1
|
Liu W, Luo G. CAV1 inhibits Xc - system through IFNGR1 to promote ferroptosis to inhibit stemness and improves anti-PD-1 efficacy in breast cancer. Transl Oncol 2024; 50:102149. [PMID: 39395272 DOI: 10.1016/j.tranon.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/14/2024] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide, with breast cancer stem cells (BCSCs) being the primary drivers of metastasis and recurrence. Numerous studies have elucidated the relationship between ferroptosis and cellular stemness, identifying the Xc- system as a key regulatory mechanism governing ferroptosis. However, the interplay between CAV1 and ferroptosis, along with its implications for stemness in breast cancer, remains inadequately understood. This gap in knowledge impedes advancements in targeted therapies for breast cancer. We employed immunohistochemistry and bioinformatics analyses to demonstrate the downregulation of CAV1 in breast cancer tissues. Additionally, we utilized CCK-8 assays, EDU staining, and Transwell assays to assess cell proliferation, migration, and invasion capabilities. Furthermore, we evaluated indicators associated with ferroptosis while examining markers related to stemness through sphere culture experiments and flow cytometry techniques. Our findings indicate that CAV1 expression can induce cell death via ferroptosis while simultaneously inhibiting both cell proliferation and features of stemness by upregulating IFNGR1 and promoting ferroptosis. Moreover, our in vivo experiments revealed that overexpression of CAV1 enhances the efficacy of anti-PD-1 therapy. In conclusion, our study elucidates the regulatory role of CAV1 on ferroptosis within breast cancer contexts; it suppresses BCSC characteristics while positioning CAV1 as a promising therapeutic target for combating this disease.
Collapse
Affiliation(s)
- Wenhong Liu
- Department of Radiology, First Affiliated Hospital of University of South China, 69 Chuanshan Avenue, Hengyang City, Hunan, 421001, China
| | - Guanghua Luo
- Department of Radiology, First Affiliated Hospital of University of South China, 69 Chuanshan Avenue, Hengyang City, Hunan, 421001, China.
| |
Collapse
|
2
|
Yildirim İ, Biray Avci Ç. Telomerase inhibition in breast cancer and breast cancer stem cells: a brief review. Med Oncol 2024; 42:14. [PMID: 39585534 DOI: 10.1007/s12032-024-02562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Breast cancer is a major health problem, accounting for one third of all cancers in women. There is no definitive treatment for breast cancer and its incidence is increasing worldwide every year. Furthermore, breast cancer stem cells cause resistance to radiation and chemotherapy. Telomerase is an enzyme that protects telomeres and is activated in 90% of cancer cells, and telomerase activation is a hallmark of cancer. In this review, we examine telomerase activation in breast cancer and breast cancer stem cells and the therapeutic effects of telomerase inhibition in these cells. In this review, we aim to highlight the importance and impact of telomerase inhibition in the treatment of breast cancer and the lack of studies specifically in breast cancer stem cells.
Collapse
Affiliation(s)
- İrem Yildirim
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova/Izmir, Turkey.
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova/Izmir, Turkey
| |
Collapse
|
3
|
Liu Z, Lei Y, Shen J, Zhao G, Wang X, Wang Y, Kudo Y, Liao J, Huang Y, Yu T. Development and validation of an immune-related gene prognostic index for lung adenocarcinoma. J Thorac Dis 2023; 15:6205-6227. [PMID: 38090291 PMCID: PMC10713328 DOI: 10.21037/jtd-23-1374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/04/2023] [Indexed: 01/02/2025]
Abstract
BACKGROUND Lung cancer is the most common malignant tumor in the world, and its prognosis is still not optimistic. The aim of this study was to establish an immune-related gene (IRG) prognostic index (IRGPI) for lung adenocarcinoma (LUAD) based on IRGs, and to explore the prognosis, molecular and immune features, and response to immune checkpoint inhibitor (ICI) therapy in IRGPI-classified different subgroups of LUAD. METHODS Based on the LUAD transcriptome RNA-sequencing data in TCGA database, the differentially expressed genes (DEGs) were selected. Subsequently, DEGs were intersected with IRGs to obtain differentially expressed immune-related genes (DEIRGs). Weighted gene co-expression network analysis (WGCNA) identified hub genes in DEIRGs. Finally, univariate and multivariate Cox regression analyses were used to build an IRGPI model. Subsequently, TCGA patients were divided into high- and low-risk groups, and the survival of patients in different groups was further analyzed. Besides, we validated the molecular and immune characteristics, relationship with immune checkpoints, angiogenesis-related genes, and immune subtypes distribution in different subgroups. Meanwhile, we further validated the response to ICI therapy in different subgroups. RESULTS The IRGPI was constructed based on 13 DEIRGs. Compared with the low-risk group, overall survival (OS) was lower in the high-risk group, and the high-risk score was independently associated with poorer OS. Besides, the high-risk score was associated with cell cycle pathway, high mutation rate of TP53 and KRAS, high infiltration of M0 macrophages, and immunosuppressive state, and these patients had poorer prognosis but the TIDE score of the high-risk group was lower than that of the other group, which means that the high-risk group could benefit more from ICI treatment. In contrast, the low-risk score was related to low mutation rate of TP53 and KRAS, high infiltration of plasma cells, and immunoactive state, and these patients had better prognosis but the low-risk group less benefit from ICI treatment based on the results of TIDE score. CONCLUSIONS IRGPI is a prospective biomarker based on IRGs that can distinguish high- and low-risk groups to predict patient prognosis, help characterize the tumor immune microenvironment, and evaluate the benefit of ICI therapy in LUAD.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junting Shen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yutian Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yujin Kudo
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Jun Liao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tingdong Yu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
5
|
Gallardo-Pérez JC, Trejo-Solís MC, Robledo-Cadena DX, López-Marure R, Agredano-Moreno LT, Jimenez-García LF, Sánchez-Lozada LG. Erythrose inhibits the progression to invasiveness and reverts drug resistance of cancer stem cells of glioblastoma. Med Oncol 2023; 40:104. [PMID: 36821013 DOI: 10.1007/s12032-023-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Glioblastoma (GBM) is the most frequent brain cancer and more lethal than other cancers. Characteristics of this cancer are its high drug resistance, high recurrence rate and invasiveness. Invasiveness in GBM is related to overexpression of matrix metalloproteinases (MMPs) which are mediated by wnt/β-catenin and induced by the activation of signaling pathways extracellularly activated by the cytokine neuroleukin (NLK) in cancer stem cells (CSC). Therefore, in this work we evaluated the effect of the tetrose saccharide, erythrose (Ery), a NLK inhibitor of invasiveness and drug sensitization in glioblastoma stem cells (GSC). GSC were obtained from parental U373 cell line by a CSC phenotype enrichment protocol based on microenvironmental stress conditions such as hypoxia, hipoglycemia, drug exposition and serum starvation. Enriched fraction of GSC overexpressed the typical markers of brain CSC: low CD133+ and high CD44; in addition, epithelial to mesenchyme transition (EMT) markers and MMPs were increased several times in GSC vs. U373 correlating with higher invasiveness, elongated and tubular mitochondrion and temozolomide (TMZ) resistance. IC50 of Ery was found at nM concentration and at 24 h induced a severe diminution of EMT markers, MMPs and invasiveness in GSC. Furthermore, the phosphorylation pattern of NLK after Ery exposition also was affected. In addition, when Ery was administered to GSC at subIC50, it was capable of reverting TMZ resistance at concentrations innocuous to non-tumor cancer cells. Moreover, Ery added daily induced the death of all GSC. Those findings indicated that the phytodrug Ery could be used as adjuvant therapy in GBM.
Collapse
Affiliation(s)
- Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología, "Ignacio Chávez", Juan Badiano No. 1. Col Sección XVI, Tlalpan, Mexico City, Mexico.
| | - María Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología, "Ignacio Chávez", Juan Badiano No. 1. Col Sección XVI, Tlalpan, Mexico City, Mexico
| |
Collapse
|
6
|
Pacheco-Velázquez SC, Ortega-Mejía II, Vargas-Navarro JL, Padilla-Flores JA, Robledo-Cadena DX, Tapia-Martínez G, Peñalosa-Castro I, Aguilar-Ponce JL, Granados-Rivas JC, Moreno-Sánchez R, Rodríguez-Enríquez S. 17-β Estradiol up-regulates energy metabolic pathways, cellular proliferation and tumor invasiveness in ER+ breast cancer spheroids. Front Oncol 2022; 12:1018137. [PMID: 36419896 PMCID: PMC9676491 DOI: 10.3389/fonc.2022.1018137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
Several biological processes related to cancer malignancy are regulated by 17-β estradiol (E2) in ER+-breast cancer. To establish the role of E2 on the atypical cancer energy metabolism, a systematic study analyzing transcription factors, proteins, and fluxes associated with energy metabolism was undertaken in multicellular tumor spheroids (MCTS) from human ER+ MCF-7 breast cancer cells. At E2 physiological concentrations (10 and 100 nM for 24 h), both ERα and ERβ receptors, and their protein target pS2, increased by 0.6-3.5 times vs. non-treated MCTS, revealing an activated E2/ER axis. E2 also increased by 30-470% the content of several transcription factors associated to mitochondrial biogenesis and oxidative phosphorylation (OxPhos) (p53, PGC1-α) and glycolytic pathways (HIF1-α, c-MYC). Several OxPhos and glycolytic proteins (36-257%) as well as pathway fluxes (48-156%) significantly increased being OxPhos the principal ATP cellular supplier (>75%). As result of energy metabolism stimulation by E2, cancer cell migration and invasion processes and related proteins (SNAIL, FN, MM-9) contents augmented by 24-189% vs. non-treated MCTS. Celecoxib at 10 nM blocked OxPhos (60%) as well as MCTS growth, cell migration and invasiveness (>40%); whereas the glycolytic inhibitor iodoacetate (0.5 µM) and doxorubicin (70 nM) were innocuous. Our results show for the first time using a more physiological tridimensional cancer model, resembling the initial stages of solid tumors, that anti-mitochondrial therapy may be useful to deter hormone-dependent breast carcinomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ignacio Peñalosa-Castro
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | | | - Juan Carlos Granados-Rivas
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Rafael Moreno-Sánchez
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| |
Collapse
|
7
|
Essential role of aerobic glycolysis in epithelial-to-mesenchymal transition during carcinogenesis. Clin Transl Oncol 2022; 24:1844-1855. [PMID: 35751743 DOI: 10.1007/s12094-022-02851-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/02/2022] [Indexed: 10/17/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) confers the most lethal characteristics to cancer cells i.e., metastasis and resistance to chemo-and-radio-therapy, and therefore exhibit an appealing target in the field of oncology. Research in the past decade has demonstrated the crucial role of aerobic glycolysis in EMT, which is generally credited as the glucose metabolism for the creation of biomass such as fatty acids, amino acids, and nucleotides thereby providing building blocks for limitless proliferation. In the present review, apart from discussing EMT's evident role in the metastatic process and cancer stemness, we also talked about the vital role of glycolytic enzymes viz. GLUTs, HKs, PGI, PFK-1, aldolase, enolase, PK, LDHA, etc. in the induction of the EMT process in cancerous cells.
Collapse
|
8
|
Zeng J, Yi J, Tan S, Zeng Y, Zou L, Zhang C, Liu L, Yi P, Fan P, Yu J. GPI: An indicator for immune infiltrates and prognosis of human breast cancer from a comprehensive analysis. Front Endocrinol (Lausanne) 2022; 13:995972. [PMID: 36246907 PMCID: PMC9554491 DOI: 10.3389/fendo.2022.995972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Glucose-6-phosphate isomerase (GPI) plays an important part in gluconeogenesis and glycolysis through the interconversion of d-glucose-6-phosphate and d-fructose-6-phosphate, and its clinical significance still remains unclear in breast cancer (BRCA). We analyzed the expressions of GPI in BRCA patients to determine prognostic values. Our results showed that the expression levels of GPI were upregulated in BRCA patients, and a high GPI expression is correlated with poor overall survival (OS) in BRCA. At the same time, a high GPI expression is correlated with poor clinicopathological characteristics, such as stage III, over 60 years old, N3, HER2 negative, and estrogen receptor (ER) positive. Further analysis of the influence of GPI on the prognosis of BRCA suggested that 50 genes and 10 proteins were positively correlated with GPI, and these genes and proteins were mainly involved in cell cycle signaling pathways. In addition, in this study, we observed that GPI was closely related to N 6-methyladenosine (m6A) RNA methylation modification and immune cell infiltration and ferroptosis-related gene expression in BRCA, and there was a difference in m6A RNA methylation alterations, immune cell infiltration, and ferroptosis-related gene expression between the high GPI expression group and the low GPI expression group. Finally, we found that GPI in BRCA had 2.6% gene alterations, and BRCA patients with gene alteration of GPI had a poor prognosis in disease-free survival (DFS). Altogether, our work strongly suggested that GPI may serve as a new prognostic biomarker for BRCA patients.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jianing Yi
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Siyi Tan
- Department of Medical Laboratory, Huazhi Medical Laboratory Co., Ltd, Changsha, China
| | - Yuanjun Zeng
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lianhong Zou
- Institute of Translational Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Chaojie Zhang
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Luyao Liu
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Pingyong Yi
- Department of Oncology, Changsha Jing Kai Hospital, Changsha, China
| | - Peizhi Fan
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- *Correspondence: Jie Yu, ; Peizhi Fan,
| | - Jie Yu
- Department of Breast and Thyroid Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- *Correspondence: Jie Yu, ; Peizhi Fan,
| |
Collapse
|
9
|
Han J, Deng X, Sun R, Luo M, Liang M, Gu B, Zhang T, Peng Z, Lu Y, Tian C, Yan Y, Luo Z. GPI Is a Prognostic Biomarker and Correlates With Immune Infiltrates in Lung Adenocarcinoma. Front Oncol 2021; 11:752642. [PMID: 34912709 PMCID: PMC8666546 DOI: 10.3389/fonc.2021.752642] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background Glucose-6-phosphate isomerase (GPI) plays an important role in glycolysis and gluconeogenesis. However, the role of GPI in lung adenocarcinoma (LUAD) remains unclear. Methods All original data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and integrated via R 3.2.2. GPI expression was explored with TCGA, GEO, and Oncomine databases. Immunohistochemistry staining was used to analyze GPI expression in clinical specimens. The correlations between GPI and cancer immune characteristics were analyzed via the TIMER and TISIDB databases. GPI-specific siRNAs were used to verify the role of GPI expression on cell proliferation and cell cycle distribution. Results In general, GPI is predominantly overexpressed and has reference value in the diagnosis and prognostic estimation of LUAD. Upregulated GPI was associated with poorer overall survival, clinical stage, N stage, and primary therapy outcome in LUAD. Mechanistically, we identified a hub gene that included a total of 56 GPI-related genes, which were tightly associated with the cell cycle pathway in LUAD patients. Knockdown of GPI induced cell proliferation inhibition and cell cycle arrest. GPI expression was positively correlated with infiltrating levels of Th2 cells and regulatory T cells (Tregs); in contrast, GPI expression was negatively correlated with infiltrating levels of CD8+ T cells, central memory T cells, dendritic cells, macrophages, mast cells, and eosinophils. GPI was negatively correlated with the expression of immunostimulators, such as CD40L, IL6R, and TMEM173, in LUAD. Conclusion GPI may play an important role in the cell cycle and can be used as a prognostic biomarker for determining the prognosis and immune infiltration in LUAD.
Collapse
Affiliation(s)
- Jiahui Han
- Department of Clinical Oncology, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, China.,Department of Clinical Medicine, The First Clinical College of Hubei University of Medicine, Shiyan, China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Renhuang Sun
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ming Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Meng Liang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bing Gu
- Department of Oncology, Danjiangkou First Hospital, Danjiangkou, China
| | - Te Zhang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Zhen Peng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ying Lu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chao Tian
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yutao Yan
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, China.,Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
10
|
Gallardo-Pérez JC, de Guevara AAL, García-Amezcua MA, Robledo-Cadena DX, Pacheco-Velázquez SC, Belmont-Díaz JA, Vargas-Navarro JL, Moreno-Sánchez R, Rodríguez-Enríquez S. Celecoxib and dimethylcelecoxib block oxidative phosphorylation, epithelial-mesenchymal transition and invasiveness in breast cancer stem cells. Curr Med Chem 2021; 29:2719-2735. [PMID: 34636290 DOI: 10.2174/0929867328666211005124015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug resistance and invasiveness developed by breast cancer stem cells (BCSC) are considered the major hurdles for successful cancer treatment. <P> Objective: As these two processes are highly energy-dependent, the identification of the main ATP supplier required for stem cell viability may result advantageous in the design of new therapeutic strategies to deter malignant carcinomas. <P> Methods: The energy metabolism (glycolysis and oxidative phosphorylation, OxPhos) was systematically analyzed by assessing relevant protein contents, enzyme activities and pathway fluxes in BCSC. Once identified the main ATP supplier, selective energy inhibitors and canonical breast cancer drugs were used to block stem cell viability and their metastatic properties. <P> Results: OxPhos and glycolytic protein contents, as well as HK and LDH activities were several times higher in BCSC than in their parental line, MCF-7 cells. However, CS, GDH, COX activities and both energy metabolism pathway fluxes were significantly lower (38-86%) in BCSC than in MCF-7 cells. OxPhos was the main ATP provider (>85%) in BCSC. Accordingly, oligomycin (a specific and potent canonical OxPhos inhibitor) and other non-canonical drugs with inhibitory effect on OxPhos (celecoxib, dimethylcelecoxib) significantly decreased BCSC viability, levels of epithelial-mesenchymal transition proteins, invasiveness, and induced ROS over-production, with IC50 values ranging from 1 to 20 µM in 24 h treatment. In contrast, glycolytic inhibitors (gossypol, iodoacetic acid, 3-bromopyruvate, 2-deoxyglucose) and canonical chemotherapeutic drugs (paclitaxel, doxorubicin, cisplatin) were much less effective against BCSC viability (IC50> 100 µM). <P> Conclusion: These results indicated that the use of some NSAIDs may be a promising alternative therapeutic strategy to target BCSC.
Collapse
|
11
|
Non-Steroidal Anti-Inflammatory Drugs Increase Cisplatin, Paclitaxel, and Doxorubicin Efficacy against Human Cervix Cancer Cells. Pharmaceuticals (Basel) 2020; 13:ph13120463. [PMID: 33333716 PMCID: PMC7765098 DOI: 10.3390/ph13120463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning (“preventive protocol”; IC50 = 1 ± 0.3 nM for celecoxib and 10 ± 2 nM for DMC) or after spheroid formation (“curative protocol”; IC50 = 7.5 ± 2 µM for celecoxib and 32 ± 10 µM for DMC). These NSAID IC50 values were significantly lower than those attained in bidimensional HeLa cells (IC50 = 55 ± 9 µM celecoxib and 48 ± 2 µM DMC) and bidimensional non-cancer cell cultures (3T3 fibroblasts and MCF-10A mammary gland cells with IC50 from 69 to >100 µM, after 24 h). The copper-based drug casiopeina II-gly showed similar potency against HeLa MCTS. Synergism analysis showed that celecoxib, DMC, and casiopeinaII-gly at sub-IC50 doses increased the potency of cisplatin, paclitaxel, and doxorubicin to hinder HeLa cell proliferation through a significant abolishment of oxidative phosphorylation in bidimensional cultures, with no apparent effect on non-cancer cells (therapeutic index >3.6). Similar results were attained with bidimensional human cervix cancer SiHa and human glioblastoma U373 cell cultures. In HeLa MCTS, celecoxib, DMC and casiopeina II-gly increased cisplatin toxicity by 41–85%. These observations indicated that celecoxib and DMC used as adjuvant therapy in combination with canonical anti-cancer drugs may provide more effective alternatives for cancer treatment.
Collapse
|
12
|
Moreno-Sánchez R, Marín-Hernández Á, Gallardo-Pérez JC, Pacheco-Velázquez SC, Robledo-Cadena DX, Padilla-Flores JA, Saavedra E, Rodríguez-Enríquez S. Physiological Role of Glutamate Dehydrogenase in Cancer Cells. Front Oncol 2020; 10:429. [PMID: 32328457 PMCID: PMC7160333 DOI: 10.3389/fonc.2020.00429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022] Open
Abstract
NH 4 + increased growth rates and final densities of several human metastatic cancer cells. To assess whether glutamate dehydrogenase (GDH) in cancer cells may catalyze the reverse reaction of NH 4 + fixation, its covalent regulation and kinetic parameters were determined under near-physiological conditions. Increased total protein and phosphorylation were attained in NH 4 + -supplemented metastatic cells, but total cell GDH activity was unchanged. Higher V max values for the GDH reverse reaction vs. forward reaction in both isolated hepatoma (HepM) and liver mitochondria [rat liver mitochondria (RLM)] favored an NH 4 + -fixing role. GDH sigmoidal kinetics with NH 4 + , ADP, and leucine fitted to Hill equation showed n H values of 2 to 3. However, the K 0.5 values for NH 4 + were over 20 mM, questioning the physiological relevance of the GDH reverse reaction, because intracellular NH 4 + in tumors is 1 to 5 mM. In contrast, data fitting to the Monod-Wyman-Changeux (MWC) model revealed lower K m values for NH 4 + , of 6 to 12 mM. In silico analysis made with MWC equation, and using physiological concentrations of substrates and modulators, predicted GDH N-fixing activity in cancer cells. Therefore, together with its thermodynamic feasibility, GDH may reach rates for its reverse, NH 4 + -fixing reaction that are compatible with an anabolic role for supporting growth of cancer cells.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
| | | | - Juan C Gallardo-Pérez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
| | | | | | | | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
| | | |
Collapse
|
13
|
Yang J, Ren B, Yang G, Wang H, Chen G, You L, Zhang T, Zhao Y. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci 2020; 77:305-321. [PMID: 31432232 PMCID: PMC11104916 DOI: 10.1007/s00018-019-03278-z] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is prone to distant metastasis and is expected to become the second leading cause of cancer-related death. In an extremely nutrient-deficient and hypoxic environment resulting from uncontrolled growth, vascular disturbances and desmoplastic reactions, pancreatic cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. Notably, pancreatic cancer cells show extensive enhancement of glycolysis, including glycolytic enzyme overexpression and increased lactate production, and this is caused by mitochondrial dysfunction, cancer driver genes, specific transcription factors, a hypoxic tumor microenvironment and stromal cells, such as cancer-associated fibroblasts and tumor-associated macrophages. The metabolic switch from oxidative phosphorylation to glycolysis in pancreatic cancer cells regulates the invasion-metastasis cascade by promoting epithelial-mesenchymal transition, tumor angiogenesis and the metastatic colonization of distant organs. In addition to aerobic glycolysis, oxidative phosphorylation also plays a critical role in pancreatic cancer metastasis in ways that remain unclear. In this review, we expound on the intracellular and extracellular causes of the enhancement of glycolysis in pancreatic cancer and the strong association between glycolysis and cancer metastasis, which we expect will yield new therapeutic approaches targeting cancer metabolism.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, People's Republic of China.
| |
Collapse
|
14
|
Pouyafar A, Zadi Heydarabad M, Aghdam SB, Khaksar M, Azimi A, Rahbarghazi R, Talebi M. Resveratrol potentially increased the tumoricidal effect of doxorubicin on SKOV3 cancer stem cells in vitro. J Cell Biochem 2019; 120:8430-8437. [PMID: 30609135 DOI: 10.1002/jcb.28129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Ovarian cancer is associated with a high percentage of recurrence of tumor and resistance to chemotherapy. Cancer stem cells (CSCs) form a rare population with a significant capacity to begin and expand malignant diseases. Eliminating the drug resistance of CSCs by factors that have fewer side effects to the patient is vital. To investigate the effect of resveratrol (RES) and doxorubicin (DOX) on drug resistance and apoptosis of CSCs; at the first, isolation of CSCs from SKOV3 ovarian carcinoma cells and their dosage adjustment (IC50 ) with RES and DOX was performed. Then, isolated CSCs were treated with RES and DOX IC 50 of 55 and 250 nM, respectively. Subsequently, their effects on drug resistance and cell death were evaluated using real-time polymerase chain reaction, rhodamine 123 uptakes. The results of the present study demonstrated that treatment of SKOV3 with 55 μM of RES and 250 nM of DOX simultaneously increased cell viability in CSCs to DOX after 24 and 48 hours by increasing the expression of Bcl-2-associated X protein (BAX) and caspase-3 genes, and decreased the expression and function of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 (MRP1) genes indicated by intracellular the rhodamine 123 content. Treatment of RES could increase the activity of DOX cell viability in CSCs originated from SKOV3 ovarian carcinoma and decrease drug resistance capacity to DOX.
Collapse
Affiliation(s)
- Ayda Pouyafar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Zadi Heydarabad
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sina Bahar Aghdam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ako Azimi
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|