1
|
Kawa H, Ahmed Z, Majid A, Chen R. Inhibition of matrix metalloproteinases to reduce blood brain barrier disruption and haemorrhagic transformation in ischaemic stroke: Go broad or go narrow? Neuropharmacology 2025; 262:110192. [PMID: 39419277 DOI: 10.1016/j.neuropharm.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Ischaemic stroke characterises impulsive cerebral-region hypoxia due to deep intracerebral arteriole blockage, often accompanied by permanent cerebral infarction and cognitive impairment. Thrombolysis with recombinant tissue plasminogen activator (rtPA) and thrombectomy remain the only guidance-approved therapies. However, emerging data draws clear links between such therapies and haemorrhage transformation, which occur when cerebral vasculature is damaged during ischaemia/reperfusion. Studies have shown that matrix metalloproteinases (MMPs) play a significant role in haemorrhage transformation, by depleting the extracellular matrix (ECM) and disrupting the blood brain barrier (BBB). Inhibitors of MMPs may be used to prevent ischaemic stroke patients from BBB disruption and haemorrhage transformation, particularly for those receiving rtPA treatment. Preclinical studies found that inhibition of MMPs with agents or in knock out mice, effectively reduced BBB disruption and infarct volume, leading to improved ischaemic stroke outcomes. At present, MMP inhibition is not an approved therapy for stroke patients. There remain concerns about timing, dosing, duration of MMP inhibition and selection of either broad spectrum or specific MMP inhibitors for stroke patients. This review aims to summarize current knowledge on MMP inhibition in ischaemic stroke and explore whether a broad spectrum or a specific MMP inhibitor should be used for ischaemic stroke patient treatment. It is crucial to inhibit MMP activities early and sufficiently to ensure BBB intact during ischaemia and reperfusion, but also to reduce side effects of MMP inhibitors to minimum. Recent advance in stroke therapy by thrombectomy could aid in such treatment with intra-arterially delivery of MMP inhibitors (and/or antioxidants).
Collapse
Affiliation(s)
- Hala Kawa
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Arshad Majid
- Division of Neurosciences, School of Medicine and Population Health, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
2
|
Shoari A, Ashja Ardalan A, Dimesa AM, Coban MA. Targeting Invasion: The Role of MMP-2 and MMP-9 Inhibition in Colorectal Cancer Therapy. Biomolecules 2024; 15:35. [PMID: 39858430 PMCID: PMC11762759 DOI: 10.3390/biom15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and lethal cancers worldwide, prompting ongoing research into innovative therapeutic strategies. This review aims to systematically evaluate the role of gelatinases, specifically MMP-2 and MMP-9, as therapeutic targets in CRC, providing a critical analysis of their potential to improve patient outcomes. Gelatinases, specifically MMP-2 and MMP-9, play critical roles in the processes of tumor growth, invasion, and metastasis. Their expression and activity are significantly elevated in CRC, correlating with poor prognosis and lower survival rates. This review provides a comprehensive overview of the pathophysiological roles of gelatinases in CRC, highlighting their contribution to tumor microenvironment modulation, angiogenesis, and the metastatic cascade. We also critically evaluate recent advancements in the development of gelatinase inhibitors, including small molecule inhibitors, natural compounds, and novel therapeutic approaches like gene silencing techniques. Challenges such as nonspecificity, adverse side effects, and resistance mechanisms are discussed. We explore the potential of gelatinase inhibition in combination therapies, particularly with conventional chemotherapy and emerging targeted treatments, to enhance therapeutic efficacy and overcome resistance. The novelty of this review lies in its integration of recent findings on diverse inhibition strategies with insights into their clinical relevance, offering a roadmap for future research. By addressing the limitations of current approaches and proposing novel strategies, this review underscores the potential of gelatinase inhibitors in CRC prevention and therapy, inspiring further exploration in this promising area of oncological treatment.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Arghavan Ashja Ardalan
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | | | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
3
|
Gonzalez-Avila G, Sommer B, Flores-Soto E, Aquino-Galvez A. Hypoxic Effects on Matrix Metalloproteinases' Expression in the Tumor Microenvironment and Therapeutic Perspectives. Int J Mol Sci 2023; 24:16887. [PMID: 38069210 PMCID: PMC10707261 DOI: 10.3390/ijms242316887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment (TME) is characterized by an acidic pH and low oxygen concentrations. Hypoxia induces neoplastic cell evasion of the immune surveillance, rapid DNA repair, metabolic reprogramming, and metastasis, mainly as a response to the hypoxic inducible factors (HIFs). Likewise, cancer cells increase matrix metalloproteinases' (MMPs) expression in response to TME conditions, allowing them to migrate from the primary tumor to different tissues. Since HIFs and MMPs are augmented in the hypoxic TME, it is easy to consider that HIFs participate directly in their expression regulation. However, not all MMPs have a hypoxia response element (HRE)-HIF binding site. Moreover, different transcription factors and signaling pathways activated in hypoxia conditions through HIFs or in a HIF-independent manner participate in MMPs' transcription. The present review focuses on MMPs' expression in normal and hypoxic conditions, considering HIFs and a HIF-independent transcription control. In addition, since the hypoxic TME causes resistance to anticancer conventional therapy, treatment approaches using MMPs as a target alone, or in combination with other therapies, are also discussed.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| | - Arnoldo Aquino-Galvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| |
Collapse
|
4
|
Son J, Parveen S, MacPherson D, Marciano Y, Huang RH, Ulijn RV. MMP-responsive nanomaterials. Biomater Sci 2023; 11:6457-6479. [PMID: 37623747 DOI: 10.1039/d3bm00840a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Matrix metalloproteinases (MMP) are enzymes that degrade the extracellular matrix and regulate essential normal cell behaviors. Inhibition of these enzymes has been a strategy for anti-cancer therapy since the 1990s, but with limited success. A new type of MMP-targeting strategy exploits the innate selective hydrolytic activity and consequent catalytic signal amplification of the proteinases, rather than inhibiting it. Using nanomaterials, the enzymatic chemical reaction can trigger the temporal and spatial activation of the anti-cancer effects, amplify the associated response, and cause mechanical damage or report on cancer cells. We analyzed nearly 60 literature studies that incorporate chemical design strategies that lead to spatial, temporal, and mechanical control of the anti-cancer effect through four modes of action: nanomaterial shrinkage, induced aggregation, formation of cytotoxic nanofibers, and activation by de-PEGylation. From the literature analysis, we derived chemical design guidelines to control and enhance MMP activation of nanomaterials of various chemical compositions (peptide, lipid, polymer, inorganic). Finally, the review includes a guide on how multiple characteristics of the nanomaterial, such as substrate modification, supramolecular structure, and electrostatic charge should be collectively considered for the targeted MMP to result in optimal kinetics of enzyme action on the nanomaterial, which allow access to amplification and additional levels of spatial, temporal, and mechanical control of the response. Although this review focuses on the design strategies of MMP-responsive nanomaterials in cancer applications, these guidelines are expected to be generalizable to systems that target MMP for treatment or detection of cancer and other diseases, as well as other enzyme-responsive nanomaterials.
Collapse
Affiliation(s)
- Jiye Son
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
| | - Sadiyah Parveen
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY 10031, USA
| | - Douglas MacPherson
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Yaron Marciano
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Richard H Huang
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
| | - Rein V Ulijn
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
5
|
Gonzalez-Avila G, Sommer B, García-Hernandez AA, Ramos C, Flores-Soto E. Nanotechnology and Matrix Metalloproteinases in Cancer Diagnosis and Treatment. Front Mol Biosci 2022; 9:918789. [PMID: 35720130 PMCID: PMC9198274 DOI: 10.3389/fmolb.2022.918789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is still one of the leading causes of death worldwide. This great mortality is due to its late diagnosis when the disease is already at advanced stages. Although the efforts made to develop more effective treatments, around 90% of cancer deaths are due to metastasis that confers a systemic character to the disease. Likewise, matrix metalloproteinases (MMPs) are endopeptidases that participate in all the events of the metastatic process. MMPs’ augmented concentrations and an increased enzymatic activity have been considered bad prognosis markers of the disease. Therefore, synthetic inhibitors have been created to block MMPs’ enzymatic activity. However, they have been ineffective in addition to causing considerable side effects. On the other hand, nanotechnology offers the opportunity to formulate therapeutic agents that can act directly on a target cell, avoiding side effects and improving the diagnosis, follow-up, and treatment of cancer. The goal of the present review is to discuss novel nanotechnological strategies in which MMPs are used with theranostic purposes and as therapeutic targets to control cancer progression.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
- *Correspondence: Georgina Gonzalez-Avila,
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - A. Armando García-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Carlos Ramos
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
6
|
Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers (Basel) 2022; 14:cancers14071847. [PMID: 35406619 PMCID: PMC8998077 DOI: 10.3390/cancers14071847] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Having the capability to proteolyze diverse structural and signaling proteins, matrix metalloproteinase 9 (MMP9), one of the best-studied secretory endopeptidases, has been identified as a crucial mediator of processes closely associated with tumorigenesis, such as the extracellular matrix reorganization, epithelial to mesenchymal transition, cell migration, new blood vessel formation, and immune response. In this review, we present the current state of knowledge on MMP9 and its role in cancer growth in the context of cell adhesion/migration, cancer-related inflammation, and tumor microenvironment formation. We also summarize recent achievements in the development of selective MMP9 inhibitors and the limitations of using them as anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| | | | - Renata Tabola
- Department of Thoracic Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamilla Stach
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
7
|
Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem 2021; 223:113623. [PMID: 34157437 DOI: 10.1016/j.ejmech.2021.113623] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are collectively known as gelatinases whereas MMP-2 is gelatinase-A and MMP-9 is termed as gelatinase-B. Gelatinases and other matrix metalloproteinases (MMPs) have long been associated with solid tumor invasion, metastasis and angiogenesis. However, there is paucity of data available regarding the role of gelatinases in hematological malignancies. Recent studies have shown that gelatinases activities or functions are correlated with hematological malignancies. Strategies for designing more specific gelatinase inhibitors like catalytic (CAT) domain inhibitors and hemopexin (PEX) domain inhibitors as well as signaling pathway based or gelatinase expression inhibitors had been reported against hematologic malignant cells. Several substrate based non-selective to non-substrate based relatively selective synthetic matrix metalloproteinase inhibitors (MMPIs) had been developed. Few MMPIs had reached in clinical trials during the period of 1990s-2000s. Unfortunately the anti-tumor and anti-metastatic efficacies of these MMPIs were not justified with patients having several advanced stage solid tumor cancers in any substantial number of clinical trials. Till date not a single MMPI passed phase III clinical trials designed for advanced metastatic cancers due to adverse events as well as lack of ability to show uniformity in disease prolongation. With the best of our knowledge no clinical trial study has been reported with small molecule synthetic inhibitors against hematological malignancies. This review looks at the outcome of clinical trials of MMPIs for advanced stage solid tumors. This can therefore, act as a learning experience for future development of successful gelatinase inhibitors for the management of hematological malignancies.
Collapse
Affiliation(s)
- Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
8
|
Ringland C, Schweig JE, Eisenbaum M, Paris D, Ait-Ghezala G, Mullan M, Crawford F, Abdullah L, Bachmeier C. MMP9 modulation improves specific neurobehavioral deficits in a mouse model of Alzheimer's disease. BMC Neurosci 2021; 22:39. [PMID: 34034683 PMCID: PMC8152085 DOI: 10.1186/s12868-021-00643-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Matrix metallopeptidase 9 (MMP9) has been implicated in a variety of neurological disorders, including Alzheimer's disease (AD), where MMP9 levels are elevated in the brain and cerebrovasculature. Previously our group demonstrated apolipoprotein E4 (apoE4) was less efficient in regulating MMP9 activity in the brain than other apoE isoforms, and that MMP9 inhibition facilitated beta-amyloid (Aβ) elimination across the blood-brain barrier (BBB) METHODS: In the current studies, we evaluated the impact of MMP9 modulation on Aβ disposition and neurobehavior in AD using two approaches, (1) pharmacological inhibition of MMP9 with SB-3CT in apoE4 x AD (E4FAD) mice, and (2) gene deletion of MMP9 in AD mice (MMP9KO/5xFAD) RESULTS: Treatment with the MMP9 inhibitor SB-3CT in E4FAD mice led to reduced anxiety compared to placebo using the elevated plus maze. Deletion of the MMP9 gene in 5xFAD mice also reduced anxiety using the open field test, in addition to improving sociability and social recognition memory, particularly in male mice, as assessed through the three-chamber task, indicating certain behavioral alterations in AD may be mediated by MMP9. However, neither pharmacological inhibition of MMP9 or gene deletion of MMP9 affected spatial learning or memory in the AD animals, as determined through the radial arm water maze. Moreover, the effect of MMP9 modulation on AD neurobehavior was not due to changes in Aβ disposition, as both brain and plasma Aβ levels were unchanged in the SB-3CT-treated E4FAD animals and MMP9KO/AD mice compared to their respective controls. CONCLUSIONS In total, while MMP9 inhibition did improve specific neurobehavioral deficits associated with AD, such as anxiety and social recognition memory, modulation of MMP9 did not alter spatial learning and memory or Aβ tissue levels in AD animals. While targeting MMP9 may represent a therapeutic strategy to mitigate aspects of neurobehavioral decline in AD, further work is necessary to understand the nature of the relationship between MMP9 activity and neurological dysfunction.
Collapse
Affiliation(s)
- Charis Ringland
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | | | - Maxwell Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Daniel Paris
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Ghania Ait-Ghezala
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Milton Keynes, UK.
- Bay Pines VA Healthcare System, Bay Pines, FL, USA.
| |
Collapse
|
9
|
Hu Z, Gu H, Ni J, Hu S, Hu J, Wang X, Liu X, Liu X. Matrix metalloproteinase-14 regulates collagen degradation and migration of mononuclear cells during infection with genotype VII Newcastle disease virus. J Gen Virol 2021; 102. [PMID: 33090092 DOI: 10.1099/jgv.0.001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upregulation of matrix metalloproteinase (MMP)-14, a major driven force of extracellular-matrix (ECM) remodelling and cell migration, correlates with ECM breakdown and pathologic manifestation of genotype VII Newcastle disease virus (NDV) in chickens. However, the functional relevance between MMP-14 and pathogenesis of genotype VII NDV remains to be investigated. In this study, expression, biofunction and regulation of MMP-14 induced by genotype VII NDV were analysed in chicken peripheral blood mononuclear cells (PBMCs). The results showed that JS5/05 significantly increased expression and membrane accumulation of MMP-14 in PBMCs, correlating to enhanced collagen degradation and cell migration. Specific MMP-14 inhibition significantly impaired collagen degradation and migration of JS5/05-infected cells, suggesting dependence of these features on MMP-14. In addition, MMP-14 upregulation correlated with activation of the extracellular signal-regulated kinase (ERK) pathway upon JS5/05 infection, and blockage of the ERK signalling significantly suppressed MMP-14-mediated collagen degradation and migration of JS5/05-infected cells. Using a panel of chimeric NDVs derived from gene exchange between genotype VII and IV NDV, the fusion and haemagglutinin-neuraminidase genes were identified as the major viral determinants for MMP-14 expression and activity. In conclusion, MMP-14 was defined as a critical regulator of collagen degradation and cell migration of chicken PBMCs infected with genotype VII NDV, which may contribute to pathology of the virus. Our findings add novel information to the body of knowledge regarding virus-host biology and NDV pathogenesis.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Han Gu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Jie Ni
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Shunlin Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Jiao Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiaoquan Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiaowen Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, School of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
10
|
Chaves Filho AJM, Mottin M, Soares MVR, Jucá PM, Andrade CH, Macedo DS. Tetracyclines, a promise for neuropsychiatric disorders: from adjunctive therapy to the discovery of new targets for rational drug design in psychiatry. Behav Pharmacol 2021; 32:123-141. [PMID: 33595954 DOI: 10.1097/fbp.0000000000000585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Major mental disorders, such as schizophrenia, bipolar disorder, and major depressive disorder, represent the leading cause of disability worldwide. Nevertheless, the current pharmacotherapy has several limitations, and a large portion of patients do not respond appropriately to it or remain with disabling symptoms overtime. Traditionally, pharmacological interventions for psychiatric disorders modulate dysfunctional neurotransmitter systems. In the last decades, compelling evidence has advocated for chronic inflammatory mechanisms underlying these disorders. Therefore, the repurposing of anti-inflammatory agents has emerged as an attractive therapeutic tool for mental disorders. Minocycline (MINO) and doxycycline (DOXY) are semisynthetic second-generation tetracyclines with neuroprotective and anti-inflammatory properties. More recently, the most promising results obtained in clinical trials using tetracyclines for major psychiatric disorders were for schizophrenia. In a reverse translational approach, tetracyclines inhibit microglial reactivity and toxic inflammation by mechanisms related to the inhibition of nuclear factor kappa B signaling, cyclooxygenase 2, and matrix metalloproteinases. However, the molecular mechanism underlying the effects of these tetracyclines is not fully understood. Therefore, the present review sought to summarize the latest findings of MINO and DOXY use for major psychiatric disorders and present the possible targets to their molecular and behavioral effects. In conclusion, tetracyclines hold great promise as (ready-to-use) agents for being used as adjunctive therapy for human neuropsychiatric disorders. Hence, the understanding of their molecular mechanisms may contribute to the discovery of new targets for the rational drug design of novel psychoactive agents.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Ammazzalorso A, Agamennone M, De Filippis B, Fantacuzzi M. Development of CDK4/6 Inhibitors: A Five Years Update. Molecules 2021; 26:molecules26051488. [PMID: 33803309 PMCID: PMC7967197 DOI: 10.3390/molecules26051488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/24/2022] Open
Abstract
The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.
Collapse
|
12
|
Increased Expressions of Matrix Metalloproteinases (MMPs) in Prostate Cancer Tissues of Men with Type 2 Diabetes. Biomedicines 2020; 8:biomedicines8110507. [PMID: 33207809 PMCID: PMC7696165 DOI: 10.3390/biomedicines8110507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with worse prognosis of prostate cancer (PCa). The molecular mechanisms behind this association are still not fully understood. The aim of this study was to identify key factors, which contribute to the more aggressive PCa phenotype in patients with concurrent T2D. Therefore, we investigated benign and PCa tissue of PCa patients with and without diabetes using real time qPCR. Compared to patients without diabetes, patients with T2D showed a decreased E-cadherin/N-cadherin (CDH1/CDH2) ratio in prostate tissue, indicating a switch of epithelial-mesenchymal transition (EMT), which is a pivotal process in carcinogenesis. In addition, the gene expression levels of matrix metalloproteinases (MMPs) and CC chemokine ligands (CCLs) were higher in prostate samples of T2D patients. Next, prostate adenocarcinoma PC3 cells were treated with increasing glucose concentrations to replicate hyperglycemia in vitro. In these cells, high glucose induced expressions of MMPs and CCLs, which showed significant positive associations with the proliferation marker proliferating cell nuclear antigen (PCNA). These results indicate that in prostate tissue of men with T2D, hyperglycemia may induce EMT, increase MMP and CCL gene expressions, which in turn activate invasion and inflammatory processes accelerating the progression of PCa.
Collapse
|
13
|
Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020; 9:E1896. [PMID: 32823711 PMCID: PMC7464860 DOI: 10.3390/cells9081896] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
- Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| |
Collapse
|
14
|
Maola K, Wilbs J, Touati J, Sabisz M, Kong X, Baumann A, Deyle K, Heinis C. Engineered Peptide Macrocycles Can Inhibit Matrix Metalloproteinases with High Selectivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Khan Maola
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jonas Wilbs
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jeremy Touati
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Michal Sabisz
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Xu‐Dong Kong
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Alice Baumann
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kaycie Deyle
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
15
|
Maola K, Wilbs J, Touati J, Sabisz M, Kong XD, Baumann A, Deyle K, Heinis C. Engineered Peptide Macrocycles Can Inhibit Matrix Metalloproteinases with High Selectivity. Angew Chem Int Ed Engl 2019; 58:11801-11805. [PMID: 31251434 DOI: 10.1002/anie.201906791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 11/10/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases at the intersection of health and disease due to their involvement in processes such as tissue repair and immunity as well as cancer and inflammation. Because of the high structural conservation in the catalytic domains and shallow substrate binding sites, selective, small-molecule inhibitors of MMPs have remained elusive. In a tour-de-force peptide engineering approach combining phage-display selections, rational design of enhanced zinc chelation, and d-amino acid screening, we succeeded in developing a first synthetic MMP-2 inhibitor that combines high potency (Ki =1.9±0.5 nm), high target selectivity, and proteolytic stability, and thus fulfills all the required qualities for in cell culture and in vivo application. Our work suggests that selective MMP inhibition is achievable with peptide macrocycles and paves the way for developing specific inhibitors for application as chemical probes and potentially therapeutics.
Collapse
Affiliation(s)
- Khan Maola
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonas Wilbs
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jeremy Touati
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Michal Sabisz
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Xu-Dong Kong
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Alice Baumann
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kaycie Deyle
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Jones JI, Nguyen TT, Peng Z, Chang M. Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals (Basel) 2019; 12:E79. [PMID: 31121851 PMCID: PMC6630664 DOI: 10.3390/ph12020079] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are significant complications of diabetes and an unmet medical need. Matrix metalloproteinases (MMPs) play important roles in the pathology of wounds and in the wound healing process. However, because of the challenge in distinguishing active MMPs from the two catalytically inactive forms of MMPs and the clinical failure of broad-spectrum MMP inhibitors in cancer, MMPs have not been a target for treatment of DFUs until recently. This review covers the discovery of active MMP-9 as the biochemical culprit in the recalcitrance of diabetic wounds to healing and targeting this proteinase as a novel approach for the treatment of DFUs. Active MMP-8 and MMP-9 were observed in mouse and human diabetic wounds using a batimastat affinity resin and proteomics. MMP-9 was shown to play a detrimental role in diabetic wound healing, whereas MMP-8 was beneficial. A new class of selective MMP-9 inhibitors shows clinical promise for the treatment of DFUs.
Collapse
Affiliation(s)
- Jeffrey I Jones
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Trung T Nguyen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Zhihong Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
17
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
18
|
Wu D, Zhang X, Liu Z, Yan H, Mai J, Zhao Z, Zhong Q, Liu X. Decreased expression of protein tyrosine kinase 6 contributes to tumor progression and metastasis in laryngeal squamous cell carcinoma. Biochem Biophys Res Commun 2018; 503:1378-1384. [PMID: 30029880 DOI: 10.1016/j.bbrc.2018.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND PTK6 is involved in cell proliferation, invasion and migration. Patients with lower PTK6 expression predicts poor prognosis of LSCC. However, the mechanism of PTK6 in LSCC progression remains unclear. We investigated the role of PTK6 in the pathogenesis of LSCC. METHODS Human LSCC tissues and paired adjacent non-tumor tissues were obtained to evaluate PTK6 expression. The biological function of PTK6 in LSCC was determined by overexpression of PTK6 in Hep-2 cells in vitro and in nude mice. The potential PTK6 target factors and signaling pathways were identified by Western blotting assay and immunohistochemical staining. RESULTS PTK6 was downregulated in tissues of human LSCC. Biological function investigation of PTK6 demonstrated that overexpression of PTK6 significantly decreased cell growth, clonogenicity, invasion and migration capacity in vitro and suppressed xenograft tumor growth as well as lung metastasis in vivo. PTK6 suppresses LSCC proliferation mainly by inhibiting c-myc and cyclinD1 expression. In addition, PTK6 promotes cell apoptosis in LSCC. Moreover, PTK6 mitigated LSCC invasion and migration through regulating EMT and MMP-9. CONCLUSION PTK6 plays a tumor suppressor role in LSCC by regulating c-myc and cyclinD1 expression, cell apoptosis, EMT and MMP-9.
Collapse
Affiliation(s)
- Di Wu
- Sun Yat-Sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Xinrui Zhang
- Guangzhou Otolarynology-head and Neck Surgery Hospital, Guangzhou, Guangdong, 510000, China
| | - Zhimin Liu
- Sun Yat-Sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Honghong Yan
- Sun Yat-Sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Junhao Mai
- Sun Yat-Sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Zheng Zhao
- Sun Yat-Sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Qian Zhong
- Sun Yat-Sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Xuekui Liu
- Sun Yat-Sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
19
|
Blauwblomme T, Dzhala V, Staley K. Transient ischemia facilitates neuronal chloride accumulation and severity of seizures. Ann Clin Transl Neurol 2018; 5:1048-1061. [PMID: 30250862 PMCID: PMC6144438 DOI: 10.1002/acn3.617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022] Open
Abstract
Objective Preceding oxygen glucose deprivation (OGD) and ongoing seizures have both been reported to increase neuronal chloride concentration ([Cl−]i), which may contribute to anticonvulsant failure by reversing the direction of chloride currents at inhibitory GABAA synapses. Methods The effects of OGD on [Cl−]i, seizure activity, and anticonvulsant efficacy were studied in a chronically epileptic in vitro preparation. Results Seizures initially increased during OGD, followed by suppression. On reperfusion, seizure frequency and [Cl−]i progressively increased, and phenobarbital efficacy was reduced. Bumetanide (10 μmol/L) and furosemide (1 mmol/L) prevented or reduced the OGD induced [Cl−]i increase. Phenobarbital efficacy was enhanced by bumetanide (10 μmol/L). Furosemide (1 mmol/L) suppressed recurrent seizures. Interpretation [Cl−]i increases after OGD and is associated with worsened seizure activity, reduced efficacy of GABAergic anticonvulsants, and amelioration by antagonists of secondary chloride transport.
Collapse
Affiliation(s)
- Thomas Blauwblomme
- Department of Neurology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts 02114.,Universite Paris Descartes Sorbonne Paris Cite Paris France
| | - Volodymyr Dzhala
- Department of Neurology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts 02114
| | - Kevin Staley
- Department of Neurology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts 02114
| |
Collapse
|
20
|
Opdenakker G, Van Damme J, Vranckx JJ. Immunomodulation as Rescue for Chronic Atonic Skin Wounds. Trends Immunol 2018; 39:341-354. [PMID: 29500031 DOI: 10.1016/j.it.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Chronic skin wounds, caused by arterial or venous insufficiency or by physical pressure, constitute an increasing medical problem as populations age. Whereas typical wounds are characterized by local inflammation that participates in the healing process, atonic wounds lack inflammatory markers, such as neutrophil infiltration, and generally do not heal. Recently, prominent roles in the immunopathology of chronic wounds were attributed to dysregulations in specific cytokines, chemokines, matrix metalloproteinases (MMPs), and their substrates. Together with the complement system, these molecular players provide necessary defense against infections, initiate angiogenesis, and prepare tissue reconstitution. Here, we review the current state of the field and include the concept that, aside from surgery and stem cell therapy, healing may be enhanced by immunomodulating agents.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Laboratory of Immunobiology and Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; The Glycobiology Institute, University of Oxford, Oxford, UK.
| | - Jo Van Damme
- Laboratory of Immunobiology and Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development & Regeneration & Department of Plastic & Reconstructive Surgery, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|