1
|
Kots AY, Bian K. Regulation and Pharmacology of the Cyclic GMP and Nitric Oxide Pathway in Embryonic and Adult Stem Cells. Cells 2024; 13:2008. [PMID: 39682756 DOI: 10.3390/cells13232008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarizes recent advances in understanding the role of the nitric oxide (NO) and cyclic GMP (cGMP) pathway in stem cells. The levels of expression of various components of the pathway are changed during the differentiation of pluripotent embryonic stem cells. In undifferentiated stem cells, NO regulates self-renewal and survival predominantly through cGMP-independent mechanisms. Natriuretic peptides influence the growth of undifferentiated stem cells by activating particulate isoforms of guanylyl cyclases in a cGMP-mediated manner. The differentiation, recruitment, survival, migration, and homing of partially differentiated precursor cells of various types are sensitive to regulation by endogenous levels of NO and natriuretic peptides produced by stem cells, within surrounding tissues, and by the application of various pharmacological agents known to influence the cGMP pathway. Numerous drugs and formulations target various components of the cGMP pathway to influence the therapeutic efficacy of stem cell-based therapies. Thus, pharmacological manipulation of the cGMP pathway in stem cells can be potentially used to develop novel strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexander Y Kots
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| | - Ka Bian
- Veteran Affairs Palo Alto Health Care System, US Department of Veteran Affairs, Palo Alto, CA 90304, USA
| |
Collapse
|
2
|
Rohrich RN, Li KR, Lava CX, Alahmadi S, Stanton HL, Kim VH, Spoer DL, Evans KK, Steinberg JS, Attinger CE. Deep and Superficial Debridement Techniques in Lower Extremity Split-thickness Skin Grafting. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6048. [PMID: 39139839 PMCID: PMC11319320 DOI: 10.1097/gox.0000000000006048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Background Patients with nonhealing lower extremity (LE) wounds often require a split-thickness skin graft (STSG) for closure. Nonviable tissue must be debrided before STSG inset. Our study aimed to compare differences in debridement depth on STSG outcomes. Methods Chronic, atraumatic LE wounds receiving STSG from December 2014 to December 2022 at a single institution were reviewed. Demographics, wound characteristics, operative details, and outcomes were collected. Superficially debrided wounds were compared with wounds receiving deep debridement (DD), defined by debriding to the level of white tissue underlying the granulation tissue. Subanalysis was performed on wounds that had a negative and positive postdebridement culture. Primary outcome was graft failure. Results Overall, 244 wounds in 168 patients were identified. In total, 158 (64.8%) wounds were superficially debrided and 86 (35.3%) received DD. The cohort had a median Charlson Comorbidity Index of 4 [interquartile range (IQR): 3]. Diabetes (56.6%) and peripheral artery disease (36.9%) were prevalent. The only statically significant demographic difference between groups was congestive heart failure (SD: 14.9% versus DD: 3.0%, P = 0.017). Wound size, depth, and all microbiology results were similar between groups. Postoperatively, the DD group demonstrated significantly less graft failure (10.5% versus 22.2%, P = 0.023). In a multivariate regression, DD was independently associated with lower odds of graft failure (OR: 0.0; CI, 0.0-0.8; P = 0.034). Sub-analysis of graft failure supported this finding in culture-positive wounds (DD: 7.6% versus DD: 22.1%, P = 0.018) but not in culture-negative wounds (13.6% versus 22.2%, P = 0.507). Conclusions The DD technique demonstrates improved outcomes in chronic, culture-positive LE wounds receiving STSG.
Collapse
Affiliation(s)
- Rachel N. Rohrich
- From the Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, Washington, D.C
| | - Karen R. Li
- From the Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, Washington, D.C
- Georgetown University School of Medicine, Washington, D.C
| | - Christian X. Lava
- From the Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, Washington, D.C
- Georgetown University School of Medicine, Washington, D.C
| | - Sami Alahmadi
- Georgetown University School of Medicine, Washington, D.C
| | | | | | - Daisy L. Spoer
- Georgetown University School of Medicine, Washington, D.C
| | - Karen K. Evans
- From the Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, Washington, D.C
| | - John S. Steinberg
- Department of Podiatric Surgery, MedStar Georgetown University Hospital, Washington, D.C
| | - Christopher E. Attinger
- From the Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, Washington, D.C
| |
Collapse
|
3
|
Rasouli M, Fattahi R, Nuoroozi G, Zarei-Behjani Z, Yaghoobi M, Hajmohammadi Z, Hosseinzadeh S. The role of oxygen tension in cell fate and regenerative medicine: implications of hypoxia/hyperoxia and free radicals. Cell Tissue Bank 2024; 25:195-215. [PMID: 37365484 DOI: 10.1007/s10561-023-10099-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Oxygen pressure plays an integral role in regulating various aspects of cellular biology. Cell metabolism, proliferation, morphology, senescence, metastasis, and angiogenesis are some instances that are affected by different tensions of oxygen. Hyperoxia or high oxygen concentration, enforces the production of reactive oxygen species (ROS) that disturbs physiological homeostasis, and consequently, in the absence of antioxidants, cells and tissues are directed to an undesired fate. On the other side, hypoxia or low oxygen concentration, impacts cell metabolism and fate strongly through inducing changes in the expression level of specific genes. Thus, understanding the precise mechanism and the extent of the implication of oxygen tension and ROS in biological events is crucial to maintaining the desired cell and tissue function for application in regenerative medicine strategies. Herein, a comprehensive literature review has been performed to find out the impacts of oxygen tensions on the various behaviors of cells or tissues.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Student Research Committee, Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Zeinab Zarei-Behjani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maliheh Yaghoobi
- Engineering Department, Faculty of Chemical Engineering, Zanjan University, Zanjan, Iran
| | - Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
5
|
Shimizu N, Fujiwara K, Mayahara K, Motoyoshi M, Takahashi T. Tension force causes cell cycle arrest at G2/M phase in osteocyte-like cell line MLO-Y4. Heliyon 2023; 9:e13236. [PMID: 36798766 PMCID: PMC9925960 DOI: 10.1016/j.heliyon.2023.e13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Bone remodelling is the process of bone resorption and formation, necessary to maintain bone structure or for adaptation to new conditions. Mechanical loadings, such as exercise, weight bearing and orthodontic force, play important roles in bone remodelling. During the remodelling process, osteocytes play crucial roles as mechanosensors to regulate osteoblasts and osteoclasts. However, the precise molecular mechanisms by which the mechanical stimuli affect the function of osteocytes remain unclear. In the present study, we analysed viability, cell cycle distribution and gene expression pattern of murine osteocyte-like MLO-Y4 cells exposed to tension force (TF). Cells were subjected to TF with 18% elongation at 6 cycles/min for 24 h using Flexcer Strain Unit (FX-3000). We found that TF stimulation induced cell cycle arrest at G2/M phase but not cell death in MLO-Y4 cells. Differentially expressed genes (DEGs) between TF-stimulated and unstimulated cells were identified by microarray analysis, and a marked increase in glutathione-S-transferase α (GSTA) family gene expression was observed in TF-stimulated cells. Enrichment analysis for the DEGs revealed that Gene Ontology (GO) terms and Kyoto Encyclopedia Genes and Genomes (KEGG) pathways related to the stress response were significantly enriched among the upregulated genes following TF. Consistent with these results, the production of reactive oxygen species (ROS) was elevated in TF-stimulated cells. Activation of the tumour suppressor p53, and upregulation of its downstream target GADD45A, were also observed in the stimulated cells. As GADD45A has been implicated in the promotion of G2/M cell cycle arrest, these observations may suggest that TF stress leads to G2/M arrest at least in part in a p53-dependent manner.
Collapse
Affiliation(s)
- Natsuo Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Applied Oral Science, Nihon University Graduate School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kyoko Fujiwara
- Department of Anatomy, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Corresponding author. Department of Anatomy, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Kotoe Mayahara
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Clinical Research, Dental Research Centre, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Clinical Research, Dental Research Centre, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
6
|
Abdalrahman T, Checa S. On the role of mechanical signals on sprouting angiogenesis through computer modeling approaches. Biomech Model Mechanobiol 2022; 21:1623-1640. [PMID: 36394779 PMCID: PMC9700567 DOI: 10.1007/s10237-022-01648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022]
Abstract
Sprouting angiogenesis, the formation of new vessels from preexisting vasculature, is an essential process in the regeneration of new tissues as well as in the development of some diseases like cancer. Although early studies identified chemical signaling as the main driver of this process, many recent studies have shown a strong role of mechanical signals in the formation of new capillaries. Different types of mechanical signals (e.g., external forces, cell traction forces, and blood flow-induced shear forces) have been shown to play distinct roles in the process; however, their interplay remains still largely unknown. During the last decades, mathematical and computational modeling approaches have been developed to investigate and better understand the mechanisms behind mechanically driven angiogenesis. In this manuscript, we review computational models of angiogenesis with a focus on models investigating the role of mechanics on the process. Our aim is not to provide a detailed review on model methodology but to describe what we have learnt from these models. We classify models according to the mechanical signals being investigated and describe how models have looked into their role on the angiogenic process. We show that a better understanding of the mechanobiology of the angiogenic process will require the development of computer models that incorporate the interactions between the multiple mechanical signals and their effect on cellular responses, since they all seem to play a key in sprout patterning. In the end, we describe some of the remaining challenges of computational modeling of angiogenesis and discuss potential avenues for future research.
Collapse
|
7
|
Liu ZY, Yang QX, Cao Y, Pan HW, Rong JJ, Ling J, Tang Y, He J, Wang CL, Peng X, Zou QC, Zhang L, Zheng J, Wang J, Zhang Y, Peng JQ, Xiong LB, Liu F, Ying ZH, Zheng ZF, Zhang BL. CXCR4 protects bone marrow-derived endothelial progenitor cells against hypoxia through the PI3K/Akt signaling pathway. Exp Ther Med 2021; 22:1200. [PMID: 34584545 PMCID: PMC8422402 DOI: 10.3892/etm.2021.10634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to investigate the regulatory mechanism of chemokine (C-X-C motif) receptor 4 (CXCR4) on endothelial progenitor cells (EPCs) through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway under hypoxic conditions. Mononuclear cells were isolated from the bone marrow (BM) of young Sprague-Dawley (SD) rats. Bone marrow-derived endothelial progenitor cells (BM-EPCs) were characterized by using Dil-labeled acetylated low-density lipoprotein (Dil-ac-LDL) and fluorescein isothiocyanate-labeled UEA (FITC-UEA-1). Phenotype identification of BM-EPCs was based on red cytoplasm and green cytomembrane. Flow cytometry was employed to examine the markers CD14, CD34, and KDR. Expression level of the EPC-specific surface marker CD14 was found to be negative, while the expression level of CD34 and KDR was positive. In addition, CXCR4 was stably overexpressed in BM-EPCs after transfection with adenovirus-CXCR4. Cell proliferation, migration and apoptosis abilities were measured through the application of CCK-8, followed by Transwell and flow cytometry assays. The expression level of CXCR4, PI3K and Akt was determined by reverse transcription-quantitative PCR and western blotting assays. Functional experiments demonstrated that hypoxia inhibited BM-EPC proliferation and migration, while accelerating BM-EPC apoptosis. Additionally, CXCR4 was found to promote proliferation and migration, and suppress apoptosis in BM-EPCs with or without hypoxia treatment. Evidence also demonstrated that CXCR4 markedly upregulated the expression levels of PI3K and Akt. Furthermore, PI3K inhibitor (LY294002) and CXCR4 inhibitor (AMD3100) effectively inhibited the proliferation, migration and resistance to apoptosis of CXCR4-mediated BM-EPCs under hypoxic conditions.
Collapse
Affiliation(s)
- Zheng-Yu Liu
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Qiu-Xia Yang
- Department of Cardiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410000, P.R. China
| | - Yan Cao
- Department of Emergency, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Emergency and Critical Care Metabolomic Key Lab of Hunan Province, Changsha, Hunan 410000, P.R. China
| | - Hong-Wei Pan
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Jing-Jing Rong
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Jing Ling
- Department of Cardiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410000, P.R. China
| | - Yi Tang
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Jin He
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Chang-Lu Wang
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Xiang Peng
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Qiong-Chao Zou
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Le Zhang
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Jiao Zheng
- Institute of Clinical Pharmacology Research, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Jia Wang
- Institute of Clinical Pharmacology Research, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Yu Zhang
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Jian-Qiang Peng
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Lan-Bing Xiong
- Department of Cardiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410000, P.R. China
| | - Feng Liu
- Department of Cardiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410000, P.R. China
| | - Zi-Hui Ying
- Department of Cardiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410000, P.R. China
| | - Zhao-Fen Zheng
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China.,Clinical Research Center for Heart Failure of Hunan Province, Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Bai-Ling Zhang
- Department of Cardiology, Xiangxi Autonomous Prefecture People's Hospital, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
8
|
Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Sci Rep 2021; 11:16478. [PMID: 34389738 PMCID: PMC8363742 DOI: 10.1038/s41598-021-94769-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Here we present a microengineered soft-robotic in vitro platform developed by integrating a pneumatically regulated novel elastomeric actuator with primary culture of human cells. This system is capable of generating dynamic bending motion akin to the constriction of tubular organs that can exert controlled compressive forces on cultured living cells. Using this platform, we demonstrate cyclic compression of primary human endothelial cells, fibroblasts, and smooth muscle cells to show physiological changes in their morphology due to applied forces. Moreover, we present mechanically actuatable organotypic models to examine the effects of compressive forces on three-dimensional multicellular constructs designed to emulate complex tissues such as solid tumors and vascular networks. Our work provides a preliminary demonstration of how soft-robotics technology can be leveraged for in vitro modeling of complex physiological tissue microenvironment, and may enable the development of new research tools for mechanobiology and related areas.
Collapse
|
9
|
Zhao X, Chen Y, Tan M, Zhao L, Zhai Y, Sun Y, Gong Y, Feng X, Du J, Fan Y. Extracellular Matrix Stiffness Regulates DNA Methylation by PKCα-Dependent Nuclear Transport of DNMT3L. Adv Healthc Mater 2021; 10:e2100821. [PMID: 34174172 DOI: 10.1002/adhm.202100821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Indexed: 01/02/2023]
Abstract
Extracellular matrix (ECM) stiffness has profound effects on the regulation of cell functions. DNA methylation is an important epigenetic modification governing gene expression. However, the effects of ECM stiffness on DNA methylation remain elusive. Here, it is reported that DNA methylation is sensitive to ECM stiffness, with a global hypermethylation under stiff ECM condition in mouse embryonic stem cells (mESCs) and embryonic fibroblasts compared with soft ECM. Stiff ECM enhances DNA methylation of both promoters and gene bodies, especially the 5' promoter regions of pluripotent genes. The enhanced DNA methylation is functionally required for the loss of pluripotent gene expression in mESCs grown on stiff ECM. Further experiments reveal that the nuclear transport of DNA methyltransferase 3-like (DNMT3L) is promoted by stiff ECM in a protein kinase C α (PKCα)-dependent manner and DNMT3L can be binding to Nanog promoter regions during cell-ECM interactions. These findings unveil DNA methylation as a novel target for the mechanical sensing mechanism of ECM stiffness, which provides a conserved mechanism for gene expression regulation during cell-ECM interactions.
Collapse
Affiliation(s)
- Xin‐Bin Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yun‐Ping Chen
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Min Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Lan Zhao
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Yuan‐Yuan Zhai
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yan‐Ling Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yan Gong
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xi‐Qiao Feng
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yu‐Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| |
Collapse
|
10
|
Zhang G, Wang Z, Han F, Jin G, Xu L, Xu H, Su H, Wang H, Le Y, Fu Y, Ju J, Li B, Hou R. Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs. Biotechnol Bioeng 2021; 118:3787-3798. [PMID: 34110009 DOI: 10.1002/bit.27854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Restoration of a wound is a common surgical procedure in clinic. Currently, the skin required for clinical use is taken from the patient's own body. However, it can be difficult to obtain enough skin sources for large-sized wounds and thus surgeons have started using commercial skin substitutes. The current commercial skin, which includes epidermis substitute, dermis substitute, and bilateral skin substitute, has been popularized in clinic. However, the application is limited by the occurrence of ischemia necrosis after transplantation. Recent studies suggest the use of pre-vascularized skin substitutes for wound healing is a promising area in the research field of skin tissue engineering. Pre-vascularization can be induced by changes in cultivation periods, exertion of mechanical stimuli, or coculture with endothelial cells and various factors. However, few methods could control the formation of vascular branches in engineering tissue in a self-assembly way. In this study, we use three-dimensional (3D) printing technology to confirm that a mechanical force can control the growth of blood vessels in the direction of mechanical stimulation with no branches, and that Yes-associated protein activity is involved in the regulatory progress. In vivo experiments verified that the blood vessels successfully function for blood circulation, and maintain the same direction. Results provide a theoretical basis for products of pre-vascularized skin tissues and other organs created by 3D bioprinting.
Collapse
Affiliation(s)
- Guangliang Zhang
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Zhan Wang
- Department of Internal Medicine Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Fengxuan Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Guangzhe Jin
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Xu
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Xu
- Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Hao Su
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jihui Ju
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Ruixing Hou
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Pecoraro AR, Hosfield BD, Li H, Shelley WC, Markel TA. Angiogenesis: A Cellular Response to Traumatic Injury. Shock 2021; 55:301-310. [PMID: 32826807 DOI: 10.1097/shk.0000000000001643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ABSTRACT The development of new vasculature plays a significant role in a number of chronic disease states, including neoplasm growth, peripheral arterial disease, and coronary artery disease, among many others. Traumatic injury and hemorrhage, however, is an immediate, often dramatic pathophysiologic insult that can also necessitate neovascularization to promote healing. Traditional understanding of angiogenesis involved resident endothelial cells branching outward from localized niches in the periphery. Additionally, there are a small number of circulating endothelial progenitor cells that participate directly in the process of neovessel formation. The bone marrow stores a relatively small number of so-called pro-angiogenic hematopoietic progenitor cells-that is, progenitor cells of a hematopoietic potential that differentiate into key structural cells and stimulate or otherwise support local cell growth/differentiation at the site of angiogenesis. Following injury, a number of cytokines and intercellular processes are activated or modulated to promote development of new vasculature. These processes initiate and maintain a robust response to vascular insult, allowing new vessels to canalize and anastomose and provide timely oxygen delivering to healing tissue. Ultimately as we better understand the key players in the process of angiogenesis we can look to develop novel techniques to promote healing following injury.
Collapse
Affiliation(s)
- Anthony R Pecoraro
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
12
|
Zeevaert K, Elsafi Mabrouk MH, Wagner W, Goetzke R. Cell Mechanics in Embryoid Bodies. Cells 2020; 9:E2270. [PMID: 33050550 PMCID: PMC7599659 DOI: 10.3390/cells9102270] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Embryoid bodies (EBs) resemble self-organizing aggregates of pluripotent stem cells that recapitulate some aspects of early embryogenesis. Within few days, the cells undergo a transition from rather homogeneous epithelial-like pluripotent stem cell colonies into a three-dimensional organization of various cell types with multifaceted cell-cell interactions and lumen formation-a process associated with repetitive epithelial-mesenchymal transitions. In the last few years, culture methods have further evolved to better control EB size, growth, cellular composition, and organization-e.g., by the addition of morphogens or different extracellular matrix molecules. There is a growing perception that the mechanical properties, cell mechanics, and cell signaling during EB development are also influenced by physical cues to better guide lineage specification; substrate elasticity and topography are relevant, as well as shear stress and mechanical strain. Epithelial structures outside and inside EBs support the integrity of the cell aggregates and counteract mechanical stress. Furthermore, hydrogels can be used to better control the organization and lineage-specific differentiation of EBs. In this review, we summarize how EB formation is accompanied by a variety of biomechanical parameters that need to be considered for the directed and reproducible self-organization of early cell fate decisions.
Collapse
Affiliation(s)
- Kira Zeevaert
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Mohamed H. Elsafi Mabrouk
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| |
Collapse
|
13
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
14
|
Xie F, Wen G, Sun W, Jiang K, Chen T, Chen S, Wen J. Mechanical stress promotes angiogenesis through fibroblast exosomes. Biochem Biophys Res Commun 2020; 533:346-353. [PMID: 32962863 DOI: 10.1016/j.bbrc.2020.04.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mechanical stress can induce multiple functional changes in vascular endothelial cells, including proliferation, differentiation, and migration. Furthermore, human fibroblasts are susceptible to external mechanical stress. In this work, we investigated whether mechanical stress can induce exosome secretion from fibroblasts to modulate angiogenesis. METHODS A CCK-8 cell proliferation assay was used to determine mechanical parameters. Then, exosomes from fibroblasts were isolated and characterized with regard to concentration and markers. We subsequently explored the effect of exosomes on proliferation, migration, and angiogenesis. Additionally, high-throughput sequencing was used to screen differentially expressed miRNAs in the mechanical stress-induced exosomes. RESULTS A static stretching of 15% significantly enhanced the cell viability of the fibroblasts (p < 0.05) and significantly induced the secretion of exosomes from the fibroblasts, which had a stronger internalization ability. Further experiments demonstrated that the presence of static stretching-induced exosomes significantly increased cell proliferation, migration, and angiogenesis by regulating the Erk1/2 signaling pathway. Additionally, 12 up-regulated and 12 down-regulated candidate miRNAs were discriminated in the static stretching-induced exosomes. CONCLUSION Our findings conclusively demonstrate that static stretching-derived exosomes from fibroblasts promote angiogenesis through differentially expressed miRNAs, providing novel insights into the molecular mechanism by which mechanical stress influences angiogenesis.
Collapse
Affiliation(s)
- Fei Xie
- China Academy of Chinese Medical Sciences, Wangjing Hospital, Beijing, China.
| | - Guannan Wen
- China Academy of Chinese Medical Sciences, Wangjing Hospital, Beijing, China.
| | - Weidong Sun
- China Academy of Chinese Medical Sciences, Wangjing Hospital, Beijing, China.
| | - Kewei Jiang
- China Academy of Chinese Medical Sciences, Wangjing Hospital, Beijing, China.
| | - Ting Chen
- China Academy of Chinese Medical Sciences, Wangjing Hospital, Beijing, China.
| | - Si Chen
- China Academy of Chinese Medical Sciences, Wangjing Hospital, Beijing, China.
| | - Jianmin Wen
- China Academy of Chinese Medical Sciences, Wangjing Hospital, Beijing, China.
| |
Collapse
|
15
|
Möhner DM, Bernhardt A, Bekhite MM, Schulze PC, Sauer H, Wartenberg M. Zoxazolamine-induced stimulation of cardiomyogenesis from embryonic stem cells is mediated by Ca 2+, nitric oxide and ATP release. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118796. [PMID: 32663504 DOI: 10.1016/j.bbamcr.2020.118796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Ca2+-activated potassium (KCa) channels of small and intermediate conductance influence proliferation, apoptosis, and cell metabolism. We analysed whether prolonged activation of KCa channels by zoxazolamine (ZOX) induces differentiation of mouse embryonic stem (ES) cells towards cardiomyocytes. ZOX treatment of ES cells dose-dependent increased the number and diameter of cardiac foci, the frequency of contractions as well as mRNA expression of the cardiac transcription factor Nkx-2.5, the cardiac markers cardiac troponin I (cTnI), α-myosin heavy chain (α-MHC), ventricular myosin light chain-2 (MLC2v), and the pacemaker hyperpolarization-activated, cyclic nucleotide-gated 4 channel (HCN4). ZOX induced hyperpolarization of membrane potential due to activation of IKCa, raised intracellular Ca2+ concentration ([Ca2+]i) and nitric oxide (NO) in a Ca2+-dependent manner. The Ca2+ response to ZOX was inhibited by chelation of Ca2+ with BAPTA-AM, release of Ca2+ from intracellular stores by thapsigargin and the phospholipase C (PLC) antagonist U73,122. Moreover, the ZOX-induced Ca2+ response was blunted by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) as well as the specific P2Y1 antagonist MRS 2,179, suggesting purinergic receptor-stimulated signal transduction. Consequently, ZOX initiated ATP release from differentiating ES cells, which was inhibited by the chloride channel inhibitor NPPB and the gap junction inhibitor carbenoxolone (CBX). The stimulation of cardiomyogenesis by ZOX was blunted by the nitric oxide synthase (NOS) inhibitor l-NAME, as well as CBX and NPPB. In summary, our data suggest that ZOX enhances cardiomyogenesis of ES cells by ATP release presumably through gap junctional hemichannels, purinergic receptor activation and intracellular Ca2+ response, thus promoting NO generation.
Collapse
Affiliation(s)
- Desirée M Möhner
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - Anne Bernhardt
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - Mohamed M Bekhite
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - P Christian Schulze
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Justus Liebig University Giessen, Department of Physiology, Giessen, Germany
| | - Maria Wartenberg
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany.
| |
Collapse
|
16
|
Vander Roest MJ, Merryman WD. Cyclic Strain Promotes H19 Expression and Vascular Tube Formation in iPSC-Derived Endothelial Cells. Cell Mol Bioeng 2020; 13:369-377. [PMID: 32952736 DOI: 10.1007/s12195-020-00617-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) have the potential for therapeutic application in several cardiovascular diseases. Mechanical strain is known to regulate EC behavior and stem cell differentiation and may play a role in directing EC differentiation of iPSCs. H19, a long non-coding RNA (lncRNA), is known to affect ECs in several mechanically relevant pathologies and may play a role in this process as well. Therefore, we investigated expression changes of H19 resulting from mechanical stimulation during EC differentiation, as well as functional effects on EC tube formation. Methods iPSCs were subjected to 5% cyclic mechanical strain during EC differentiation. RT-PCR and flow cytometry were used to assess changes in mesoderm differentiation and gene expression in the final ECs as a result of strain. Functional outcomes of mechanically differentiated ECs were assessed with a tube formation assay and changes in H19. H19 was also overexpressed in human umbilical vein endothelial cells (HUVECs) to assess its role in non-H19-expressing ECs. Results Mechanical strain promoted mesoderm differentiation, marked by increased expression of brachyury 24 h after initiation of differentiation. Strain also increased expression of H19, CD31, VE-cadherin, and VEGFR2 in differentiated ECs. Strain-differentiated ECs formed tube networks with higher junction and endpoint density than statically-differentiated ECs. Overexpression of H19 in HUVECs resulted in similar patterns of tube formation. Conclusions H19 expression is increased by mechanical strain and promotes tube branching in iPSC-derived ECs.
Collapse
Affiliation(s)
- Mark J Vander Roest
- Biomedical Engineering, Vanderbilt University, Room 9445D MRB4, 2213 Garland Ave, Nashville, TN 37212 USA
| | - W David Merryman
- Biomedical Engineering, Vanderbilt University, Room 9445D MRB4, 2213 Garland Ave, Nashville, TN 37212 USA
| |
Collapse
|
17
|
Taha A, Sharifpanah F, Wartenberg M, Sauer H. Omega-3 and Omega-6 polyunsaturated fatty acids stimulate vascular differentiation of mouse embryonic stem cells. J Cell Physiol 2020; 235:7094-7106. [PMID: 32020589 DOI: 10.1002/jcp.29606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) and their metabolites may influence cell fate regulation. Herein, we investigated the effects of linoleic acid (LA) as ω-6 PUFA, eicosapentaenoic acid (EPA) as ω-3 PUFA and palmitic acid (PA) on vasculogenesis of embryonic stem (ES) cells. LA and EPA increased vascular structure formation and protein expression of the endothelial-specific markers fetal liver kinase-1, CD31 as well as VE-cadherin, whereas PA was without effect. LA and EPA increased reactive oxygen species (ROS) and nitric oxide (NO), activated endothelial NO synthase (eNOS) and raised intracellular calcium. The calcium response was inhibited by the intracellular calcium chelator BAPTA, sulfo-N-succinimidyl oleate which is an antagonist of CD36, the scavenger receptor for fatty acid uptake as well as by a CD36 blocking antibody. Prevention of ROS generation by radical scavengers or the NADPH oxidase inhibitor VAS2870 and inhibition of eNOS by L-NAME blunted vasculogenesis. PUFAs stimulated AMP activated protein kinase-α (AMPK-α) as well as peroxisome proliferator-activated receptor-α (PPAR-α). AMPK activation was abolished by calcium chelation as well as inhibition of ROS and NO generation. Moreover, PUFA-induced vasculogenesis was blunted by the PPAR-α inhibitor GW6471. In conclusion, ω-3 and ω-6 PUFAs stimulate vascular differentiation of ES cells via mechanisms involving calcium, ROS and NO, which regulate function of the energy sensors AMPK and PPAR-α and determine the metabolic signature of vascular cell differentiation.
Collapse
Affiliation(s)
- Amer Taha
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Fatemeh Sharifpanah
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wartenberg
- Department of Cardiology, Clinic of Internal Medicine I, University Heart Center, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Yang H, Cheam NMJ, Cao H, Lee MKH, Sze SK, Tan NS, Tay CY. Materials Stiffness-Dependent Redox Metabolic Reprogramming of Mesenchymal Stem Cells for Secretome-Based Therapeutic Angiogenesis. Adv Healthc Mater 2019; 8:e1900929. [PMID: 31532923 DOI: 10.1002/adhm.201900929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Indexed: 11/08/2022]
Abstract
Cellular redox metabolism has emerged as a key tenet in stem cell biology that can profoundly influence the paracrine activity and therapeutic efficacy of mesenchymal stem cells (MSCs). Although the use of materials cues to direct the differentiation of MSCs has been widely investigated, little is known regarding the role of materials in the control of redox paracrine signaling in MSCs. Herein, using a series of mechanically tunable fibronectin-conjugated polyacrylamide (FN-PAAm) hydrogel substrates, it is shown that a mechanically compliant microenvironment with native-tissue mimicking stiffness (E = 0.15 kPa) can mechano-regulate the intracellular reactive oxygen species (ROS) level in human adipose-derived MSCs (ADMSCs). The cells reciprocate to the ROS imbalance by co-activating the nuclear factor erythroid 2-related factor 2 and hypoxia-inducible factor 1 alpha stress response signaling pathways to increase the production of vascular endothelial growth factor and basic fibroblast growth factor. Conditioned medium collected from ADMSCs grown on the 0.15 kPa FN-PAAm is found to significantly promote in vitro and ex ovo vascularization events. Collectively, these findings highlight the importance of delineating critical materials properties that can enable the reprogramming of cellular redox signaling for advanced MSCs-based secretome regenerative medicine.
Collapse
Affiliation(s)
- Haibo Yang
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Nicole Mein Ji Cheam
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Huan Cao
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Melissa Kao Hui Lee
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Siu Kwan Sze
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Nguan Soon Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 11 Mandalay Road Singapore 308232 Singapore
| | - Chor Yong Tay
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
19
|
Regulatory mechanisms of Robo4 and their effects on angiogenesis. Biosci Rep 2019; 39:BSR20190513. [PMID: 31160487 PMCID: PMC6620384 DOI: 10.1042/bsr20190513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Roundabout4 (Robo4) is a transmembrane receptor that belongs to the Roundabout (Robo) family of axon guidance molecules. Robo4 is an endothelial-specific receptor that participates in endothelial cell migration, proliferation, and angiogenesis and the maintenance of vasculature homeostasis. The purpose of this review is to summarize and analyze three main mechanisms related to the expression and function of Robo4 during developmental and pathological angiogenesis. In this review, static shear stress and the binding of transcription factors such as E26 transformation-specific variant 2 (ETV2) and Slit3 induce Robo4 expression and activate Robo4 during tissue and organ development. Robo4 interacts with Slit2 or UNC5B to maintain vascular integrity, while a disturbed flow and the expression of transcription factors in inflammatory or neoplastic environments alter Robo4 expression levels, although these changes have uncertain functions. Based on the mechanisms described above, we discuss the aberrant expression of Robo4 in angiogenesis-related diseases and propose antiangiogenic therapies targeting the Robo4 signaling pathway for the treatment of ocular neovascularization lesions and tumors. Finally, although many problems related to Robo4 signaling pathways remain to be resolved, Robo4 is a promising and potentially valuable therapeutic target for treating pathological angiogenesis and developmental defects in angiogenesis.
Collapse
|
20
|
Ventilation-Like Mechanical Strain Modulates the Inflammatory Response of BEAS2B Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2769761. [PMID: 31320981 PMCID: PMC6607724 DOI: 10.1155/2019/2769761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/28/2019] [Indexed: 01/16/2023]
Abstract
Protective mechanical ventilation is aimed at preventing ventilator-induced lung injury while ensuring sufficient gas exchange. A new approach focuses on the temporal profile of the mechanical ventilation. We hypothesized that the temporal mechanical strain profile modulates inflammatory signalling. We applied cyclic strain with various temporal profiles to human bronchial epithelial cells (BEAS2B) and assessed proinflammatory response. The cells were subjected to sinusoidal, rectangular, or triangular strain profile and rectangular strain profile with prestrain set to 0, 25, 50, or 75% of the maximum stain, static strain, and strain resembling a mechanical ventilation-like profile with or without flow-controlled expiration. The BEAS2B response to mechanical load included altered mitochondrial activity, increased superoxide radical levels, NF-kappaB translocation, and release of interleukin-8. The response to strain was substantially modulated by the dynamics of the stimulation pattern. The rate of dynamic changes of the strain profile correlates with the degree of mechanical stress-induced cell response.
Collapse
|
21
|
Fan YL, Zhao HC, Li B, Zhao ZL, Feng XQ. Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. ACS Biomater Sci Eng 2019; 5:3788-3801. [PMID: 33438419 DOI: 10.1021/acsbiomaterials.9b00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development and differentiation of stem cells, mechanical forces associated with filamentous actin (F-actin) play a crucial role. The present review aims to reveal the relationship among the chemical components, microscopic structures, mechanical properties, and biological functions of F-actin. Particular attention is given to the functions of the cytoplasmic and nuclear microfilament cytoskeleton and their regulation mechanisms in the differentiation of stem cells. The distributions of different types of actin monomers in mammal cells and the functions of actin-binding proteins are summarized. We discuss how the fate of stem cells is regulated by intra/extracellular mechanical and chemical cues associated with microfilament-related proteins, intercellular adhesion molecules, etc. In addition, we also address the differentiation-induced variation in the stiffness of stem cells and the correlation between the fate and geometric shape change of stem cells. This review not only deepens our understanding of the biophysical mechanisms underlying the fates of stem cells under different culture conditions but also provides inspirations for the tissue engineering of stem cells.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Fang B, Liu Y, Zheng D, Shan S, Wang C, Gao Y, Wang J, Xie Y, Zhang Y, Li Q. The effects of mechanical stretch on the biological characteristics of human adipose-derived stem cells. J Cell Mol Med 2019; 23:4244-4255. [PMID: 31020802 PMCID: PMC6533502 DOI: 10.1111/jcmm.14314] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 01/21/2023] Open
Abstract
Adipose‐derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs), which have promised a vast therapeutic potential in tissue regeneration. Recent studies have demonstrated that combining stem cells with mechanical stretch may strengthen the efficacy of regenerative therapies. However, the exact influences of mechanical stretch on MSCs still remain inconclusive. In this study, human ADSCs (hADSCs) were applied cyclic stretch stimulation under an in vitro stretching model for designated duration. We found that mechanical stretch significantly promoted the proliferation, adhesion and migration of hADSCs, suppressing cellular apoptosis and increasing the production of pro‐healing cytokines. For differentiation of hADSCs, mechanical stretch inhibited adipogenesis, but enhanced osteogenesis. Long‐term stretch could promote ageing of hADSCs, but did not alter the cell size and typical immunophenotypic characteristics. Furthermore, we revealed that PI3K/AKT and MAPK pathways might participate in the effects of mechanical stretch on the biological characteristics of hADSCs. Taken together, mechanical stretch is an effective strategy for enhancing stem cell behaviour and regulating stem cell fate. The synergy between hADSCs and mechanical stretch would most likely facilitate tissue regeneration and promote the development of stem cell therapy.
Collapse
Affiliation(s)
- Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjun Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Otorhinolaryngology and Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Wang T, Guo Y, Yuan Y, Xin N, Zhang Q, Guo Q, Gong P. Deficiency of α Calcitonin-gene-related peptide impairs peri-implant angiogenesis and osseointegration via suppressive vasodilative activity. Biochem Biophys Res Commun 2018; 498:139-145. [DOI: 10.1016/j.bbrc.2018.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
|
24
|
Ju RJ, Cheng L, Peng XM, Wang T, Li CQ, Song XL, Liu S, Chao JP, Li XT. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:616-628. [PMID: 29381101 DOI: 10.1080/21691401.2018.1433187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumor invasion is considered a major promoter in the initiation of tumor metastasis, which is supposed to cause most cancer-related deaths. In the present study, octreotide (OCT)-modified daunorubicin plus dihydroartemisinin liposomes were developed and characterized. Evaluations were undertaken on breast cancer MDA-MB-435S cells and MDA-MB-435S xenografts nude mice. The liposomes were ∼100 nm in size with a narrow polydispersity index. In vitro results showed that the OCT-modified daunorubicin plus dihydroartemisinin liposomes could enhance cytotoxicity and cellular uptake by OCT-SSTRs (somatostatin receptors)-mediated active targeting, block on tumor cell wound healing and migration by incorporating dihydroartemisinin. The action mechanism might be related to regulations on E-cadherin, α5β1-integrin, TGF-β1, VEGF and MMP2/9 in breast cancer cells. In vivo, the liposomes displayed a prolonged circulating time, more accumulation in tumor location, and a robust overall antitumor efficacy with no obvious toxicity at the test dose in MDA-MB-435S xenograft mice. In conclusion, the OCT-modified daunorubicin plus dihydroartemisinin liposomes could prevent breast cancer invasion, hence providing a possible strategy for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Rui-Jun Ju
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Lan Cheng
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xiao-Ming Peng
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Teng Wang
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Cui-Qing Li
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xiao-Li Song
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Shuang Liu
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jian-Ping Chao
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xue-Tao Li
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
25
|
Nethi SK, Barui AK, Bollu VS, Rao BR, Patra CR. Pro-angiogenic Properties of Terbium Hydroxide Nanorods: Molecular Mechanisms and Therapeutic Applications in Wound Healing. ACS Biomater Sci Eng 2017; 3:3635-3645. [DOI: 10.1021/acsbiomaterials.7b00457] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Susheel Kumar Nethi
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Ayan Kumar Barui
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Vishnu Sravan Bollu
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Bonda Rama Rao
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Chitta Ranjan Patra
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| |
Collapse
|
26
|
Nethi SK, P NAA, Rico-Oller B, Rodríguez-Diéguez A, Gómez-Ruiz S, Patra CR. Design, synthesis and characterization of doped-titanium oxide nanomaterials with environmental and angiogenic applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1263-1274. [PMID: 28525935 DOI: 10.1016/j.scitotenv.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Since the last decade, the metal composite nanostructures have evolved as promising candidates in regard to their wide applications in the fields of science and engineering. Recently, several investigators identified the titanium based nanomaterials as excellent agents for multifunctional environmental and biomedical applications. In this perspective, we have developed a series of zinc-doped (2 and 5%) titanium oxide-based nanomaterials using various reaction conditions and calcination temperatures (TZ1-TZ3: calcined at 500°C, TZ4-TZ6: calcined at 600°C and TZ7-TZ9: calcined at 700°C). The calcined materials (TZ1 to TZ9) were thoroughly analyzed by several physico-chemical characterization methods. The increase of the calcination temperature results in significant changes of the textural properties of the nanostructured materials. In addition, the increase of the calcination temperature leads to the formation of anatase/rutile mixtures with higher quantity of rutile. Furthermore, incorporation of zinc changes the morphology of the obtained nanoparticles. The materials were studied in the photodegradation of methylene blue observing that materials calcined at lower temperatures (TZ1-TZ3) have higher photocatalytic activity than those of the materials calcined at 600°C (TZ4-TZ6), rutile-based systems TZ7-TZ9 are not active. Based on the background literature of titanium and zinc based nanostructures in therapeutic angiogenesis, we have explored the pro-angiogenic properties of these materials using various in vitro and in vivo assays. The zinc-doped titanium dioxide nanostructures (TZ5 and TZ6) exhibited increased cell viability, proliferation, enhanced S-phase cell population, increased pro-angiogenic messengers (ROS: reactive oxygen species and NO: nitric oxide) production and promoted in vivo blood vessel formation in a plausible mechanistic p38/STAT3 dependent signaling cascade. Altogether, the results of the present study showcase these zinc doped-titanium oxide nanoparticles as promising candidates for environmental (water-remediation) and therapeutic angiogenic applications.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Neeraja Aparna Anand P
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Beatriz Rico-Oller
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain.
| | - Chitta Ranjan Patra
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India.
| |
Collapse
|