty-one host genes involved in various myogenic stages are identified; twenty-two (68.6 %) of these circRNAs regulate myogenesis by sequestering miRNAs to engage PI3K/AKT and other signaling pathways while four (12.5 %) are translated into proteins for functions. In circRNA-host gene relationship,ten (32.3 %) host genes are shown to regulate myogenesis,nine (29.0 %) are specific to skeletal muscle functions,and twelve (38.8 %) are linked to skeletal muscle disorders.Our analysis of skeletal myogenesis suggests that circRNAs and host genes act synergistically to regulate cellular functions. Such circRNA-host gene functional synergism may also be found in other major cellular processes. CircRNAs may have evolved later than miRNAs to counteract the suppressive effects of miRNAs and to augment host gene functions to further fine-tune gene regulation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Liu W, Chen M, Liu Y, Li X, Li H, Wang J. Understanding lncRNAs: key regulators of myogenesis and lipogenesis in farm animals. Front Vet Sci 2025; 12:1540613. [PMID: 40027357 PMCID: PMC11868070 DOI: 10.3389/fvets.2025.1540613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules exceeding 200 nucleotides in length. Recent studies have demonstrated their involvement in regulating gene expression and various biological processes. Among these, myogenesis and lipogenesis are particularly important because of their direct effects on muscle development and fat deposition in farm animals. These processes are crucial for determining meat quality, growth rates, and overall economic value in animal husbandry. Although the specific mechanisms through which lncRNAs influence these pathways are still under investigation, further research into their roles in muscle and fat development is crucial for optimizing farm animal breeding strategies. Here, we review the characteristics of lncRNAs, including their biogenesis, localization, and structures, with a particular focus on their association with myogenesis and adipogenesis. This review seeks to establish a theoretical foundation for enhancing farm animal production. In particular, focusing on lncRNAs may reveal how these molecules can enhance the economic traits of farm animals, thereby contributing to the optimization of farm animal breeding processes.
Collapse
Affiliation(s)
- Wenjing Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengjie Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yining Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinxin Li
- Institute of Scientific Research, Guangxi University, Nanning, China
| | - Hui Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Ma X, La Y, Wang T, Huang C, Feng F, Guo X, Bao P, Wu X, Chu M, Liang C, Yan P. Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis. BMC Genomics 2024; 25:1146. [PMID: 39604828 PMCID: PMC11600685 DOI: 10.1186/s12864-024-11038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development. RESULTS We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation. CONCLUSION These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Western Agriculture, the , Chinese Academy of Agricultural Sciences, Changji, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun Huang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fen Feng
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Institute of Western Agriculture, the , Chinese Academy of Agricultural Sciences, Changji, China.
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
4
|
Hofman B, Szyda J, Frąszczak M, Mielczarek M. Long non-coding RNA variability in porcine skeletal muscle. J Appl Genet 2024; 65:565-573. [PMID: 38539022 DOI: 10.1007/s13353-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 03/21/2024] [Indexed: 08/09/2024]
Abstract
Recently, numerous studies including various tissues have been carried out on long non-coding RNAs (lncRNAs), but still, its variability has not yet been fully understood. In this study, we characterised the inter-individual variability of lncRNAs in pigs, in the context of number, length and expression. Transcriptomes collected from muscle tissue belonging to six Polish Landrace boars (PL1-PL6), including half-brothers (PL1-PL3), were investigated using bioinformatics (lncRNA identification and functional analysis) and statistical (lncRNA variability) methods. The number of lncRNA ranged from 1289 to 3500 per animal, and the total number of common lncRNAs among all boars was 232. The number, length and expression of lncRNAs significantly varied between individuals, and no consistent pattern has been found between pairs of half-brothers. In detail, PL5 exhibits lower expression than the others, while PL4 has significantly higher expression than PL2-PL3 and PL5-PL6. Noteworthy, comparing the inter-individual variability of lncRNA and mRNA expression, they exhibited concordant patterns. The enrichment analysis for common lncRNA target genes determined a variety of biological processes that play fundamental roles in cell biology, and they were mostly related to whole-body homeostasis maintenance, energy and protein synthesis as well as dynamics of multiple nucleoprotein complexes. The high variability of lncRNA landscape in the porcine genome has been revealed in this study. The inter-individual differences have been found in the context of three aspects: the number, length and expression of lncRNAs, which contribute to a better understanding of its complex nature.
Collapse
Affiliation(s)
- Bartłomiej Hofman
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magdalena Frąszczak
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland.
| |
Collapse
|
5
|
Lu J, Zhao P, Ding X, Li H. N-acetylcysteine stimulates the proliferation and differentiation in heat-stressed skeletal muscle cells. J Therm Biol 2024; 124:103958. [PMID: 39182421 DOI: 10.1016/j.jtherbio.2024.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
N-acetylcysteine (NAC) is known for its beneficial effects on health due to its antioxidant and antiapoptotic properties. This study explored the protective effects of NAC against oxidative stress in heat-stressed (HS) skeletal muscle cells and its role in promoting muscle development. NAC reduced the heat shock response by decreasing the expression of heat shock protein 70 (HSP70) in HS-induced muscle cells during proliferation and differentiation. NAC also mitigated HS-induced oxidative stress via increasing the antioxidant enzyme levels and reducing oxidant enzyme levels. Treatment with NAC at 2 mM increased cell viability from 43.68% ± 5.14%-66.69% ± 14.43% and decreased the apoptosis rate from 7.89% ± 0.53%-5.17% ± 0.11% in skeletal muscle cells. Additionally, NAC promoted the proliferation and differentiation of HS-induced skeletal muscle cells by upregulating the expression of PAX7, MYF5, MRF4 and MYHC. These findings suggest that NAC alleviates HS-induced oxidative damage in skeletal muscle cells and support muscle development.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhu Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Chu S, Zhao T, Li M, Sun Y, Yang Y, Yang Z. Long non-coding RNA (CMR) involved in autoprotection in S. aureus mastitis in dairy cows by regulating miR-877/FOXM1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116456. [PMID: 38744067 DOI: 10.1016/j.ecoenv.2024.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Long non-coding RNAs (LncRNAs) are dysregulated in a variety of human diseases and are highly involved in the development and progression of tumors. Studies on lncRNAs associated with cow mastitis have been lagging behind compared to humans or model animals, therefore, the aim of this study was to explore the mechanism of LncRNAs (CMR) involved in autoprotection against S. aureus mastitis in Bovine Mammary Epithelial Cells (BMECs). First, qRT-PCR was used to examine the relative expression of CMR in a S. aureus mastitis model of BMECs. Then, cell proliferation and apoptosis were detected by EdU and apoptosis assay. Finally, the targeting relationship between miRNAs and mRNA/LncRNAs was determined by dual luciferase reporter gene, qRT-PCR and western blotting techniques. The results showed that CMR was upregulated in the S. aureus mastitis model of BMECs and promoted the expression of inflammatory factors, and SiRNA-mediated CMR inhibited the proliferation of mammary epithelial cells and induced apoptosis. Mechanistically, CMR acts as a competitive endogenous RNA (ceRNA) sponge miR-877, leading to upregulation of FOXM1, a target of miR-877. Importantly, either miR-877 overexpression or FOXM1 inhibition abrogated CMR knockdown-induced apoptosis promoting cell proliferation and reducing inflammatory factor expression levels. In summary, CMR is involved in the regulation of autoprotection against S. aureus mastitis through the miR-877/FOXM1 axis in BMECs and induces immune responses in mammary tissues and cells of dairy cows, providing an important reference for subsequent prevention and control of cow mastitis and the development of targeted drugs.
Collapse
Affiliation(s)
- Shuangfeng Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Tianqi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mingxun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yujia Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Yangzhou University, College of Veterinary Medicine, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Asselstine V, Medrano JF, Muniz MMM, Mallard BA, Karrow NA, Cánovas A. Novel lncRNA regulatory elements in milk somatic cells of Holstein dairy cows associated with mastitis. Commun Biol 2024; 7:98. [PMID: 38225372 PMCID: PMC10789785 DOI: 10.1038/s42003-024-05764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/01/2024] [Indexed: 01/17/2024] Open
Abstract
Despite regulatory elements such as long non - coding RNAs representing most of the transcriptome, the functional understanding of long non - coding RNAs in relation to major health conditions including bovine mastitis is limited. This study examined the milk somatic cell transcriptome from udder quarters of 6 Holstein dairy cows to identify differentially expressed long non - coding RNAs using RNA - Sequencing. Ninety - four differentially expressed long non - coding RNAs are identified, 5 of which are previously annotated for gene name and length, 11 are annotated for gene name and 78 are novel, having no gene name or length previously annotated. Significant inflammatory response and regulation of immune response pathways (false discovery rate < 0.05) are associated with the differentially expressed long non - coding RNAs. QTL annotation analysis revealed 31 QTL previously annotated in the genomic regions of the 94 differentially expressed long non - coding RNAs, and the majority are associated with milk traits. This research provides a better understanding of long non - coding RNAs regulatory elements in milk somatic cells, which may enhance current breeding strategies for more adaptable or high mastitis resistant cattle.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Juan F Medrano
- Department of Animal Science, University of California-Davis, 95616, Davis, CA, USA
| | - Malane M M Muniz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
8
|
Bou T, Ding W, Ren X, Liu H, Gong W, Jia Z, Zhang X, Dugarjaviin M, Bai D. Muscle fibre transition and transcriptional changes of horse skeletal muscles during traditional Mongolian endurance training. Equine Vet J 2024; 56:178-192. [PMID: 37345447 DOI: 10.1111/evj.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/23/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Traditional Mongolian endurance training is an effective way to improve the athletic ability of the horse for endurance events and is widely used. This incorporates aerobic exercise and intermittent fasting and these altered physiologic conditions are associated with switches between muscle fibre types. OBJECTIVES To better understand the adaption of horse skeletal muscle to traditional Mongolian endurance training from muscle fibre characteristics and transcriptional levels and to explore possible molecular mechanisms associated with the endurance performance of horses. STUDY DESIGN Before-after study. METHODS Muscle fibre type switches and muscle transcriptome changes in six Mongolian horses were assessed during 4 weeks of training. Transcriptomic and histochemical analyses were performed. The activities of oxidative and glycolytic metabolic enzymes were analysed and we generated deep RNA-sequencing data relating to skeletal muscles. RESULTS A fast-to-slow muscle fibre transition occurred in horse skeletal muscles, with a concomitant increase of oxidative enzyme activity and decreased glycolytic enzyme activity. Numerous differentially expressed genes were involved in the control of muscle protein balance and degradation. Differential alternative splicing events were also found during training which included exon-skipping events in Ttn that were associated with muscle atrophy. Differentially expressed noncoding RNAs showed connections with muscle protein balance-related pathways and fibre type specification via the post-transcriptional regulation of miRNA. MAIN LIMITATIONS The study focuses on horse athletic ability only from the aspect of muscular adaptation. CONCLUSION Traditional Mongolian endurance training-induced muscle fibre transition and metabolic and transcriptional changes. Muscle-specific non-coding RNAs could contribute to these transcriptomic changes during training.
Collapse
Affiliation(s)
- Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Ren
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiying Liu
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zijie Jia
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xinzhuang Zhang
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Liu Q, Li M, Xie S, Tian C, Li J, Wang Y, Li X, Li C. MYOD induced lnc-MEG3 promotes porcine satellite cell differentiation via interacting with DLST. Epigenetics 2023; 18:2237789. [PMID: 37506369 PMCID: PMC10392761 DOI: 10.1080/15592294.2023.2237789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in the process of muscle cell differentiation and play an important role. Previous studies have shown that lncRNA-MEG3 promotes the differentiation of porcine skeletal muscle satellite cells (PSCs), but the regulatory mechanism of MEG3 interaction with target protein has not been well studied. We demonstrated that MEG3 can bind dihydrolipoamide succinyltransferase (DLST) by RNA pull down and RIP-qPCR. Subsequently, knockdown and overexpression experiments showed that DLST promotes PSCs differentiation. Rescue experiments showed that the expression of DLST protein was significantly increased with MEG3 overexpression and decreased with MEG3 knockdown, while its mRNA expression was not changed. Furthermore, we have successfully predicted and validated that the transcription factor myogenic differentiation (MYOD) binds to the MEG3 core promoter though utilizing chromatin immunoprecipitation (CHIP) and luciferase reporter assays. The results indicated that MYOD acts as a transcription factor of MEG3 to promote MEG3 transcription. Knockdown of MEG3 in vivo indicated that MEG3 is involved in skeletal muscle regeneration. It is concluded that MYOD acts as a transcription factor to induce MEG3 expression. MEG3 acts as a molecular scaffold to bind and promote DLST protein expression. This paper provides a new molecular mechanism for MEG3 to promote the differentiation of PSCs.
Collapse
Affiliation(s)
- Quan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- Guangxi Guigang Super Gene Technology Co. Ltd, Guigang, Guangxi, P. R. China
| | - Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Su Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Cheng Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Jiaxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Xin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- Guangxi Guigang Super Gene Technology Co. Ltd, Guigang, Guangxi, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production of Hubei Province, Wuhan, Hubei, P. R. China
| |
Collapse
|
10
|
Wei Y, Guo D, Bai Y, Liu Z, Li J, Chen Z, Shi B, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S, Zhao F. Transcriptome Analysis of mRNA and lncRNA Related to Muscle Growth and Development in Gannan Yak and Jeryak. Int J Mol Sci 2023; 24:16991. [PMID: 38069312 PMCID: PMC10707067 DOI: 10.3390/ijms242316991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
The production performance of Jeryak, resulting from the F1 generation of the cross between Gannan yak and Jersey cattle, exhibits a significantly superior outcome compared with that of Gannan yak. Therefore, we used an RNA-seq approach to identify differentially expressed mRNAs (DEMs) and differentially expressed lncRNAs (DELs) influencing muscle growth and development in Gannan yaks and Jeryaks. A total of 304 differentially expressed lncRNAs and 1819 differentially expressed mRNAs were identified based on the screening criteria of |log 2 FC| > 1 and FDR < 0.05. Among these, 132 lncRNAs and 1081 mRNAs were found to be down-regulated, while 172 lncRNAs and 738 mRNAs were up-regulated. GO and KEGG analyses showed that the identified DELs and DEMs were enriched in the entries of pathways associated with muscle growth and development. On this basis, we constructed an lncRNA-mRNA interaction network. Interestingly, two candidate DELs (MSTRG.16260.9 and MSTRG.22127.1) had targeting relationships with 16 (MYC, IGFBP5, IGFBP2, MYH4, FGF6, etc.) genes related to muscle growth and development. These results could provide a basis for further studies on the roles of lncRNAs and mRNAs in muscle growth in Gannan yaks and Jeryak breeds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.W.); (D.G.); (B.S.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.W.); (D.G.); (B.S.)
| | | | | | | | | | | |
Collapse
|
11
|
Zhang J, Sheng H, Zhang L, Li X, Guo Y, Wang Y, Guo H, Ding X. Bta-miR-206 and a Novel lncRNA-lncA2B1 Promote Myogenesis of Skeletal Muscle Satellite Cells via Common Binding Protein HNRNPA2B1. Cells 2023; 12:cells12071028. [PMID: 37048101 PMCID: PMC10093610 DOI: 10.3390/cells12071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Skeletal muscle satellite cells (MuSCs) can proliferate, differentiate, and self-renew, and can also participate in muscle formation and muscle injury repair. Long noncoding RNAs (lncRNAs) can play an important role with the RNA binding protein and microRNAs (miRNAs) to regulate the myogenesis of bovine MuSCs, however, its molecular mechanism is still being explored. In this study, differentially expressed 301 lncRNAs were identified during the myogenic differentiation of cells based on an in vitro model of induced differentiation of bovine MuSCs using RNA sequencing (RNA-seq). Based on the ability of miR-206 to regulate myogenic cell differentiation, a new kind of lncRNA-lncA2B1 without protein-coding ability was found, which is expressed in the nucleus and cytoplasm. Subsequently, lncA2B1 inhibited cell proliferation by downregulating the expression of the proliferation marker Pax7 and promoted myogenic differentiation by upregulating the expression of the differentiation marker MyHC, whose regulatory function is closely related to miR-206. By RNA pulldown/LC-MS experiments, heterogeneous ribonucleoprotein A2/B1 (HNRNPA2B1), and DExH-Box Helicase 9 (DHX9) were identified as common binding proteins of lncA2B1 and miR-206. Overexpression of lncA2B1 and miR-206 significantly upregulated the expression level of HNRNPA2B1. Downregulation of HNRNPA2B1 expression significantly decreased the expression level of the differentiation marker MyHC, which indicates that miR-206 and lncA2B1 regulate myogenic differentiation of bovine MuSCs by acting on HNRNPA2B1. This study screened and identified a novel lncRNA-lncA2B1, which functions with miR-206 to regulate myogenesis via the common binding proteins HNRNPA2B1. The results of this study provide a new way to explore the molecular mechanisms by which lncRNAs and miRNAs regulate muscle growth and development.
Collapse
Affiliation(s)
- Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yimin Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence:
| |
Collapse
|
12
|
Chen M, Lian D, Li Y, Zhao Y, Xu X, Liu Z, Zhang J, Zhang X, Wu S, Qi S, Deng S, Yu K, Lian Z. Global Long Noncoding RNA Expression Profiling of MSTN and FGF5 Double-Knockout Sheep Reveals the Key Gatekeepers of Skeletal Muscle Development. DNA Cell Biol 2023; 42:163-175. [PMID: 36917699 DOI: 10.1089/dna.2022.0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Improving livestock and poultry growth rates and increasing meat production are urgently needed worldwide. Previously, we produced a myostatin (MSTN) and fibroblast growth factor 5 (FGF5) double-knockout (MF-/-) sheep by CRISPR Cas9 system to improve meat production, and also wool production. Both MF-/- sheep and the F1 generation (MF+/-) sheep showed an obvious "double-muscle" phenotype. In this study, we identified the expression profiles of long noncoding RNAs (lncRNAs) in wild-type and MF+/- sheep, then screened out the key candidate lncRNAs that can regulate myogenic differentiation and skeletal muscle development. These key candidate lncRNAs can serve as critical gatekeepers for muscle contraction, calcium ion transport and skeletal muscle cell differentiation, apoptosis, autophagy, and skeletal muscle inflammation, further revealing that lncRNAs play crucial roles in regulating muscle phenotype in MF+/- sheep. In conclusion, our newly identified lncRNAs may emerge as novel molecules for muscle development or muscle disease and provide a new reference for MSTN-mediated regulation of skeletal muscle development.
Collapse
Affiliation(s)
- Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Di Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Li
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhimei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Sujun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Han R, Han L, Xia Y, Guo M, Li H. lncRNA Sequencing of Antler Mesenchymal Tissue Revealed that the Regulatory Network of Antler Cell Proliferation and Differentiation. Anim Biotechnol 2022; 33:1629-1638. [PMID: 34010106 DOI: 10.1080/10495398.2021.1924762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antlers have been widely studied due to their unique physiological characteristics, such as rapid growth, periodic shedding and regeneration. However, little is known about how antler growth is regulated by long non-coding RNA (lncRNA). The aim of the present study was to identify the lncRNAs expression profile and explore the function of lncRNAs during the antler growth. Herein, RNA-sequencing technology (RNA-seq) was performed on the three growth periods (early developmental period: EP, middle developmental period: MP, later developmental period: LP) of male sika deer (Cervus nippon) antler, 16 differentially expressed lncRNAs (DE lncRNAs) and 11 DE lncRNAs were identified in EP vs MP and MP vs LP related to cell proliferation and cell differentiation, respectively. Finally, lncRNAs-mRNAs co-expression networks were constructed based on the identified DE lncRNAs and their potential trans-target genes. The result reveals that lncRNAs may play diverse roles in different periods of antler growth. It provides a novel perspective for revealing the molecular mechanism of antler growth.
Collapse
Affiliation(s)
- Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yanling Xia
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Mengya Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
CircCSDE1 Regulates Proliferation and Differentiation of C2C12 Myoblasts by Sponging miR-21-3p. Int J Mol Sci 2022; 23:ijms231912038. [PMID: 36233353 PMCID: PMC9570022 DOI: 10.3390/ijms231912038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The growth and development of skeletal muscle is regulated by many factors, and recent studies have shown that circular RNAs (circRNAs) can participate in this process. The model of porcine skeletal muscle injury was constructed to search for circRNAs that can regulate the growth and development of skeletal muscle in pigs. Using whole-transcriptome sequencing and bioinformatics analysis, a novel circRNA (circCSDE1) was screened out, which is highly expressed in skeletal muscle. Functional studies in C2C12 cells demonstrated that circCSDE1 could promote proliferation and inhibit myoblast differentiation, while opposing changes were observed by circCSDE1 knockdown. A dual-luciferase reporter assay revealed that circCSDE1 directly targeted miR-21-3p to regulate the expression of the downstream target gene (Cyclin-dependent kinase 16, CDK16). Moreover, miR-21-3p could inhibit proliferation and promote myoblast differentiation in C2C12 cells, opposite with the effects of circCSDE1. Additionally, the rescue experiments offered further evidence that circCSDE1 and its target, miR-21-3p, work together to regulate myoblast proliferation and differentiation. This study provides a theoretical basis for further understanding the regulatory mechanisms of circRNAs.
Collapse
|
15
|
Zhong T, Zhao J, Zhan S, Wang L, Cao J, Dai D, Guo J, Li L, Zhang H, Niu L. LncRNA-mRNA modules involved in goat rumen development: Insights from genome-wide transcriptome profiling. Front Physiol 2022; 13:979121. [PMID: 36091364 PMCID: PMC9449361 DOI: 10.3389/fphys.2022.979121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
The rumen is an essential digestive and absorption organ of ruminants. During fetal life, lactation, and post-weaning period, goat rumen undergoes drastic morphological and metabolic-functional changes triggered by potential regulated genes and non-coding RNA molecules. As the essential regulatory factors, long non-coding RNAs (lncRNAs) have vital functions in various biological activities. However, their roles during rumen development are still poorly explored in ruminants. To explore the genome-wide expression profiles of lncRNAs and mRNAs in the goat rumens, we generated 5,007 lncRNAs and 19,738 mRNAs identified during the fetal and prepubertal stages by the high-throughput RNA sequencing. Notably, 365 lncRNAs and 2,877 mRNAs were considered to be differentially expressed. The weighted gene co-expression network analysis and functional analysis were performed to explore the regulatory roles of those differentially expressed molecules. The cis-and trans-target genes of differently expressed lncRNAs were enriched for pathways related to focal adhesion, cGMP-PKG signaling pathway, alpha-linolenic acid metabolism, arachidonic acid metabolism, and fat digestion and absorption. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses showed that the differently expressed genes mainly participated in mitotic cytokinesis, desmosome, fatty acid degradation, cell adhesion molecules, and fatty acid metabolism. The prediction of lncRNA-mRNA interaction networks further revealed transcripts potentially involved in rumen development. The present study profiles a global overview of lncRNAs and mRNAs during rumen development. Our findings provide valuable resources for genetic regulation and molecular mechanisms of rumen development in ruminants.
Collapse
|
16
|
Zhang N, Xu G, Sun P, Wang S, Zhu Y, Duan S, Jiang M, Li H, Wei X, Ma Y. Buffalo long non-coding RNA gene11007 promotes myoblasts proliferation. Front Vet Sci 2022; 9:857044. [PMID: 36032282 PMCID: PMC9404873 DOI: 10.3389/fvets.2022.857044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
Buffalo meat is of good quality because it is lean and tender, and could bring significant cardiovascular benefits. The underlying difference in muscle development and meat quality is a complex and precisely orchestrated process which has been demonstrated to be regulated by long non-coding RNAs (lncRNAs). However, the regulatory role of lncRNAs in the growth and development of buffalo skeletal muscle is still unclear. In this study, the Ribo-Zero RNA-Seq method was used to explore the lncRNA expression profiles of buffalo myoblasts during the proliferation and differentiation phases. A specific set of 9,978 lncRNAs was found. By comparing the expression profiles of lncRNAs, it was found that there were 1,576 differentially expressed lncRNAs (DELs) during buffalo myoblast differentiation. Twelve DELs were chosen and subsequently verified in eight different buffalo tissues during fetal and adult stages by using qPCR. Gene11007 was found to be one of the most down-regulated lncRNAs during buffalo myoblasts differentiation and it was subsequently characterized. EdU, CCK-8, qPCR and western blotting assays showed that gene11007 promoted the proliferation of buffalo myoblasts but it had no effect on cell differentiation. Our research may enrich the genome annotations of buffalo and provide a new molecular target for the in-depth understanding of the regulation of lncRNAs in skeletal muscle.
Collapse
Affiliation(s)
- Ning Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Gaoxiao Xu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Ping Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yunchang Zhu
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, China
| | - Saixing Duan
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, China
- *Correspondence: Xuefeng Wei
| | - Yun Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, China
- Yun Ma
| |
Collapse
|
17
|
Proliferation of bovine myoblast by LncPRRX1 via regulation of the miR-137/CDC42 axis. Int J Biol Macromol 2022; 220:33-42. [DOI: 10.1016/j.ijbiomac.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
|
18
|
Liu R, Han M, Liu X, Yu K, Bai X, Dong Y. Genome-Wide Identification and Characterization of Long Non-Coding RNAs in Longissimus dorsi Skeletal Muscle of Shandong Black Cattle and Luxi Cattle. Front Genet 2022; 13:849399. [PMID: 35651943 PMCID: PMC9149217 DOI: 10.3389/fgene.2022.849399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
There is an increasing understanding of the possible regulatory role of long non-coding RNAs (LncRNA). Studies on livestock have mainly focused on the regulation of cell differentiation, fat synthesis, and embryonic development. However, there has been little study of skeletal muscle of domestic animals and the potential role of lncRNA. In this study, the transcriptome numbers of longissimus muscle of different beef cattle (Shandong black catle and Luxi catlle) were used to construct muscle related lncRNAs-miRNA-mRNA interaction network through bioinformatics analysis. This is helpful to clarify the molecular mechanism of bovine muscle development, and can be used to promote animal husbandry and improve animal husbandry production. According to the screening criteria of |FC|≧2 and q < 0.05, a total of 1,415 transcripts (of which 480 were LncRNAs) were differentially expressed (q < 0.05) in the different breeds. Further, we found that the most differentially expressed LncRNAs were found on chromosome 9, in which the differentially expressed LncRNAs targeted 1,164 protein coding genes (MYORG, Wnt4, PAK1, ADCY7,etc) (upstream and downstream<50 Kb). In addition, Pearson’s correlation coefficients of co-expression levels indicated a potential trans regulatory relationship between the differentially expressed LncRNAs and 43844 mRNAs (r > 0.9). The identified co-expressed mRNAs (MYORG, Dll1, EFNB2, SOX6, MYOCD, and MYLK3) are related to the formation of muscle structure, and enriched in muscle system process, strained muscle cell differentiation, muscle cell development, striated muscle tissue development, calcium signaling, and AMPK signaling. Additionally, we also found that some LncRNAs (LOC112444238, LOC101903367, LOC104975788, LOC112441863, LOC112449549, and LOC101907194) may interact with miRNAs related to cattle muscle growth and development. Based on this, we constructed a LncRNAs-miRNA-mRNA interaction network as the putative basis for biological regulation in cattle skeletal muscle. Interestingly, a candidate differential LncRNA (LOC104975788) and a protein-coding gene (Pax7) contain miR-133a binding sites and binding was confirmed by luciferase reporter assay. LOC104975788 may combined miR-133a competitively with Pax7, thus relieving the inhibitory effect of miR-133a on Pax7 to regulate skeletal muscle development. These results will provide the theoretical basis for further study of LncRNA regulation and activity in different cattle breeds.
Collapse
Affiliation(s)
- Ruili Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Mingxuan Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xianxun Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kun Yu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xuejin Bai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Yajuan Dong
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
19
|
Cellular Aquaculture: Prospects and Challenges. MICROMACHINES 2022; 13:mi13060828. [PMID: 35744442 PMCID: PMC9228929 DOI: 10.3390/mi13060828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
Aquaculture plays an important role as one of the fastest-growing food-producing sectors in global food and nutritional security. Demand for animal protein in the form of fish has been increasing tremendously. Aquaculture faces many challenges to produce quality fish for the burgeoning world population. Cellular aquaculture can provide an alternative, climate-resilient food production system to produce quality fish. Potential applications of fish muscle cell lines in cellular aquaculture have raised the importance of developing and characterizing these cell lines. In vitro models, such as the mouse C2C12 cell line, have been extremely useful for expanding knowledge about molecular mechanisms of muscle growth and differentiation in mammals. Such studies are in an infancy stage in teleost due to the unavailability of equivalent permanent muscle cell lines, except a few fish muscle cell lines that have not yet been used for cellular aquaculture. The Prospect of cell-based aquaculture relies on the development of appropriate muscle cells, optimization of cell conditions, and mass production of cells in bioreactors. Hence, it is required to develop and characterize fish muscle cell lines along with their cryopreservation in cell line repositories and production of ideal mass cells in suitably designed bioreactors to overcome current cellular aquaculture challenges.
Collapse
|
20
|
Time-Series Clustering of lncRNA-mRNA Expression during the Adipogenic Transdifferentiation of Porcine Skeletal Muscle Satellite Cells. Curr Issues Mol Biol 2022; 44:2038-2053. [PMID: 35678667 PMCID: PMC9164044 DOI: 10.3390/cimb44050138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle satellite cells (SMSCs), which are multifunctional muscle-derived stem cells, can differentiate into adipocytes. Long-chain non-coding RNA (lncRNA) has diverse biological functions, including the regulation of gene expression, chromosome silencing, and nuclear transport. However, the regulatory roles and mechanism of lncRNA during adipogenic transdifferentiation in muscle cells have not been thoroughly investigated. Here, porcine SMSCs were isolated, cultured, and induced for adipogenic differentiation. The expressions of lncRNA and mRNA at different time points during transdifferentiation were analysed using RNA-seq analysis. In total, 1005 lncRNAs and 7671 mRNAs showed significant changes in expression at differential differentiation stages. Time-series expression analysis showed that the differentially expressed (DE) lncRNAs and mRNAs were clustered into 5 and 11 different profiles with different changes, respectively. GO, KEGG, and REACTOME enrichment analyses revealed that DE mRNAs with increased expressions during the trans-differentiation were mainly enriched in the pathways for lipid metabolism and fat cell differentiation. The genes with decreased expressions were mainly enriched in the regulation of cell cycle and genetic information processing. In addition, 1883 DE mRNAs were regulated by 193 DE lncRNAs, and these genes were related to the controlling in cell cycle mainly. Notably, three genes in the fatty acid binding protein (FABP) family significantly and continuously increased during trans-differentiation, and 15, 13, and 11 lncRNAs may target FABP3, FABP4, and FABP5 genes by cis- or trans-regulation, respectively. In conclusion, these studies identify a set of new potential regulator for adipogenesis and cell fate and help us in better understanding the molecular mechanisms of trans-differentiation.
Collapse
|
21
|
Muniz MMM, Simielli Fonseca LF, Scalez DCB, Vega AS, dos Santos Silva DB, Ferro JA, Chardulo AL, Baldi F, Cánovas A, de Albuquerque LG. Characterization of novel
lncRNA
muscle expression profiles associated with meat quality in beef cattle. Evol Appl 2022; 15:706-718. [PMID: 35505883 PMCID: PMC9046762 DOI: 10.1111/eva.13365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to identify novel lncRNA differentially expressed (DE) between divergent animals for beef tenderness and marbling traits in Nellore cattle. Longissimus thoracis muscle samples from the 20 most extreme bulls (of 80 bulls set) for tenderness, tender (n = 10) and tough (n = 10) groups, and marbling trait, high (n = 10) and low (n = 10) groups were used to perform transcriptomic analysis using RNA‐Sequencing. For tenderness, 29 lncRNA were DE (p‐value ≤ 0.01) in tough beef animals in relation to tender beef animals. We observed that genic lncRNAs, for example, lncRNA_595.1, were overlapping exonic part of the PICK gene, while lncRNA_3097.2 and lncRNA_3129.5 overlapped intronic part of the genes GADL1 and PSMD6. The lncRNA associated with PICK1, GADL1, and PMD6 genes were enriched in the pathways associated with the ionotropic glutamate receptor, gamma‐aminobutyric acid synthesis, and the ubiquitin–proteasome pathway. For marbling, 50 lncRNA were DE (p‐value ≤ 0.01) in high marbling group compared with low marbling animals. The genic lncRNAs, such as lncRNA_3191.1, were overlapped exonic part of the ITGAL gene, and the lncRNA_512.1, lncRNA_3721.1, and lncRNA_41.4 overlapped intronic parts of the KRAS and MASP1 genes. The KRAS and ITGAL genes were enriched in pathways associated with integrin signaling, which is involved in intracellular signals in response to the extracellular matrix, including cell form, mobility, and mediates progression through the cell cycle. In addition, the lincRNAs identified to marbling trait were associated with several genes related to calcium binding, muscle hypertrophy, skeletal muscle, lipase, and oxidative stress response pathways that seem to play a role important in the physiological processes related to meat quality. These findings bring new insights to better understand the biology mechanisms involved in the gene regulation of these traits, which will be valuable for a further investigation of the interactions between lncRNA and mRNAs, and of how these interactions may affect meat quality traits.
Collapse
Affiliation(s)
- Maria Malane Magalhães Muniz
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- Centre for Genetic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph Canada
| | | | | | - Aroa Suarez Vega
- Centre for Genetic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph Canada
| | | | - Jesus Aparecido Ferro
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| | - Artur Loyola Chardulo
- São Paulo State University (Unesp) College of Veterinary and Animal Science Botucatu SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| | - Fernando Baldi
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock Department of Animal Biosciences University of Guelph Guelph Canada
| | - Lucia Galvão de Albuquerque
- São Paulo State University (Unesp) School of Agricultural and Veterinarian Sciences Jaboticabal SP Brazil
- National Council for Scientific and Technological Development (CNPq) Brazil
| |
Collapse
|
22
|
Fast and slow myofiber-specific expression profiles are affected by noncoding RNAs in Mongolian horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100942. [PMID: 34823143 DOI: 10.1016/j.cbd.2021.100942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The heterogeneity and plasticity of muscle fibers are essential for the athletic performance of horses, mainly at the adaption of exercises and the effect on muscle diseases. Skeletal muscle fibers can be generally distinguished by their characteristics of contraction as slow and fast type myofibers. The diversity of contractile properties and metabolism enable skeletal muscles to respond to the variable functional requirements. We investigated the muscle fiber composition and metabolic enzyme activities of splenius muscle and gluteus medius muscle from Mongolian horses. The deep RNA-seq analysis of detecting differentially expressed mRNAs, lncRNAs, circRNAs and their correlation analysis from two muscles were performed. Splenius muscle and gluteus medius muscle from Mongolian horses showed a high divergence of myofiber compositions and metabolic enzyme activities. Corresponding to their phenotypic characteristics, 57 differentially expressed long noncoding RNAs and 12 differentially expressed circle RNAs were found between two muscles. The analysis results indicate multiple binding sites were detected in lncRNAs and circRNAs with myofiber-specific expressed miRNAs. Among which we found significant correlations between the above noncoding RNAs, miRNAs, their target genes, myofiber-specific developmental transcript factors, and sarcomere genes. We suggest that the ceRNA mechanism of differentially expressed noncoding RNAs by acting as miRNA sponges could be fine tuners in regulating skeletal muscle fiber composition and transition in horses, which will operate new protective measures of muscle disease and locomotor adaption for racehorses.
Collapse
|
23
|
Chen Q, Wu C, Yao Z, Cai L, Ni Y, Mao S, Zhao R. Whole transcriptome analysis of RNA expression profiles reveals the potential regulating action of long noncoding RNA in lactating cows fed a high concentrate diet. ACTA ACUST UNITED AC 2021; 7:1315-1328. [PMID: 34786504 PMCID: PMC8567331 DOI: 10.1016/j.aninu.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease in the dairy farming industry which is usually caused by an excessive amount of high concentrate diet. SARA not only threatens animal welfare but also leads to economic losses in the farming industry. The liver plays an important role in the distribution of nutritional substances and metabolism; however, a high concentrate diet can cause hepatic metabolic disorders and liver injury. Recently, noncoding RNA has been considered as a critical regulator of hepatic disease, however, its role in the bovine liver is limited. In this study, 12 mid-lactating dairy cows were randomly assigned to a control (CON) group (40% concentrate of dry matter, n = 6) and a SARA group (60% concentrate of dry matter, n = 6). After 21 d of treatment, all cows were sacrificed, and liver tissue samples were collected. Three dairy cows were randomly selected from the CON and SARA groups respectively to perform whole transcriptome analysis. More than 20,000 messenger RNA (mRNA), 10,000 long noncoding RNA (lncRNA), 3,500 circular RNA (circRNA) and 1,000 micro RNA (miRNA) were identified. Furthermore, 43 mRNA, 121 lncRNA and 3 miRNA were differentially expressed, whereas no obvious differentially expressed circRNA were detected between the 2 groups. Gene Ontology (GO) annotation revealed that the differentially expressed genes were mainly enriched in oxidoreductase activity, stress, metabolism, the immune response, cell apoptosis, and cell proliferation. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the deferentially expressed genes were highly enriched in the phosphatidylinositol 3 kinase (PI3K)-serine/threonine kinase (AKT) signaling pathway (P < 0.05). According to KEGG pathway analysis, the differentially expressed lncRNA (DElncRNA) target genes were mainly related to proteasomes, peroxisomes, and the hypoxia-inducible factor-1 signaling pathway (P < 0.005). Further bioinformatics and integrative analyses revealed that the lncRNA were strongly correlated with mRNA; therefore, it is reasonable to speculate that lncRNA potentially play important roles in the liver dysfunction induced by SARA. Our study provides a valuable resource for future investigations on the mechanisms of SARA to facilitate an understanding of the importance of lncRNA, and offer functional RNA information.
Collapse
Affiliation(s)
- Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Yao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Archacka K, Ciemerych MA, Florkowska A, Romanczuk K. Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration. Int J Mol Sci 2021; 22:ijms222111568. [PMID: 34768999 PMCID: PMC8583994 DOI: 10.3390/ijms222111568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022] Open
Abstract
miRNAs and lncRNAs do not encode proteins, but they play an important role in the regulation of gene expression. They differ in length, biogenesis, and mode of action. In this work, we focus on the selected miRNAs and lncRNAs involved in the regulation of myogenesis and muscle regeneration. We present selected miRNAs and lncRNAs that have been shown to control myogenic differentiation and show that manipulation of their levels could be used to improve myogenic differentiation of various types of stem and progenitor cells. Finally, we discuss how physical activity affects miRNA and lncRNA expression and how it affects muscle well-being.
Collapse
|
25
|
In silico identification of variations in microRNAs with a potential impact on dairy traits using whole ruminant genome SNP datasets. Sci Rep 2021; 11:19580. [PMID: 34599210 PMCID: PMC8486775 DOI: 10.1038/s41598-021-98639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that have important roles in the lactation process and milk biosynthesis. Some polymorphisms have been studied in various livestock species from the perspective of pathology or production traits. To target variants that could be the causal variants of dairy traits, genetic variants of microRNAs expressed in the mammary gland or present in milk and localized in dairy quantitative trait loci (QTLs) were investigated in bovine, caprine, and ovine species. In this study, a total of 59,124 (out of 28 millions), 13,427 (out of 87 millions), and 4761 (out of 38 millions) genetic variants in microRNAs expressed in the mammary gland or present in milk were identified in bovine, caprine, and ovine species, respectively. A total of 4679 of these detected bovine genetic variants are located in dairy QTLs. In caprine species, 127 genetic variants are localized in dairy QTLs. In ovine species, no genetic variant was identified in dairy QTLs. This study leads to the detection of microRNA genetic variants of interest in the context of dairy production, taking advantage of whole genome data to identify microRNA genetic variants expressed in the mammary gland and localized in dairy QTLs.
Collapse
|
26
|
Ru W, Qi A, Shen X, Yue B, Zhang X, Wang J, Cao H, Chen H. The circular RNA circCPE regulates myoblast development by sponging miR-138. J Anim Sci Biotechnol 2021; 12:102. [PMID: 34493338 PMCID: PMC8424951 DOI: 10.1186/s40104-021-00618-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023] Open
Abstract
Background Skeletal muscle development, a long-term and complex process, is controlled by a set of the myogenic genes. Circular RNAs (circRNAs), a class of noncoding RNA, have been shown to regulate various biological processes. Recent studies indicate circRNAs may be involved in myogenesis, but the role and regulatory mechanism of circRNAs in myogenesis is largely unknown. In the present study, circCPE was firstly found to promote the bovine myoblast proliferation and inhibit cell apoptosis and differentiation by influencing the expression of FOXC1 in a miR138-mediated manner. And in vivo experiments revealed that overexpression of circCPE attenuates skeletal muscle regeneration. Results We identified a novel circular RNA circCPE by analyzing circRNAs sequencing data of bovine muscle tissue. Sequencing verification, RNase R treatment and Actinomycin D treatment confirmed the circular nature of circCPE in bovine muscle. Functional assays showed that overexpression of circCPE could inhibit bovine myoblast apoptosis and differentiation, as well as facilitate cell proliferation. Moreover, in vivo experiments revealed that overexpression of circCPE attenuates skeletal muscle regeneration. In consideration of circRNA action as miRNAs sponge, we found that circCPE harbors miR-138 binding sites and absorbed miR-138. Mechanistically, the rescue experiments showed that the overexpression of circCPE can counteract the inhibitory effect of miR-138 on the cell proliferation and the accelerated effects on the differentiation and apoptosis. Subsequently, we found that circCPE sequester the inhibitory effect of miR-138 on FOXC1 so as to involve in myogenesis. Conclusions Collectively, we constructed a novel circCPE/miR-138/FOXC1 regulatory network in bovine myogenesis, which further provide stronger evidence that circRNA involved in muscle development acting as miRNA sponge. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00618-7.
Collapse
Affiliation(s)
- Wenxiu Ru
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ao Qi
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuemei Shen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Binglin Yue
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Cao
- Shaanxi Kingbull Livestock co.,LTD, Yangling, 712100, Shaanxi, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Liu J, Zhou Y, Hu X, Yang J, Lei Q, Liu W, Han H, Li F, Cao D. Transcriptome Analysis Reveals the Profile of Long Non-coding RNAs During Chicken Muscle Development. Front Physiol 2021; 12:660370. [PMID: 34040544 PMCID: PMC8141850 DOI: 10.3389/fphys.2021.660370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
The developmental complexity of muscle arises from elaborate gene regulation. Long non-coding RNAs (lncRNAs) play critical roles in muscle development through the regulation of transcription and post-transcriptional gene expression. In chickens, previous studies have focused on the lncRNA profile during the embryonic periods, but there are no studies that explore the profile from the embryonic to post-hatching period. Here, we reconstructed 14,793 lncRNA transcripts and identified 2,858 differentially expressed lncRNA transcripts and 4,282 mRNAs from 12-day embryos (E12), 17-day embryos (E17), 1-day post-hatch chicks (D1), 14-day post-hatch chicks (D14), 56-day post-hatch chicks (D56), and 98-day post-hatch chicks (D98), based on our published RNA-seq datasets. We performed co-expression analysis for the differentially expressed lncRNAs and mRNAs, using STEM, and identified two profiles with opposite expression trends: profile 4 with a downregulated pattern and profile 21 with an upregulated pattern. The cis- and trans-regulatory interactions between the lncRNAs and mRNAs were predicted within each profile. Functional analysis of the lncRNA targets showed that lncRNAs in profile 4 contributed to the cell proliferation process, while lncRNAs in profile 21 were mainly involved in metabolism. Our work highlights the lncRNA profiles involved in the development of chicken breast muscle and provides a foundation for further experiments on the role of lncRNAs in the regulation of muscle development.
Collapse
Affiliation(s)
- Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Hu
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan, China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
| |
Collapse
|
28
|
Chen M, Zhang L, Guo Y, Liu X, Song Y, Li X, Ding X, Guo H. A novel lncRNA promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1. J Cell Mol Med 2021; 25:5988-6005. [PMID: 33942976 PMCID: PMC8256363 DOI: 10.1111/jcmm.16427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myogenesis, the process of skeletal muscle formation, is a highly coordinated multistep biological process. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are emerging as a gatekeeper in myogenesis. Up to now, most studies on muscle development-related lncRNAs are mainly focussed on humans and mice. In this study, a novel muscle highly expressed lncRNA, named lnc23, localized in nucleus, was found differentially expressed in different stages of embryonic development and myogenic differentiation. The knockdown and over-expression experiments showed that lnc23 positively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Then, TMT 10-plex labelling quantitative proteomics was performed to screen the potentially regulatory proteins of lnc23. Results indicated that lnc23 was involved in the key processes of myogenic differentiation such as cell fusion, further demonstrated that down-regulation of lnc23 may inhibit myogenic differentiation by reducing signal transduction and cell fusion among cells. Furthermore, RNA pulldown/LC-MS and RIP experiment illustrated that PFN1 was a binding protein of lnc23. Further, we also found that lnc23 positively regulated the protein expression of RhoA and Rac1, and PFN1 may negatively regulate myogenic differentiation and the expression of its interacting proteins RhoA and Rac1. Hence, we support that lnc23 may reduce the inhibiting effect of PFN1 on RhoA and Rac1 by binding to PFN1, thereby promoting myogenic differentiation. In short, the novel identified lnc23 promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1.
Collapse
Affiliation(s)
- Mingming Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xinfeng Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Yingshen Song
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| |
Collapse
|
29
|
Lnc-ORA interacts with microRNA-532-3p and IGF2BP2 to inhibit skeletal muscle myogenesis. J Biol Chem 2021; 296:100376. [PMID: 33548229 PMCID: PMC8289116 DOI: 10.1016/j.jbc.2021.100376] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is one of the most important organs of the animal body. Long noncoding RNAs play a crucial role in the regulation of skeletal muscle development via several mechanisms. We recently identified obesity-related lncRNA (lnc-ORA) in a search for long noncoding RNAs that influence adipogenesis, finding it impacted adipocyte differentiation by regulating the PI3K/protein kinase B/mammalian target of rapamycin pathway. However, whether lnc-ORA has additional roles, specifically in skeletal muscle myogenesis, is not known. Here, we found that lnc-ORA was significantly differentially expressed with age in mouse skeletal muscle tissue and predominantly located in the cytoplasm. Overexpression of lnc-ORA promoted C2C12 myoblast proliferation and inhibited myoblast differentiation. In contrast, lnc-ORA knockdown repressed myoblast proliferation and facilitated myoblast differentiation. Interestingly, silencing of lnc-ORA rescued dexamethasone-induced muscle atrophy in vitro. Furthermore, adeno-associated virus 9–mediated overexpression of lnc-ORA decreased muscle mass and the cross-sectional area of muscle fiber by upregulating the levels of muscle atrophy–related genes and downregulating the levels of myogenic differentiation–related genes in vivo. Mechanistically, lnc-ORA inhibited skeletal muscle myogenesis by acting as a sponge of miR-532-3p, which targets the phosphatase and tensin homolog gene; the resultant changes in phosphatase and tensin homolog suppressed the PI3K/protein kinase B signaling pathway. In addition, lnc-ORA interacted with insulin-like growth factor 2 mRNA-binding protein 2 and reduced the stability of myogenesis genes, such as myogenic differentiation 1 and myosin heavy chain. Collectively, these findings indicate that lnc-ORA could be a novel underlying regulator of skeletal muscle development.
Collapse
|
30
|
Liu A, Liu M, Li Y, Chen X, Zhang L, Tian S. Differential expression and prediction of function of lncRNAs in the ovaries of low and high fecundity Hanper sheep. Reprod Domest Anim 2021; 56:604-620. [PMID: 33475207 DOI: 10.1111/rda.13898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Litter size is an important trait that determines the production efficiency of sheep bred for meat. Its detailed investigation can reveal the molecular mechanisms that control the fecundity of sheep and possibly accelerate the breeding process of new varieties of sheep that have high prolificacy. Long non-coding RNAs (lncRNAs) have proven to be an important factor in the regulation of follicular development. However, the mechanisms by which lncRNAs regulate litter size in sheep remain unclear. In the present study, ovarian tissues from the follicular (F) or luteal phase (L) of Hanper sheep that were either monotocous (M) or polytocous (P; FM, FP, LM and LP groups) were collected and sequenced to identify differentially expressed lncRNAs and predict their function. The results indicate that the number of up- and down-regulated lncRNAs in the follicular phase (FM vs. FP) was 95 and 111 and 109 and 49, respectively, in the luteal phase (LM vs. LP). The functional enrichment of the different lncRNAs coexpressed with mRNA was analysed. The results demonstrated that the KISS1-GnRH-LH/FSH-E2 and EGF-EGFR-RAS-PI3K signalling pathways promoted the initiation of the primordial period, follicular development and ovulation in the follicular phase (FM vs. FP). During the luteal phase (LM vs. LP), the production and development of the corpus luteum in ewes was influenced by the KITLG-KIT/FGF-FGFR/HGF-MET-RAS-ERK signalling pathway. STEM clustering functional enrichment analysis of the differentially expressed lncRNAs indicated that profile11 was principally enriched in the Cytokine-Jak-STAT, PDGF-PDGFR-PI3K and KITLG-KIT-RAS-ERK signalling pathways. By analysis of the differential expression of the lncRNAs and their expression in each group, lncRNAs Xist (loc101112291) and Gtl2 (loc101123329) were found to be highly expressed, suggesting that regulation of follicular development was mediated through methylation processes.
Collapse
Affiliation(s)
- Aiju Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Menghe Liu
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Yuexin Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Limeng Zhang
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China.,The Research Center of Cattle and Sheep, Embryonic Technique of Hebei Province, Baoding, China
| |
Collapse
|
31
|
Elnour IE, Wang X, Zhansaya T, Akhatayeva Z, Khan R, Cheng J, Hung Y, Lan X, Lei C, Chen H. Circular RNA circMYL1 Inhibit Proliferation and Promote Differentiation of Myoblasts by Sponging miR-2400. Cells 2021; 10:cells10010176. [PMID: 33467116 PMCID: PMC7830797 DOI: 10.3390/cells10010176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) involved in regulating skeletal muscle development by sponging miRNAs. In this study, we found that the circMYL1 expression was down-regulated during myoblast proliferation, while gradually up-regulated in myoblast differentiation. The potential role of circMYL1 was identified in the proliferation of bovine myoblast through mRNA and protein expression of proliferation marker genes (PCNA, CyclinD1, and CDK2), cell counting kit-8 assay, flow cytometry analysis, and 5-ethynyl 2′-deoxyuridine (EdU) assay. Analysis of the expression of differentiation marker genes (MyoD, MyoG, and MYH2) and immunofluorescence of Myosin heavy chain (MyHC) was used to assess cell differentiation. The proliferation analysis revealed that circMYL1 inhibited the proliferation of bovine primary myoblast. Furthermore, the differentiation analysis demonstrated that circMYL1 promoted the differentiation of bovine primary myoblast. The luciferase screening and RNA immunoprecipitation (RIP) assays found that circMYL1 could have interaction with miR-2400. Additionally, we demonstrated that miR-2400 promoted proliferation and inhibited differentiation of bovine primary myoblast, while circMYL1 may eliminate the effects of miR-2400, as showed by rescue experiments. Together, our results revealed that a novel circular RNA of circMYL1 could inhibit proliferation and promote differentiation of myoblast by sponging miR-2400.
Collapse
Affiliation(s)
- Ibrahim Elsaeid Elnour
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
- Faculty of Veterinary Science, University of Nyala, Nyala 155, Sudan
| | - Xiaogang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
| | - Toremurat Zhansaya
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
| | - Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
| | - Rajwali Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
| | - Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
| | - Yongzhen Hung
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (I.E.E.); (X.W.); (T.Z.); (Z.A.); (R.K.); (J.C.); (Y.H.); (X.L.); (C.L.)
- Correspondence: ; Tel.: +86-029-87092102; Fax: +86-029-87092164
| |
Collapse
|
32
|
Hao D, Wang X, Wang X, Thomsen B, Yang Y, Lan X, Huang Y, Chen H. MicroRNA bta-miR-365-3p inhibits proliferation but promotes differentiation of primary bovine myoblasts by targeting the activin A receptor type I. J Anim Sci Biotechnol 2021; 12:16. [PMID: 33431058 PMCID: PMC7802253 DOI: 10.1186/s40104-020-00528-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
Background MicroRNAs act as post-transcriptional regulators that repress translation or degrade mRNA transcripts. Each microRNA has many mRNA targets and each mRNA may be targeted by several microRNAs. Skeletal muscles express a plethora of microRNA genes that regulate muscle development and function by controlling the expression of protein-coding target genes. To expand our understanding of the role of microRNA, specifically bta-miR-365-3p, in muscle biology, we investigated its functions in regulating primary bovine myoblast proliferation and differentiation. Results Firstly, we found that bta-miR-365-3p was predominantly expressed in skeletal muscle and heart tissue in Chinese Qinchuan beef cattle. Quantitative PCR and western blotting results showed that overexpression of bta-miR-365-3p significantly reduced the expression levels of cyclin D1 (CCND1), cyclin dependent kinase 2 (CDK2) and proliferating cell nuclear antigen (PCNA) but stimulated the expression levels of muscle differentiation markers, i.e., MYOD1, MYOG at both mRNA and protein level. Moreover, downregulation of bta-miR-365-3p increased the expression of CCND1, CDK2 and PCNA but decreased the expression of MYOD1 and MYOG at both mRNA and protein levels. Furthermore, flow cytometry, EdU proliferation assays and immunostaining results showed that increased levels of bta-miR-365-3p suppressed cell proliferation but promoted myotube formation, whereas decreased levels of bta-miR-365-3p resulted in the opposite consequences. Finally, we identified that activin A receptor type I (ACVR1) could be a direct target of bta-miR-365-3p. It was demonstrated that bta-miR-365-3p can bind to the 3’UTR of ACVR1 gene to regulate its expression based on dual luciferase gene reporter assays. Consistently, knock-down of ACVR1 was associated with decreased expressions of CDK2, CCND1 and PCNA but increased expression of MYOG and MYOD1 both at mRNA and protein level. Conclusion Collectively, these data suggested that bta-miR-365-3p represses proliferation but promotes differentiation of bovine myoblasts through several biological mechanisms involving downregulation of ACVR1. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00528-0.
Collapse
Affiliation(s)
- Dan Hao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China.,Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Xiao Wang
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, 2800, Kongens Lyngby, Denmark
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
33
|
Wang S, Xu X, Liu Y, Jin J, Zhu F, Bai W, Guo Y, Zhang J, Zuo H, Xu Z, Zuo B. RIP-Seq of EZH2 Identifies TCONS-00036665 as a Regulator of Myogenesis in Pigs. Front Cell Dev Biol 2021; 8:618617. [PMID: 33511127 PMCID: PMC7835406 DOI: 10.3389/fcell.2020.618617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 and contains a SET domain that catalyzes histone H3 trimethylation on lysine 27 (H3K27me3) to generate an epigenetic silencing mark. EZH2 interacts with transcription factors or RNA transcripts to perform its function. In this study, we applied RNA immunoprecipitation sequencing and long intergenic non-coding RNA (lincRNA) sequencing methods to identify EZH2-binding lincRNAs. A total of 356 novel EZH2-binding lincRNAs were identified by bioinformatics analysis and an EZH2-binding lincRNA TCONS-00036665 was characterized. TCONS-00036665 promoted pig skeletal satellite cell proliferation but inhibited cell differentiation, and this function was conserved between pigs and mice. Further mechanistic studies indicated that TCONS-00036665 can bind to EZH2 and recruits EZH2 to the promoters of the target genes p21, MyoG, and Myh4, which leads to the enrichment of H3K27me3 and the repression of target gene expression and pig myogenesis. In conclusion, the lincRNA TCONS-00036665 regulates pig myogenesis through its interaction with EZH2.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xuewen Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yan Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Feng Zhu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Bai
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yubo Guo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiali Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
34
|
Li G, Chen Y, Jin W, Zhai B, Li Y, Sun G, Li H, Kang X, Tian Y. Effects of miR-125b-5p on Preadipocyte Proliferation and Differentiation in Chicken. Mol Biol Rep 2021; 48:491-502. [PMID: 33398680 DOI: 10.1007/s11033-020-06080-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Our previous studies have shown that miR-125b-5p was highly expressed and significantly upregulated during abdominal fat deposition in chickens. However, the role of miR-125b in the regulation of adipogenesis is not clear in chickens. Therefore, we evaluated the effects of miR-125b-5p on preadipocyte proliferation and differentiation and the interaction between miR-125b-5p and the acyl-CoA synthetase bubblegum family member 2 (ACSBG2) gene in adipogenesis in chicken abdominal adipose tissue. Here, transfection tests of miR-125b-5p mimic/inhibitor were performed in preadipocytes, and the effects of miR-125b-5p on preadipocytes proliferation and differentiation were analyzed. The target site of miR-125b-5p in the 3'UTR (untranslated region) of ACSBG2 were verified by a luciferase reporter assay. Our results showed that miR-125b-5p overexpression inhibited proliferation and reduced the number of cells in S phase and G2/M phase in preadipocytes; conversely, miR-125b-5p inhibition promoted the proliferation and increased the number of cells in S phase and G2/M phase. In adipocytes after induction, miR-125b-5p overexpression led to a notable increase in the accumulation of lipid droplets as well as in the concentration of triglycerides, while miR-125b-5p inhibition had the opposite effect. Furthermore, miR-125b-5p could directly bind to the 3'UTR of ACSBG2, and its overexpression could significantly repress the mRNA and protein expression of ACSBG2. These results indicate that miR-125b-5p can inhibit preadipocyte proliferation and can promote preadipocyte differentiation to affect adipogenesis in chicken abdominal adipose tissues, at least partially by downregulating ACSBG2.
Collapse
Affiliation(s)
- Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P. R. China.
| | - Yi Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P. R. China
| | - Wenjiao Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P. R. China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P. R. China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P. R. China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P. R. China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P. R. China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P. R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, 450002, P. R. China.
| |
Collapse
|
35
|
Competing Endogenous RNA Networks as Biomarkers in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249582. [PMID: 33339180 PMCID: PMC7765627 DOI: 10.3390/ijms21249582] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases.
Collapse
|
36
|
Jia X, He Y, Chen SY, Wang J, Hu S, Lai SJ. Genome-wide identification and characterisation of long non-coding RNAs in two Chinese cattle breeds. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1735266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yang He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Cheng C, Mao Q, Shi M, Lu H, Shen B, Xiao T, Yang A, Liu Y. miR-125b prevent the progression of esophageal squamous cell carcinoma through the p38-MAPK signaling pathway. J Gastrointest Oncol 2020; 11:1113-1122. [PMID: 33456986 DOI: 10.21037/jgo-20-546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background To examine the clinical significance of miR-125b in esophageal squamous cell carcinoma (ESCC) and to research the effect of miR-125b on the biological function of ESCC cells and the relevant underlying mechanism. Methods The expression of miR-125b in ESCC tissues and cell lines were discovered by RT-PCR assay. The interrelation between miR-125b expression and clinicopathological parameters and the forecasting of ESCC patients were analyzed. CCK-8 method and Transwell methods were used to detect the increased growth, shifting, and irruption of ESCC cells. Bioinformatics analysis was applied to forecast the possible target genes of miR-125b and verified through dual-luciferase reporter gene assay. After that, the expression of p38-MAPK mRNA and protein were found out by RT-PCR and Western blot. Results The expression of miR-125b was down-regulated in ESCC tissues and cell lines (P<0.05). And the expression of miR-125b was closely about tumor differentiation, TNM level, and lymph node metastasis in ESCC patients. The low miR-125b formulation was closely related to rough forecasting in ESCC patients. Large scale expression of miR-125b can effectively decrease the acceleration, shifting, and irrupting strengths of ESCC cells. Bioinformatics analysis showed p38-MAPK was forecasted to be a potential mark of miR-125b, which was confirmed by dual luciferase assay, and extreme expression of miR-125b can stop the expression of p38-MAPK mRNA and protein. Conclusions miR-125b is down-regulated in ESCC. Moreover, its expression level is significant concerning tumor progression and prognosis in patients with ESCC. MiR-125b can stop the high growth and shifting of ESCC cells having p38-MAPK at target.
Collapse
Affiliation(s)
- Chun Cheng
- Department of Thoracic Surgery, Affiliated Tumor Hospital Nantong University, Nantong, China
| | - Qinghua Mao
- Department of Thoracic Surgery, Affiliated Tumor Hospital Nantong University, Nantong, China
| | - Minxin Shi
- Department of Thoracic Surgery, Affiliated Tumor Hospital Nantong University, Nantong, China
| | - Haimin Lu
- Department of Thoracic Surgery, Affiliated Tumor Hospital Nantong University, Nantong, China
| | - Biao Shen
- Department of Thoracic Surgery, Affiliated Tumor Hospital Nantong University, Nantong, China
| | - Ting Xiao
- Department of Thoracic Surgery, Affiliated Tumor Hospital Nantong University, Nantong, China
| | - Aimin Yang
- Department of Thoracic Surgery, Affiliated Tumor Hospital Nantong University, Nantong, China
| | - Yupeng Liu
- Department of Thoracic Surgery, Affiliated Tumor Hospital Nantong University, Nantong, China
| |
Collapse
|
38
|
Li J, Su T, Zou C, Luo W, Shi G, Chen L, Fang C, Li C. Long Non-coding RNA H19 Regulates Porcine Satellite Cell Differentiation Through miR-140-5p/ SOX4 and DBN1. Front Cell Dev Biol 2020; 8:518724. [PMID: 33324629 PMCID: PMC7723966 DOI: 10.3389/fcell.2020.518724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The H19 gene promotes skeletal muscle differentiation in mice, but the regulatory models and mechanisms of myogenesis regulated by H19 are largely unknown in pigs. Therefore, the regulatory modes of H19 in the differentiation of porcine skeletal muscle satellite cells (PSCs) need to be determined. We observed that H19 gene silencing could decrease the expressions of the myogenin (MYOG) gene, myogenic differentiation (MYOD), and myosin heavy chain (MYHC) in PSCs. Therefore, we constructed and sequenced 12 cDNA libraries of PSCs after knockdown of H19 at two differentiation time points to analyze the transcriptome differences. A total of 11,419 differentially expressed genes (DEGs) were identified. Among these DEGs, we found through bioinformatics analysis and protein interaction experiment that SRY-box transcription factor 4 (SOX4) and Drebrin 1 (DBN1) were the key genes in H19-regulated PSC differentiation. Functional analysis shows that SOX4 and DBN1 promote PSC differentiation. Mechanistically, H19 regulates PSC differentiation through two different pathways. On the one hand, H19 functions as a molecular sponge of miR-140-5p, which inhibits the differentiation of PSCs, thereby modulating the derepression of SOX4. On the other hand, H19 regulates PSC differentiation through directly binding with DBN1. Furthermore, MYOD binds to the promoters of H19 and DBN1. The knockdown of MYOD inhibits the expression of H19 and DBN1. We determined the function of H19 and provided a molecular model to elucidate H19’s role in regulating PSC differentiation.
Collapse
Affiliation(s)
- Jingxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Tao Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wenzhe Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Gaoli Shi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lin Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production of Hubei Province, Wuhan, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production of Hubei Province, Wuhan, China
| |
Collapse
|
39
|
Xin JW, Chai ZX, Zhang CF, Yang YM, Zhang Q, Zhu Y, Cao HW, Yang Ji C, Zhong JC, Ji QM. Transcriptome analysis identified long non-coding RNAs involved in the adaption of yak to high-altitude environments. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200625. [PMID: 33047026 PMCID: PMC7540768 DOI: 10.1098/rsos.200625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
The mechanisms underlying yak adaptation to high-altitude environments have been investigated using various methods, but no report has focused on long non-coding RNA (lncRNA). In the present study, lncRNAs were screened from the gluteus transcriptomes of yak and their transcriptional levels were compared with those in Sanjiang cattle, Holstein cattle and Tibetan cattle. The potential target genes of the differentially expressed lncRNAs between species/strains were predicted using cis and trans models. Based on cis-regulated target genes, no KEGG pathway was significantly enriched. Based on trans-regulated target genes, 11 KEGG pathways in relation to energy metabolism and three KEGG pathways associated with muscle contraction were significantly enriched. Compared with cattle strains, transcriptional levels of acyl-CoA dehydrogenase, acyl-CoA-binding protein, 3-hydroxyacyl-CoA dehydrogenase were relatively higher and those of glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate mutase 1, pyruvate kinase and lactate/malate dehydrogenase were relatively lower in yak, suggesting that yaks activated fatty acid oxidation but inhibited glucose oxidation and glycolysis. Besides, NADH dehydrogenase and ATP synthase showed lower transcriptional levels in yak than in cattle, which might protect muscle tissues from deterioration caused by reactive oxygen species (ROS). Compared with cattle strains, the higher transcriptional level of glyoxalase in yak might contribute to dicarbonyl stress resistance. Voltage-dependent calcium channel/calcium release channel showed a lower level in yak than in cattle strains, which could reduce the Ca2+ influx and subsequently decrease the risk of hypertension. However, levels of EF-hand and myosin were higher in yak than in cattle strains, which might enhance the negative effects of reduced Ca2+ on muscle contraction. Overall, the present study identified lncRNAs and proposed their potential regulatory functions in yak.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Yu-Mei Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Cidan Yang Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
- Author for correspondence: Qiu-Mei Ji e-mail:
| |
Collapse
|
40
|
Alexandre PA, Reverter A, Berezin RB, Porto-Neto LR, Ribeiro G, Santana MHA, Ferraz JBS, Fukumasu H. Exploring the Regulatory Potential of Long Non-Coding RNA in Feed Efficiency of Indicine Cattle. Genes (Basel) 2020; 11:genes11090997. [PMID: 32854445 PMCID: PMC7565090 DOI: 10.3390/genes11090997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) can regulate several aspects of gene expression, being associated with complex phenotypes in humans and livestock species. In taurine beef cattle, recent evidence points to the involvement of lncRNA in feed efficiency (FE), a proxy for increased productivity and sustainability. Here, we hypothesized specific regulatory roles of lncRNA in FE of indicine cattle. Using RNA-Seq data from the liver, muscle, hypothalamus, pituitary gland and adrenal gland from Nellore bulls with divergent FE, we submitted new transcripts to a series of filters to confidently predict lncRNA. Then, we identified lncRNA that were differentially expressed (DE) and/or key regulators of FE. Finally, we explored lncRNA genomic location and interactions with miRNA and mRNA to infer potential function. We were able to identify 126 relevant lncRNA for FE in Bos indicus, some with high homology to previously identified lncRNA in Bos taurus and some possible specific regulators of FE in indicine cattle. Moreover, lncRNA identified here were linked to previously described mechanisms related to FE in hypothalamus-pituitary-adrenal axis and are expected to help elucidate this complex phenotype. This study contributes to expanding the catalogue of lncRNA, particularly in indicine cattle, and identifies candidates for further studies in animal selection and management.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
- Correspondence: ; Tel.: +61-7-32142453
| | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
| | - Roberta B. Berezin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
| | - Gabriela Ribeiro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Miguel H. A. Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil;
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| |
Collapse
|
41
|
Lu X, Arbab AAI, Zhang Z, Fan Y, Han Z, Gao Q, Sun Y, Yang Z. Comparative Transcriptomic Analysis of the Pituitary Gland between Cattle Breeds Differing in Growth: Yunling Cattle and Leiqiong Cattle. Animals (Basel) 2020; 10:E1271. [PMID: 32722439 PMCID: PMC7460210 DOI: 10.3390/ani10081271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis hormones regulate the growth and development of ruminants, and the pituitary gland plays a decisive role in this process. In order to identify pivotal genes in the pituitary gland that could affect the growth of cattle by regulating the secretion of hormones, we detected the content of six HPT hormones related to growth in the plasma of two cattle breeds (Yunling and Leiqiong cattle, both also known as the zebu cattle) with great differences in growth and compared the transcriptome data of their pituitary glands. Our study found that the contents of GH, IGF, TSH, thyroxine, triiodothyronine, and insulin were significantly different between the two breeds, which was the main cause of the difference in growth; 175 genes were identified as differentially expressed genes (DEGs). Functional association analyses revealed that DEGs were mainly involved in the process of transcription and signal transduction. Combining the enrichment analysis and protein interaction analysis, eight DEGs were predicted to control the growth of cattle by affecting the expression of growth-related hormones in the pituitary gland. In summary, our results suggested that SLC38A1, SLC38A3, DGKH, GNB4, GNAQ, ESR1, NPY, and GAL are candidates in the pituitary gland for regulating the growth of Yunling and Leiqiong cattle by regulating the secretion of growth-related hormones. This study may help researchers further understand the growth mechanisms and improve the artificial selection of zebu cattle.
Collapse
Affiliation(s)
- Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Qisong Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.L.); (A.A.I.A.); (Z.Z.); (Y.F.); (Z.H.); (Q.G.)
| |
Collapse
|
42
|
lncRNA IGF2 AS Regulates Bovine Myogenesis through Different Pathways. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:874-884. [PMID: 32805490 PMCID: PMC7452115 DOI: 10.1016/j.omtn.2020.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
The role of long non-coding RNA (lncRNA) in the regulation of bovine skeletal muscle development remains poorly understood. The present study investigated the function and regulatory mechanism of a novel lncRNA, insulin-like growth factor 2 antisense transcript (IGF2 AS), in bovine myoblast proliferation and differentiation. Gain or loss of IGF2 AS was performed using an expression plasmid or small interfering RNA (siRNA), respectively. Bovine myoblasts were used to investigate the biological function and mechanisms of IGF2 AS in vitro. Results were conjointly analyzed by celluar and molecular biology experiments as well as bioinformatics. Functionally, IGF2 AS could promote proliferation and differentiation of bovine myoblasts. The preliminary mechanism suggests, on the one hand, that IGF2 AS could complement the IGF2 gene intron region and affect the stability and expression of IGF2 mRNA. On the other hand, RNA pull-down and immunoprecipitation assays demonstrated that IGF2 AS could directly bind to the interleukin enhancer binding factor 3 (ILF3) protein and maybe partly though it to regulate myogenesis. In conclusion, the novel identified lncRNA IGF2 AS promoted proliferation and differentiation of bovine myoblasts through various pathways.
Collapse
|
43
|
Zhang S, Kang Z, Cai H, Jiang E, Pan C, Dang R, Lei C, Chen H, Lan X. Identification of novel alternative splicing of bovine lncRNA lncFAM200B and its effects on preadipocyte proliferation. J Cell Physiol 2020; 236:601-611. [PMID: 32542663 DOI: 10.1002/jcp.29887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/07/2023]
Abstract
Adipogenesis is closely related to human health, livestock growth, and meat quality. A previous study identified that bovine lncFAM200B promoter has high activity in 3T3-L1 mice preadipocytes. Thus, lncFAM200B was a candidate gene for regulating adipogenesis. This study aimed to uncover the role of lncFAM200B in bovine adipogenesis and identify novel genetic variations within the bovine lncFAM200B gene. An expression analysis found that lncFAM200B was expressed higher in fat than that in muscle, but the difference was not related to the total methylation level of the promoter active region. Moreover, the expression of lncFAM200B exhibited a significant positive correlation with the expression of C/EBPa during bovine adipocyte differentiation. To uncover the function of lncFAM200B, the full-length lncFAM200B was cloned, and four kinds of transcript variants were found. Protein-coding potential prediction and prokaryotic expression system analysis showed that these four transcript variants were noncoding RNAs. The quantitative reverse-transcription polymerase chain reaction and 5-ethynyl-2'-deoxyuridine assay showed that the transcript variants decreased the messenger RNA expression of Cyclin D1 and inhibited the proliferation of bovine preadipocytes. Considering the important role of lncFAM200B in adipogenesis, we identified genetic variations in lncFAM200B. Three single-nucleotide polymorphisms (SNPs) were revealed, and two of them (SNP1 and SNP3) were associated with Nanyang cattle body measurement traits. In conclusion, this study found that bovine lncFAM200B inhibited preadipocyte proliferation, and two genetic variations of lncFAM200B could be used in cattle breeding.
Collapse
Affiliation(s)
- Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zihong Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hanfang Cai
- College of Animal Science and Veterinary Medicine, Henan Agriculture University, Zhengzhou, China
| | - Enhui Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
44
|
Zhang X, Chen M, Liu X, Zhang L, Ding X, Guo Y, Li X, Guo H. A novel lncRNA, lnc403, involved in bovine skeletal muscle myogenesis by mediating KRAS/Myf6. Gene 2020; 751:144706. [PMID: 32387386 DOI: 10.1016/j.gene.2020.144706] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/05/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Skeletal muscle, the most abundant and plasticity tissue in mammals, is essential for various functions such as movement, breathing, maintaining posture and metabolism. Myogenesis is a complex and precise process, which is regulated by the sequential expression of multiple transcription factors, and accumulating evidence have confirmed that multiple lncRNAs are involved in muscle development as the important transcriptional regulator. In this study, a novel lncRNA, named lnc403 was obtained, with a full-length 2689 bp, which had poor coding ability and was mainly expressed in the nucleus of myoblasts and myotubes. The expression of lnc403 was significantly different in the proliferation and differentiation stages of muscle cells. Then we successfully constructed lnc403 loss/gain-function cell models by transfecting silnc403 and pCDNA3.1-EGFP-lnc403 into satellite cells, respectively; and found that lnc403 inhibited skeletal muscle satellite cell differentiation but had no significant effect on cell proliferation, either in the case of lnc403 knockdown or overexpression. In order to further screen the target factors regulated by lncRNA in the process of myogenic differentiation, the RNA-pull down, mass spectrometry and bioinformatics analysis were performed. The results showed that lnc403 negatively regulated the expression of the adjacent gene Myf6 and positively regulated interaction proteins KRAS expression. The above results indicate that lnc403 affects skeletal muscle cell differentiation by affecting the expression of nearby genes and interacting proteins, implying lnc403 might participate in the bovine myoblasts differentiation through multi-pathway network regulation mode. This study provides a new perspective for further understanding of the regulation mechanism of lncRNAs on bovine myogenic process.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Mingming Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinfeng Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China.
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
45
|
Ma X, Fu D, Chu M, Ding X, Wu X, Guo X, Kalwar Q, Pei J, Bao P, Liang C, Yan P. Genome-Wide Analysis Reveals Changes in Polled Yak Long Non-coding RNAs in Skeletal Muscle Development. Front Genet 2020; 11:365. [PMID: 32351548 PMCID: PMC7176074 DOI: 10.3389/fgene.2020.00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been extensively studied in recent years. Numerous lncRNAs have been identified in mice, rats, and humans, some of which play important roles in muscle formation and development. However, little is known about lncRNA regulators that affect muscle development in yak (Bos grunniens). LncRNA expression during skeletal muscle development in yak was analyzed by RNA sequencing at three development stages: 3 years (group A), 6 months (group M), and 90-day-old fetuses (group E). A total of 1180 lncRNAs were identified in the three development stages. Compared with group E, 154 were upregulated and 130 were downregulated in group A. Compared with group A, 31 were upregulated and 29 were downregulated in group M. Compared with group E, 147 were upregulated and 149 were downregulated in group M (padj < 0.001, |log2FC| > 1.2). In addition, functional annotation analysis based on gene ontology (GO) and the Kyoto protocol encyclopedia of genes and genomes (KEGG) database showed that differentially expressed lncRNAs (DElncRNAs) were cis–trans target genes. The results showed that DElncRNAs were mainly involved in PI3K-Akt signaling pathway, focal adhesion, MAPK signaling pathway, apoptosis, and p53 signaling pathway. Furthermore, RTL1, IGF2, MEF2C, Pax7, and other well-known muscle development regulators were included in a co-expression network of differentially expressed target genes and lncRNAs. These data will help to further clarify the function of lncRNAs in the different stages of skeletal muscle developmental in yak.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Donghai Fu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qudratullah Kalwar
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
46
|
MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF. Cells 2020; 9:cells9020449. [PMID: 32075310 PMCID: PMC7072828 DOI: 10.3390/cells9020449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Although thousands of long noncoding RNAs (lncRNAs) have been identified in porcine growth and development, the regulation mechanisms of functional lncRNAs have not been well explored. In this study, using 5′- and 3′-rapid amplification of cDNA ends (RACE) assays, we obtained two different variants of lncRNA maternally expressed gene 3 (MEG3), namely, MEG3 v1 and MEG3 v2, that were both highly expressed in porcine skeletal muscle and in the early stage of the differentiation of porcine satellite cells. Moreover, we identified the core transcript MEG3 v2. Functional analyses showed that MEG3 overexpression could effectively arrest myoblasts in the G1 phase, inhibit DNA replication, and promote myoblast differentiation, whereas MEG3 knockdown resulted in the opposite effects. Interestingly, the expression of serum response factor (SRF), a crucial transcription factor for myogenesis process, remarkably increased and decreased in mRNA and protein levels with the respective overexpression and knockdown of MEG3. Dual luciferase reporter assay showed that MEG3 could attenuate the decrease of luciferase activity of SRF induced by miR-423-5p in a dose-dependent manner. MEG3 overexpression could relieve the inhibitory effect on SRF and myoblast differentiation induced by miR-423-5p. In addition, results of RNA immunoprecipitation analysis suggested that MEG3 could act as a ceRNA for miR-423-5p. Our findings initially established a novel connection among MEG3, miR-423-5p, and SRF in porcine satellite cell differentiation. This novel role of MEG3 may shed new light on understanding of molecular regulation of lncRNA in porcine myogenesis.
Collapse
|
47
|
Chen R, Lei S, Jiang T, Zeng J, Zhou S, She Y. Roles of lncRNAs and circRNAs in regulating skeletal muscle development. Acta Physiol (Oxf) 2020; 228:e13356. [PMID: 31365949 DOI: 10.1111/apha.13356] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
Abstract
The multistep biological process of myogenesis is regulated by a variety of myoblast regulators, such as myogenic differentiation antigen, myogenin, myogenic regulatory factor, myocyte enhancer factor2A-D and myosin heavy chain. Proliferation and differentiation during skeletal muscle myogenesis contribute to the physiological function of muscles. Certain non-coding RNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are involved in the regulation of muscle development, and the aberrant expressions of lncRNAs and circRNAs are associated with muscular diseases. In this review, we summarize the recent advances concerning the roles of lncRNAs and circRNAs in regulating the developmental aspects of myogenesis. These findings have remarkably broadened our understanding of the gene regulation mechanisms governing muscle proliferation and differentiation, which makes it more feasible to design novel preventive, diagnostic and therapeutic strategies for muscle disorders.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute Guangdong Second Provincial General Hospital Guangzhou China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute Guangdong Second Provincial General Hospital Guangzhou China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Jie Zeng
- Department of Medical Ultrasonics, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute Guangdong Second Provincial General Hospital Guangzhou China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute Guangdong Second Provincial General Hospital Guangzhou China
| |
Collapse
|
48
|
Elsaeid Elnour I, Dong D, Wang X, Zhansaya T, Khan R, Jian W, Jie C, Chen H. Bta-miR-885 promotes proliferation and inhibits differentiation of myoblasts by targeting MyoD1. J Cell Physiol 2020; 235:6625-6636. [PMID: 31985035 DOI: 10.1002/jcp.29559] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022]
Abstract
The proliferation and differentiation of myoblasts are essential for the regeneration and development of skeletal muscles. However, the process of skeletal muscle development in cattle is complex and needs to be further investigated. The microRNAs (miRNAs) are endogenous, small noncoding RNAs that play a critical role during skeletal muscle development. In this study, we evaluated the function of miR-885 in muscle development in cattle. The results found that the expression of miR-885 was gradually upregulated during myoblast proliferation, whereas progressively downregulated during myoblast differentiation. The overexpression of miR-885 promoted cell proliferation of myoblast in cattle. Moreover, we further noted that the overexpression miR-885 triggered the expression level of various marker genes involved in cell proliferation, including proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 2 (CDK2), and cyclin B1 (CCNB1). Furthermore, it was observed that overexpression of miR-885 inhibited cell differentiation, and significantly decreased messenger RNA and protein expression levels of myogenic differentiation 1 (MyoD1) and myogenin (MyoG) in primary bovine myoblasts. Moreover, the miR-885 inhibitor revealed that miR-885 inhibited cell proliferation and promoted cell differentiation. In addition, the overexpression of miR-885 markedly decreased MyoD1 expression in primary bovine myoblasts. The luciferase reporter assay, quantitative real-time polymerase chain reaction, and western blot (WB) further indicated that miR-885 directly binding to 3' UTR of MyoD1 gene during transcriptional regulation. Conclusively, these results signified that miR-885 could be critical for the proliferation and differentiation in primary bovine myoblast cells by targeting the MyoD1 gene in cattle.
Collapse
Affiliation(s)
- Ibrahim Elsaeid Elnour
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Dong Dong
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaogang Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Toremurat Zhansaya
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rajwali Khan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wang Jian
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cheng Jie
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
49
|
Özdemir S, Altun S. Genome-wide analysis of mRNAs and lncRNAs in Mycoplasma bovis infected and non-infected bovine mammary gland tissues. Mol Cell Probes 2020; 50:101512. [PMID: 31972225 DOI: 10.1016/j.mcp.2020.101512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 02/02/2023]
Abstract
Mycoplasma bovis (M. bovis) causes diseases such as arthritis, pneumonia, abortion, and mastitis, leading to great losses in the bovine dairy industries. RNA types such as messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) play significant roles in regulating the immune responses triggered by bacteria. The expression profiles of mRNA and lncRNA as they occur in bovine mammary gland tissues infected with M. bovis are still not well understood. To illuminate this issue, transcription analysis of mRNA and LncRNAs were conducted on the mammary gland tissues belonging to Holstein cattle infected and not infected with M. bovis. The analysis revealed 1310 differentially expressed mRNAs and 57 differentially expressed lncRNAs in the bovine mammary gland tissues infected and not infected with M. bovis. In addition, 392 novel lncRNAs were detected, 19 of which were differentially expressed. Gene ontology analysis reveals that differentially expressed mRNAs and lncRNAs play significant roles in such vital biological pathways as metabolic pathways, T-cell receptor signaling, TGF-beta signaling, pathways in cancer, PI3K-Akt signaling, NF-kappa B signaling, mTOR signaling, and apoptosis, including in the immune response to cancer. Based on our literature review, this study is the first genome-wide lncRNA research conducted on bovine mammary gland tissues infected with M. bovis. Our results provide bovine mammary gland lncRNA and mRNA resources to understand their roles in the regulation of the immune response against the agent M. bovis in bovine mammary gland tissues.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Atatürk Üniversity Faculty of Veterinary Medicine, Depertmant of Genetics, Erzurum, 25430, Turkey.
| | - Serdar Altun
- Atatürk Üniversity Faculty of Veterinary Medicine, Depertmant of Pathology, Erzurum, 25430, Turkey
| |
Collapse
|
50
|
Li M, Gao Q, Tian Z, Lu X, Sun Y, Chen Z, Zhang H, Mao Y, Yang Z. MIR221HG Is a Novel Long Noncoding RNA that Inhibits Bovine Adipocyte Differentiation. Genes (Basel) 2019; 11:genes11010029. [PMID: 31887993 PMCID: PMC7016960 DOI: 10.3390/genes11010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 01/22/2023] Open
Abstract
Adipogenesis is a complicated but precisely orchestrated process mediated by a series of transcription factors. Our previous study has identified a novel long noncoding RNA (lncRNA) that was differentially expressed during bovine adipocyte differentiation. Because this lncRNA overlaps with miR-221 in the genome, it was named miR-221 host gene (MIR221HG). The purpose of this study was to clone the full length of MIR221HG, detect its subcellular localization, and determine the effects of MIR221HG on bovine adipocyte differentiation. The 5′ rapid amplification of cDNA ends (RACE) and 3′ RACE analyses demonstrated that MIR221HG is a transcript of 1064 nucleotides, is located on the bovine X chromosome, and contains a single exon. Bioinformatics analyses suggested that MIR221HG is an lncRNA and the promoter of MIR221HG includes the binding consensus sequences of the forkhead box C1 (FOXC1) and krüppel-like factor5 (KLF5). The semi-quantitative PCR and quantitative real-time PCR (qRT-PCR) of nuclear and cytoplasmic fractions revealed that MIR221HG mainly resides in the nucleus. Inhibition of MIR221HG significantly increased adipocyte differentiation, as indicated by a dramatic increment in the number of mature adipocytes and in the expression of the respective adipogenic markers, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and fatty acid binding protein 4 (FABP4). Our results provide a basis for elucidating the mechanism by which MIR221HG regulates adipocyte differentiation.
Collapse
Affiliation(s)
- Mingxun Li
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225002, China; (M.L.); (Q.G.); (Z.T.); (X.L.); (Z.C.); (H.Z.); (Y.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225002, China;
| | - Qisong Gao
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225002, China; (M.L.); (Q.G.); (Z.T.); (X.L.); (Z.C.); (H.Z.); (Y.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225002, China;
| | - Zhichen Tian
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225002, China; (M.L.); (Q.G.); (Z.T.); (X.L.); (Z.C.); (H.Z.); (Y.M.)
| | - Xubin Lu
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225002, China; (M.L.); (Q.G.); (Z.T.); (X.L.); (Z.C.); (H.Z.); (Y.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225002, China;
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225002, China;
| | - Zhi Chen
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225002, China; (M.L.); (Q.G.); (Z.T.); (X.L.); (Z.C.); (H.Z.); (Y.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225002, China;
| | - Huimin Zhang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225002, China; (M.L.); (Q.G.); (Z.T.); (X.L.); (Z.C.); (H.Z.); (Y.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225002, China;
| | - Yongjiang Mao
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225002, China; (M.L.); (Q.G.); (Z.T.); (X.L.); (Z.C.); (H.Z.); (Y.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225002, China;
| | - Zhangping Yang
- Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225002, China; (M.L.); (Q.G.); (Z.T.); (X.L.); (Z.C.); (H.Z.); (Y.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225002, China;
- Correspondence:
| |
Collapse
|