1
|
Rojo-Ruiz J, Sánchez-Rabadán C, Calvo B, García-Sancho J, Alonso MT. Using Fluorescent GAP Indicators to Monitor ER Ca 2. Curr Protoc 2024; 4:e1060. [PMID: 38923371 DOI: 10.1002/cpz1.1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The endoplasmic reticulum (ER) is the main reservoir of Ca2+ of the cell. Accurate and quantitative measuring of Ca2+ dynamics within the lumen of the ER has been challenging. In the last decade a few genetically encoded Ca2+ indicators have been developed, including a family of fluorescent Ca2+ indicators, dubbed GFP-Aequorin Proteins (GAPs). They are based on the fusion of two jellyfish proteins, the green fluorescent protein (GFP) and the Ca2+-binding protein aequorin. GAP Ca2+ indicators exhibit a combination of several features: they are excitation ratiometric indicators, with reciprocal changes in the fluorescence excited at 405 and 470 nm, which is advantageous for imaging experiments; they exhibit a Hill coefficient of 1, which facilitates the calibration of the fluorescent signal into Ca2+ concentrations; they are insensible to variations in the Mg2+ concentrations or pH variations (in the 6.5-8.5 range); and, due to the lack of mammalian homologues, these proteins have a favorable expression in transgenic animals. A low Ca2+ affinity version of GAP, GAP3 (KD ≅ 489 µM), has been engineered to conform with the estimated [Ca2+] in the ER. GAP3 targeted to the lumen of the ER (erGAP3) can be utilized for imaging intraluminal Ca2+. The ratiometric measurements provide a quantitative method to assess accurate [Ca2+]ER, both dynamically and at rest. In addition, erGAP3 can be combined with synthetic cytosolic Ca2+ indicators to simultaneously monitor ER and cytosolic Ca2+. Here, we provide detailed methods to assess erGAP3 expression and to perform Ca2+ imaging, either restricted to the ER lumen, or simultaneously in the ER and the cytosol. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Detection of erGAP3 in the ER by immunofluorescence Basic Protocol 2: Monitoring ER Ca2+ Basic Protocol 3: Monitoring ER- and cytosolic-Ca2+ Support Protocol: Generation of a stable cell line expressing erGAP3.
Collapse
Affiliation(s)
- Jonathan Rojo-Ruiz
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Cinthia Sánchez-Rabadán
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Belen Calvo
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Javier García-Sancho
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Maria Teresa Alonso
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
2
|
Delrio-Lorenzo A, Rojo-Ruiz J, Torres-Vidal P, Alonso MT, García-Sancho J. In vitro and in vivo calibration of low affinity genetic Ca 2+ indicators. Cell Calcium 2024; 117:102819. [PMID: 37956535 DOI: 10.1016/j.ceca.2023.102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
Calcium is a universal intracellular messenger and proper Ca2+concentrations ([Ca2+]) both in the cytosol and in the lumen of cytoplasmic organelles are essential for cell functions. Ca2+ homeostasis is achieved by a delicate pump/leak balance both at the plasma membrane and at the endomembranes, and improper Ca2+ levels result in malfunction and disease. Selective intraorganellar Ca2+measurements are best achieved by using targeted genetically encoded Ca2+ indicators (GECIs) but to calibrate the luminal fluorescent signals into accurate [Ca2+] is challenging, especially in vivo, due to the difficulty to normalize and calibrate the fluorescent signal in various tissues or conditions. We report here a procedure to calibrate the ratiometric signal of GAP (GFP-Aequorin Protein) targeted to the endo-sarcoplasmic reticulum (ER/SR) into [Ca2+]ER/SR based on imaging of fluorescence after heating the tissue at 50-52 °C, since this value coincides with that obtained in the absence of Ca2+ (Rmin). Knowledge of the dynamic range (Rmax/Rmin) and the Ca2+-affinity (KD) of the indicator permits calculation of [Ca2+] by applying a simple algorithm. We have validated this procedure in vitro using several cell types (HeLa, HEK 293T and mouse astrocytes), as well as in vivo in Drosophila. Moreover, this methodology is applicable to other low Ca2+ affinity green and red GECIs.
Collapse
Affiliation(s)
- Alba Delrio-Lorenzo
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain
| | - Jonathan Rojo-Ruiz
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain
| | - Patricia Torres-Vidal
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain
| | - Maria Teresa Alonso
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain.
| | - Javier García-Sancho
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain
| |
Collapse
|
3
|
Zajac M, Modi S, Krishnan Y. The evolution of organellar calcium mapping technologies. Cell Calcium 2022; 108:102658. [PMID: 36274564 PMCID: PMC10224794 DOI: 10.1016/j.ceca.2022.102658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Intracellular Ca2+ fluxes are dynamically controlled by the co-involvement of multiple organellar pools of stored Ca2+. Endolysosomes are emerging as physiologically critical, yet underexplored, sources and sinks of intracellular Ca2+. Delineating the role of organelles in Ca2+ signaling has relied on chemical fluorescent probes and electrophysiological strategies. However, the acidic endolysosomal environment presents unique issues, which preclude the use of traditional chemical reporter strategies to map lumenal Ca2+. Here, we broadly address the current state of knowledge about organellar Ca2+ pools. We then outline the application of traditional probes, and their sensing paradigms. We then discuss how a new generation of probes overcomes the limitations of traditional Ca2+probes, emphasizing their ability to offer critical insights into endolysosomal Ca2+, and its feedback with other organellar pools.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Souvik Modi
- Esya Labs, Translation and Innovation Hub, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
4
|
Schulte A, Blum R. Shaped by leaky ER: Homeostatic Ca2+ fluxes. Front Physiol 2022; 13:972104. [PMID: 36160838 PMCID: PMC9491824 DOI: 10.3389/fphys.2022.972104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
At any moment in time, cells coordinate and balance their calcium ion (Ca2+) fluxes. The term ‘Ca2+ homeostasis’ suggests that balancing resting Ca2+ levels is a rather static process. However, direct ER Ca2+ imaging shows that resting Ca2+ levels are maintained by surprisingly dynamic Ca2+ fluxes between the ER Ca2+ store, the cytosol, and the extracellular space. The data show that the ER Ca2+ leak, continuously fed by the high-energy consuming SERCA, is a fundamental driver of resting Ca2+ dynamics. Based on simplistic Ca2+ toolkit models, we discuss how the ER Ca2+ leak could contribute to evolutionarily conserved Ca2+ phenomena such as Ca2+ entry, ER Ca2+ release, and Ca2+ oscillations.
Collapse
Affiliation(s)
- Annemarie Schulte
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
- *Correspondence: Robert Blum,
| |
Collapse
|
5
|
Association of Sonic Hedgehog with the extracellular matrix requires its zinc-coordination center. BMC Mol Cell Biol 2021; 22:22. [PMID: 33863273 PMCID: PMC8052667 DOI: 10.1186/s12860-021-00359-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Sonic Hedgehog (Shh) has a catalytic cleft characteristic for zinc metallopeptidases and has significant sequence similarities with some bacterial peptidoglycan metallopeptidases defining a subgroup within the M15A family that, besides having the characteristic zinc coordination motif, can bind two calcium ions. Extracellular matrix (ECM) components in animals include heparan-sulfate proteoglycans, which are analogs of bacterial peptidoglycan and are involved in the extracellular distribution of Shh. Results We found that the zinc-coordination center of Shh is required for its association to the ECM as well as for non-cell autonomous signaling. Association with the ECM requires the presence of at least 0.1 μM zinc and is prevented by mutations affecting critical conserved catalytical residues. Consistent with the presence of a conserved calcium binding domain, we find that extracellular calcium inhibits ECM association of Shh. Conclusions Our results indicate that the putative intrinsic peptidase activity of Shh is required for non-cell autonomous signaling, possibly by enzymatically altering ECM characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00359-5.
Collapse
|
6
|
Hernansanz-Agustín P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Piña T, Moreno L, Izquierdo-Álvarez A, Cabrera-García JD, Cortés A, Lechuga-Vieco AV, Jadiya P, Navarro E, Parada E, Palomino-Antolín A, Tello D, Acín-Pérez R, Rodríguez-Aguilera JC, Navas P, Cogolludo Á, López-Montero I, Martínez-Del-Pozo Á, Egea J, López MG, Elrod JW, Ruíz-Cabello J, Bogdanova A, Enríquez JA, Martínez-Ruiz A. Na + controls hypoxic signalling by the mitochondrial respiratory chain. Nature 2020; 586:287-291. [PMID: 32728214 PMCID: PMC7992277 DOI: 10.1038/s41586-020-2551-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Carmen Choya-Foces
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Elena Ramos
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Tamara Oliva
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Tamara Villa-Piña
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Laura Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - J Daniel Cabrera-García
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Ana Cortés
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Elisa Navarro
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Esther Parada
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Alejandra Palomino-Antolín
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Daniel Tello
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Rebeca Acín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Juan Carlos Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ángel Cogolludo
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Iván López-Montero
- Departamento de Química Física, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jesús Ruíz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Anna Bogdanova
- Red Blood Cell Group, Institute of Veterinary Physiology, Vetsuisse Faculty and ZIHP, University of Zurich, Zurich, Switzerland
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid (UCM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
7
|
Chen M, Mu L, Wang S, Cao X, Liang S, Wang Y, She G, Yang J, Wang Y, Shi W. A Single Silicon Nanowire-Based Ratiometric Biosensor for Ca 2+ at Various Locations in a Neuron. ACS Chem Neurosci 2020; 11:1283-1290. [PMID: 32293869 DOI: 10.1021/acschemneuro.0c00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ionic calcium (Ca2+) is an important second messenger in cells, particularly in the neuron. A deficiency or excess of Ca2+ would lead to neuronal apoptosis and further injury to the brain. For accurate analysis of intracellular Ca2+, a single silicon nanowire (SiNW)-based ratiometric biosensor was constructed by simultaneously anchoring Ru(bpy)2(mcbpy-O-Su-ester)(PF6)2, as a reference molecule, and Fluo-3, as a response molecule, onto the surface of a single SiNW. The SiNW-based biosensor exhibits high sensitivity and favorable selectivity for detecting Ca2+. With the assistance of a micromanipulator and laser scanning confocal microscope, two single SiNW sensors were placed in the body and the neurites of an individual neuron to detect Ca2+. The difference between the concentrations of Ca2+ in the body and neurites was identified. The results from the present study provide new insights into Ca2+ in neurons at a high spatial resolution, and the strategy used in this study provides a new opportunity to investigate cellular metabolism by combining the advantages of a single-cell detection technique and physiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xingxing Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institutes of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Delrio-Lorenzo A, Rojo-Ruiz J, Alonso MT, García-Sancho J. Sarcoplasmic reticulum Ca 2+ decreases with age and correlates with the decline in muscle function in Drosophila. J Cell Sci 2020; 133:jcs240879. [PMID: 32005702 DOI: 10.1242/jcs.240879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/24/2020] [Indexed: 08/31/2023] Open
Abstract
Sarcopenia, the loss of muscle mass and strength associated with age, has been linked to impairment of the cytosolic Ca2+ peak that triggers muscle contraction, but mechanistic details remain unknown. Here we explore the hypothesis that a reduction in sarcoplasmic reticulum (SR) Ca2+ concentration ([Ca2+]SR) is at the origin of this loss of Ca2+ homeostasis. We engineered Drosophila melanogaster to express the Ca2+ indicator GAP3 targeted to muscle SR, and we developed a new method to calibrate the signal into [Ca2+]SRin vivo [Ca2+]SR fell with age from ∼600 µM to 50 µM in close correlation with muscle function, which declined monotonically when [Ca2+]SR was <400 µM. [Ca2+]SR results from the pump-leak steady state at the SR membrane. However, changes in expression of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump and of the ryanodine receptor leak were too modest to explain the large changes seen in [Ca2+]SR Instead, these changes are compatible with increased leakiness through the ryanodine receptor as the main determinant of the [Ca2+]SR decline in aging muscle. In contrast, there were no changes in endoplasmic reticulum [Ca2+] with age in brain neurons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alba Delrio-Lorenzo
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| |
Collapse
|
9
|
Rojo-Ruiz J, Navas-Navarro P, Nuñez L, García-Sancho J, Alonso MT. Imaging of Endoplasmic Reticulum Ca 2+ in the Intact Pituitary Gland of Transgenic Mice Expressing a Low Affinity Ca 2+ Indicator. Front Endocrinol (Lausanne) 2020; 11:615777. [PMID: 33664709 PMCID: PMC7921146 DOI: 10.3389/fendo.2020.615777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
The adenohypophysis contains five secretory cell types (somatotrophs, lactotrophs, thyrotrophs, corticotrophs, and gonadotrophs), each secreting a different hormone, and controlled by different hypothalamic releasing hormones (HRHs). Exocytic secretion is regulated by cytosolic Ca2+ signals ([Ca2+]C), which can be generated either by Ca2+ entry through the plasma membrane and/or by Ca2+ release from the endoplasmic reticulum (ER). In addition, Ca2+ entry signals can eventually be amplified by ER release via calcium-induced calcium release (CICR). We have investigated the contribution of ER Ca2+ release to the action of physiological agonists in pituitary gland. Changes of [Ca2+] in the ER ([Ca2+]ER) were measured with the genetically encoded low-affinity Ca2+ sensor GAP3 targeted to the ER. We used a transgenic mouse strain that expressed erGAP3 driven by a ubiquitous promoter. Virtually all the pituitary cells were positive for the sensor. In order to mimick the physiological environment, intact pituitary glands or acute slices from the transgenic mouse were used to image [Ca2+]ER. [Ca2+]C was measured simultaneously with Rhod-2. Luteinizing hormone-releasing hormone (LHRH) or thyrotropin releasing hormone (TRH), two agonists known to elicit intracellular Ca2+ mobilization, provoked robust decreases of [Ca2+]ER and concomitant rises of [Ca2+]C. A smaller fraction of cells responded to thyrotropin releasing hormone (TRH). By contrast, depolarization with high K+ triggered a rise of [Ca2+]C without a decrease of [Ca2+]ER, indicating that the calcium-induced calcium-release (CICR) via ryanodine receptor amplification mechanism is not present in these cells. Our results show the potential of transgenic ER Ca2+ indicators as novel tools to explore intraorganellar Ca2+ dynamics in pituitary gland in situ.
Collapse
|
10
|
Balasubramanian V, Srinivasan B. Genetic analyses uncover pleiotropic compensatory roles for Drosophila Nucleobindin-1 in inositol trisphosphate-mediated intracellular calcium homeostasis. Genome 2019; 63:61-90. [PMID: 31557446 DOI: 10.1139/gen-2019-0113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleobindin-1 is an EF-hand calcium-binding protein with a distinctive profile, predominantly localized to the Golgi in insect and wide-ranging vertebrate cell types, alike. Its putative involvements in intracellular calcium (Ca2+) homeostasis have never been phenotypically characterized in any model organism. We have analyzed an adult-viable mutant that completely disrupts the G protein α-subunit binding and activating (GBA) motif of Drosophila Nucleobindin-1 (dmNUCB1). Such disruption does not manifest any obvious fitness-related, morphological/developmental, or behavioral abnormalities. A single copy of this mutation or the knockdown of dmnucb1 in restricted sets of cells variously rescues pleiotropic mutant phenotypes arising from impaired inositol 1,4,5-trisphosphate receptor (IP3R) activity (in turn depleting cytoplasmic Ca2+ levels across diverse tissue types). Additionally, altered dmNUCB1 expression or function considerably reverses lifespan and mobility improvements effected by IP3R mutants, in a Drosophila model of amyotrophic lateral sclerosis. Homology modeling-based analyses further predict a high degree of conformational conservation in Drosophila, of biochemically validated structural determinants in the GBA motif that specify in vertebrates, the unconventional Ca2+-regulated interaction of NUCB1 with Gαi subunits. The broad implications of our findings are hypothetically discussed, regarding potential roles for NUCB1 in GBA-mediated, Golgi-associated Ca2+ signaling, in health and disease.
Collapse
Affiliation(s)
- Vidhya Balasubramanian
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Bharath Srinivasan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
11
|
Caffeine chelates calcium in the lumen of the endoplasmic reticulum. Biochem J 2018; 475:3639-3649. [PMID: 30389846 DOI: 10.1042/bcj20180532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/14/2018] [Accepted: 11/01/2018] [Indexed: 12/29/2022]
Abstract
Cytosolic Ca2+ signals are often amplified by massive calcium release from the endoplasmic reticulum (ER). This calcium-induced calcium release (CICR) occurs by activation of an ER Ca2+ channel, the ryanodine receptor (RyR), which is facilitated by both cytosolic- and ER Ca2+ levels. Caffeine sensitizes RyR to Ca2+ and promotes ER Ca2+ release at basal cytosolic Ca2+ levels. This outcome is frequently used as a readout for the presence of CICR. By monitoring ER luminal Ca2+ with the low-affinity genetic Ca2+ probe erGAP3, we find here that application of 50 mM caffeine rapidly reduces the Ca2+ content of the ER in HeLa cells by ∼50%. Interestingly, this apparent ER Ca2+ release does not go along with the expected cytosolic Ca2+ increase. These results can be explained by Ca2+ chelation by caffeine inside the ER. Ca2+-overloaded mitochondria also display a drop of the matrix Ca2+ concentration upon caffeine addition. In contrast, in the cytosol, with a low free Ca2+ concentration (10-7 M), no chelation is observed. Expression of RyR3 sensitizes the responses to caffeine with effects both in the ER (increase in Ca2+ release) and in the cytosol (increase in Ca2+ peak) at low caffeine concentrations (0.3-1 mM) that have no effects in control cells. Our results illustrate the fact that simultaneous monitoring of both cytosolic- and ER Ca2+ are necessary to understand the action of caffeine and raise concerns against the use of high concentrations of caffeine as a readout of the presence of CICR.
Collapse
|
12
|
Assessment of cytosolic free calcium changes during ceramide-induced cell death in MDA-MB-231 breast cancer cells expressing the calcium sensor GCaMP6m. Cell Calcium 2018; 72:39-50. [PMID: 29748132 DOI: 10.1016/j.ceca.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
Abstract
Alterations in Ca2+ signaling can regulate key cancer hallmarks such as proliferation, invasiveness and resistance to cell death. Changes in the regulation of intracellular Ca2+ and specific components of Ca2+ influx are a feature of several cancers and/or cancer subtypes, including the basal-like breast cancer subtype, which has a poor prognosis. The development of genetically encoded calcium indicators, such as GCaMP6, represents an opportunity to measure changes in intracellular free Ca2+ during processes relevant to breast cancer progression that occur over long periods (e.g. hours), such as cell death. This study describes the development of a MDA-MB-231 breast cancer cell line stably expressing GCaMP6m. The cell line retained the key features of this aggressive basal-like breast cancer cell line. Using this model, we defined alterations in relative cytosolic free Ca2+ ([Ca2+]CYT) when the cells were treated with C2-ceramide. Cell death was measured simultaneously via assessment of propidium iodide permeability. Treatment with ceramide produced delayed and heterogeneous sustained increases in [Ca2+]CYT. Where cell death occurred, [Ca2+]CYT increases preceded cell death. The sustained increases in [Ca2+]CYT were not related to the rapid morphological changes induced by ceramide. Silencing of the plasma membrane Ca2+ ATPase isoform 1 (PMCA1) was associated with an augmentation in ceramide-induced increases in [Ca2+]CYT and also cell death. This work demonstrates the utility of GCaMP6 Ca2+ indicators for investigating [Ca2+]CYT changes in breast cancer cells during events relevant to tumor progression, which occur over hours rather than minutes.
Collapse
|