1
|
Yonemoto E, Ihara R, Tanaka E, Mitani T. Cocoa extract induces browning of white adipocytes and improves glucose intolerance in mice fed a high-fat diet. Biosci Biotechnol Biochem 2024; 88:1188-1198. [PMID: 39025807 DOI: 10.1093/bbb/zbae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Cocoa extract (CE) offers several health benefits, such as antiobesity and improved glucose intolerance. However, the mechanisms remain unclear. Adipose tissue includes white adipose tissue (WAT) and brown adipose tissue. Brown adipose tissue leads to body fat reduction by metabolizing lipids to heat via uncoupling protein 1 (UCP1). The conversion of white adipocytes into brown-like adipocytes (beige adipocytes) is called browning, and it contributes to the anti-obesity effect and improved glucose tolerance. This study aimed to evaluate the effect of CE on glucose tolerance in terms of browning. We found that dietary supplementation with CE improved glucose intolerance in mice fed a high-fat diet, and it increased the expression levels of Ucp1 and browning-associated gene in inguinal WAT. Furthermore, in primary adipocytes of mice, CE induced Ucp1 expression through β3-adrenergic receptor stimulation. These results suggest that dietary CE improves glucose intolerance by inducing browning in WAT.
Collapse
MESH Headings
- Animals
- Diet, High-Fat/adverse effects
- Glucose Intolerance/drug therapy
- Glucose Intolerance/metabolism
- Cacao/chemistry
- Plant Extracts/pharmacology
- Mice
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Male
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Mice, Inbred C57BL
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
Collapse
Affiliation(s)
- Eito Yonemoto
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Risa Ihara
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| | - Emi Tanaka
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
2
|
Tuğal Aslan D, Göktaş Z. The Therapeutic Potential of Theobromine in Obesity: A Comprehensive Review. Nutr Rev 2024:nuae122. [PMID: 39271172 DOI: 10.1093/nutrit/nuae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Obesity, characterized by chronic low-grade inflammation, is a significant health concern. Phytochemicals found in plants are being explored for therapeutic use, particularly in combating obesity. Among these, theobromine, commonly found in cocoa and chocolate, shows promise. Although not as extensively studied as caffeine, theobromine exhibits positive effects on human health. It improves lipid profiles, aids in asthma treatment, lowers blood pressure, regulates gut microbiota, reduces tumor formation, moderates blood glucose levels, and acts as a neuroprotective agent. Studies demonstrate its anti-obesity effects through mechanisms such as browning of white adipose tissue, activation of brown adipose tissue, anti-inflammatory properties, and reduction of oxidative stress. This study aims to suggest theobromine as a potential therapeutic agent against obesity-related complications.
Collapse
Affiliation(s)
- Dilem Tuğal Aslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Turkiye
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Turkiye
| |
Collapse
|
3
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
4
|
Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, tea, and cocoa in obesity prevention: Mechanisms of action and future prospects. Curr Res Food Sci 2024; 8:100741. [PMID: 38694556 PMCID: PMC11061710 DOI: 10.1016/j.crfs.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun Cao
- Key Laboratory for Transboundary Ecosecurity of Southwest China (Ministry of Education), Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Wen-Yong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
5
|
Jiang J, Gui S, Wei D, Chen X, Tang Y, Lv J, You W, Chen T, Yang S, Ge H, Li Y. Causal relationships between human blood metabolites and intracranial aneurysm and aneurysmal subarachnoid hemorrhage: a Mendelian randomization study. Front Neurol 2023; 14:1268138. [PMID: 38162442 PMCID: PMC10755882 DOI: 10.3389/fneur.2023.1268138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Objective The aim of this study was to assess the causal relationships between blood metabolites and intracranial aneurysm, aneurysmal subarachnoid hemorrhage, and unruptured intracranial aneurysm. Methods Our exposure sample consisted of 7,824 individuals from a genome-wide association study of human blood metabolites. Our outcome sample consisted of 79,429 individuals (7,495 cases and 71,934 controls) from the International Stroke Genetics Consortium, which conducted a genome-wide association study of intracranial aneurysm, aneurysmal subarachnoid hemorrhage, and unruptured intracranial aneurysm. We identified blood metabolites with a potential causal effect on intracranial aneurysms and conducted sensitivity analyses to validate our findings. Results After rigorous screening and Mendelian randomization tests, we found four, two, and three serum metabolites causally associated with intracranial aneurysm, aneurysmal subarachnoid hemorrhage, and unruptured intracranial aneurysm, respectively (all P < 0.05). Sensitivity analyses confirmed the robustness of these associations. Conclusions Our Mendelian randomization analysis demonstrated causal relationships between human blood metabolites and intracranial aneurysm, aneurysmal subarachnoid hemorrhage, and unruptured intracranial aneurysm. Further research is required to explore the potential of targeting these metabolites in the management of intracranial aneurysm.
Collapse
Affiliation(s)
- Jia Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Gui
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dachao Wei
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiheng Chen
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yudi Tang
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Lv
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei You
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Shu Yang
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huijian Ge
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Youxiang Li
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
From Cocoa to Chocolate: Effect of Processing on Flavanols and Methylxanthines and Their Mechanisms of Action. Int J Mol Sci 2022; 23:ijms232214365. [PMID: 36430843 PMCID: PMC9698929 DOI: 10.3390/ijms232214365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the health benefits associated with the ingestion of the bioactive compounds in cocoa, the high concentrations of polyphenols and methylxanthines in the raw cocoa beans negatively influence the taste, confer the astringency and bitterness, and affect the stability and digestibility of the cocoa products. It is, therefore, necessary to process cocoa beans to develop the characteristic color, taste, and flavor, and reduce the astringency and bitterness, which are desirable in cocoa products. Processing, however, affects the composition and quantities of the bioactive compounds, resulting in the modification of the health-promoting properties of cocoa beans and chocolate. In this advanced review, we sought to better understand the effect of cocoa's transformational process into chocolate on polyphenols and methylxanthine and the mechanism of action of the original flavanols and methylxanthines. More data on the cocoa processing effect on cocoa bioactives are still needed for better understanding the effect of each processing step on the final polyphenolic and methylxanthine composition of chocolate and other cocoa products. Regarding the mechanisms of action, theobromine acts through the modulation of the fatty acid metabolism, mitochondrial function, and energy metabolism pathways, while flavanols mainly act though the protein kinases and antioxidant pathways. Both flavanols and theobromine seem to be involved in the nitric oxide and neurotrophin regulation.
Collapse
|
7
|
Marucci G, Buccioni M, Varlaro V, Volpini R, Amenta F. The possible role of the nucleoside adenosine in countering skin aging: A review. Biofactors 2022; 48:1027-1035. [PMID: 35979986 PMCID: PMC9804842 DOI: 10.1002/biof.1881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
Skin aging is a complex biological process. Skin aspect is considered as a sign of well-being and of beauty. In view of this, noninvasive and/or minimally invasive anti-aging strategies were developed. Adenosine, a well-known nucleoside, may play a role in skin rejuvenation. Adenosine receptors belong to the G protein-coupled receptors superfamily and are divided into four subtypes: A1 , A2A , A2B , and A3 . The adenosine receptors expressed by skin are mainly the A1 and A2A subtypes. In the hypodermis, adenosine through the A1 receptor stimulates lipogenesis and adipogenesis. In the dermis, adenosine through the A2A receptor subtype stimulates collagen production. Moreover, the nucleoside increases new DNA synthesis and subsequently protein synthesis in dermal cells. Activation of adenosine receptors by interacting with various skin layers may induce a decrease in the amount of wrinkles, roughness, dryness, and laxity. This article has reviewed the mechanisms through which adenosine modulates biological mechanisms in the skin tissues and the effect of preparations containing adenosine or its derivatives on the skin.
Collapse
Affiliation(s)
- Gabriella Marucci
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| | - Michela Buccioni
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| | - Vincenzo Varlaro
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| | - Rosaria Volpini
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, Master in Aesthetic Medicine and TherapeuticsUniversity of CamerinoCamerinoItaly
| |
Collapse
|
8
|
Ikeda T, Watanabe S, Mitani T. Genistein regulates adipogenesis by blocking the function of adenine nucleotide translocase-2 in the mitochondria. Biosci Biotechnol Biochem 2022; 86:260-272. [PMID: 34849563 DOI: 10.1093/bbb/zbab203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Genistein exerts antiadipogenic effects, but its target molecules remain unclear. Here, we delineated the molecular mechanism underlying the antiadipogenic effect of genistein. A pulldown assay using genistein-immobilized beads identified adenine nucleotide translocase-2 as a genistein-binding protein in adipocytes. Adenine nucleotide translocase-2 exchanges ADP/ATP through the mitochondrial inner membrane. Similar to the knockdown of adenine nucleotide translocase-2, genistein treatment decreased ADP uptake into the mitochondria and ATP synthesis. Genistein treatment and adenine nucleotide translocase-2 knockdown suppressed adipogenesis and increased phosphorylation of AMP-activated protein kinase. Adenine nucleotide translocase-2 knockdown reduced the transcriptional activity of CCAAT/enhancer-binding protein β, whereas AMP-activated protein kinase inhibition restored the suppression of adipogenesis by adenine nucleotide translocase-2 knockdown. These results indicate that genistein interacts directly with adenine nucleotide translocase-2 to suppress its function. The downregulation of adenine nucleotide translocase-2 reduces the transcriptional activity of CCAAT/enhancer-binding protein β via activation of AMP-activated protein kinase, which consequently represses adipogenesis.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Shun Watanabe
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
- Division of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
9
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
10
|
Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARγ activation-dependent manner. J Nutr Biochem 2021; 100:108898. [PMID: 34748921 DOI: 10.1016/j.jnutbio.2021.108898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The adipocytes play an important role in driving the obese-state-white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)-the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARγ ligand-dependent manner. It also increased the phosphorylation levels of PPARγ coactivator 1α without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARγ-induced UCP1 expression in vitro, suggesting its potential to treat obesity.
Collapse
|
11
|
Jean-Marie E, Bereau D, Robinson JC. Benefits of Polyphenols and Methylxanthines from Cocoa Beans on Dietary Metabolic Disorders. Foods 2021; 10:2049. [PMID: 34574159 PMCID: PMC8470844 DOI: 10.3390/foods10092049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Theobroma cacao L. is an ancestral cultivated plant which has been consumed by various populations throughout history. Cocoa beans are the basic material occurring in the most consumed product in the world, namely chocolate. Their composition includes polyphenols, methylxanthines, lipids and other compounds that may vary qualitatively and quantitatively according to criteria such as variety or culture area. Polyphenols and methylxanthines are known as being responsible for many health benefits, particularly by preventing cardiovascular and neurodegenerative diseases. Recent studies emphasized their positive role in dietary metabolic disorders, such as diabetes and weight gain. After a brief presentation of cocoa bean, this review provides an overview of recent research activities highlighting promising strategies which modulated and prevented gastro-intestinal metabolism dysfunctions.
Collapse
Affiliation(s)
| | | | - Jean-Charles Robinson
- Laboratoire COVAPAM, UMR Qualisud, Université de Guyane, 97300 Cayenne, France; (E.J.-M.); (D.B.)
| |
Collapse
|
12
|
Yu C, Wen Q, Ren Q, Du Y, Xie X. Polychlorinated biphenyl congener 180 (PCB 180) regulates mitotic clonal expansion and enhances adipogenesis through modulation of C/EBPβ SUMOylation in preadipocytes. Food Chem Toxicol 2021; 152:112205. [PMID: 33864839 DOI: 10.1016/j.fct.2021.112205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
PCB 180 is a typical non-dioxin-like polychlorinated biphenyl (NDL-PCB). It is one of the most prevalent PCB-congeners found in human adipose tissue. However, the role of PCB 180 in obesity remains poorly understood. The aim of this study was to explore the adipogenic effect and mechanism of PCB 180. Significant enhancement in adipogenesis was observed when differentiating murine 3T3-L1 preadipocytes or human preadipocytes-visceral (HPA-v) that were exposed to PCB 180. Furthermore, exposure to PCB 180 during the first two days was critical to the adipogenic effect. According to results from sequential cell cycle analyses, cell counting, BrdU incorporation, and cyclin D1, cyclin B1, and p27 protein quantification, PCB 180 was found to enhance mitotic clonal expansion (MCE) during early adipogenic differentiation. Molecular mechanistic investigation revealed that PCB 180 promoted accumulation of the C/EBPβ protein, a key regulator that controls MCE. Finally, it was found that PCB 180 mitigated degradation of the C/EBPβ protein by repressing the SUMOylation and subsequent ubiquitination of C/EBPβ by the upregulation of SENP2. In summary, it was shown for the first time that PCB 180 facilitated adipogenesis by alleviating C/EBPβ protein SUMOylation. This result provides novel evidence regarding obesogenic effect of PCB 180.
Collapse
Affiliation(s)
- Caixia Yu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemical Sciences and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Wen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemical Sciences and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemical Sciences and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemical Sciences and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China.
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
13
|
Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells. Int J Mol Sci 2020; 21:ijms21239015. [PMID: 33260941 PMCID: PMC7730563 DOI: 10.3390/ijms21239015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer’s disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines—caffeine, theophylline and theobromine—and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.
Collapse
|
14
|
Zhou B, Ma C, Zheng C, Xia T, Ma B, Liu X. 3-Methylxanthine production through biodegradation of theobromine by Aspergillus sydowii PT-2. BMC Microbiol 2020; 20:269. [PMID: 32854634 PMCID: PMC7453516 DOI: 10.1186/s12866-020-01951-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Background Methylxanthines, including caffeine, theobromine and theophylline, are natural and synthetic compounds in tea, which could be metabolized by certain kinds of bacteria and fungi. Previous studies confirmed that several microbial isolates from Pu-erh tea could degrade and convert caffeine and theophylline. We speculated that these candidate isolates also could degrade and convert theobromine through N-demethylation and oxidation. In this study, seven tea-derived fungal strains were inoculated into various theobromine agar medias and theobromine liquid mediums to assess their capacity in theobromine utilization. Related metabolites with theobromine degradation were detected by using HPLC in the liquid culture to investigate their potential application in the production of 3-methylxanthine. Results Based on theobromine utilization capacity, Aspergillus niger PT-1, Aspergillus sydowii PT-2, Aspergillus ustus PT-6 and Aspergillus tamarii PT-7 have demonstrated the potential for theobromine biodegradation. Particularly, A. sydowii PT-2 and A. tamarii PT-7 could degrade theobromine significantly (p < 0.05) in all given liquid mediums. 3,7-Dimethyluric acid, 3-methylxanthine, 7-methylxanthine, 3-methyluric acid, xanthine, and uric acid were detected in A. sydowii PT-2 and A. tamarii PT-7 culture, respectively, which confirmed the existence of N-demethylation and oxidation in theobromine catabolism. 3-Methylxanthine was common and main demethylated metabolite of theobromine in the liquid culture. 3-Methylxanthine in A. sydowii PT-2 culture showed a linear relation with initial theobromine concentrations that 177.12 ± 14.06 mg/L 3-methylxanthine was accumulated in TLM-S with 300 mg/L theobromine. Additionally, pH at 5 and metal ion of Fe2+ promoted 3-methylxanthine production significantly (p < 0.05). Conclusions This study is the first to confirm that A. sydowii PT-2 and A. tamarii PT-7 degrade theobromine through N-demethylation and oxidation, respectively. A. sydowii PT-2 showed the potential application in 3-methylxanthine production with theobromine as feedstock through the N-demethylation at N-7 position.
Collapse
Affiliation(s)
- Binxing Zhou
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Cunqiang Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China. .,Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, 464000, Henan, China. .,Kunming Dapu Tea Industry Co., Ltd, Kunming, 650224, Yunnan, China.
| | - Chengqin Zheng
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Bingsong Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaohui Liu
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| |
Collapse
|
15
|
Jiang H, Horiuchi Y, Hironao KY, Kitakaze T, Yamashita Y, Ashida H. Prevention effect of quercetin and its glycosides on obesity and hyperglycemia through activating AMPKα in high-fat diet-fed ICR mice. J Clin Biochem Nutr 2020; 67:74-83. [PMID: 32801472 PMCID: PMC7417802 DOI: 10.3164/jcbn.20-47] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Quercetin and its glycosides possess various health beneficial functions, but comparative study of them on energy metabolism in different tissues are not well studied. In this study, we investigated AMP-activated protein kinase regulated glucose metabolism in the skeletal muscle and lipid metabolism in the white adipose tissue and liver to compare the effectiveness of quercetin and its glycosides, namely isoquercitrin, rutin, and enzymatically modified isoquercitrin, in male ICR mice. The mice were fed a standard or high-fat diet supplemented with 0.1% quercetin and its glycosides for 13 weeks. Quercetin glycosides, but not quercetin, decreased body weight gain and fat accumulation in the mesenteric adipose tissue in high-fat groups. All compounds decreased high-fat diet-increased plasma glucose and insulin levels. Moreover, all compounds significantly increased AMP-activated protein kinase phosphorylation in either standard or high-fat diet-fed mice in all tissues tested. As its downstream events, all compounds induced glucose transporter 4 translocation in the muscle. In the white adipose tissue and liver, all compounds increased lipogenesis while decreased lipolysis. Moreover, all compounds increased browning markers and decreased differentiation markers in adipose tissue. Therefore, quercetin and its glycosides are promising food components for prevention of adiposity and hyperglycemia through modulating AMP-activated protein kinase-driven pathways.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuko Horiuchi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Ken-Yu Hironao
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Tomoya Kitakaze
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
16
|
Domae C, Nanba F, Maruo T, Suzuki T, Ashida H, Yamashita Y. Black soybean seed coat polyphenols promote nitric oxide production in the aorta through glucagon-like peptide-1 secretion from the intestinal cells. Food Funct 2019; 10:7875-7882. [PMID: 31746899 DOI: 10.1039/c9fo02050k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Black soybean seed coat polyphenols were reported to possess various bioregulatory functions. However, the effects of black soybean seed coat polyphenols on vascular functions are unknown. Vascular dysfunction caused by aging and vascular stiffness is associated with a risk of cardiovascular disease (CVD), and a reduction in nitric oxide (NO) levels can trigger the onset of CVD. In the present study, we investigated the effect of polyphenol-rich black soybean seed coat extract (BE) on vascular functions and the underlying mechanisms involved. The oral administration of BE at 50 mg per kg body weight to Wistar rats increased NO levels as determined by eNOS phosphorylation. The administration of BE also increased GLP-1 and cAMP levels. Furthermore, the effects of BE were inhibited in the presence of a GLP-1 receptor antagonist. This suggests that GLP-1 is strongly involved in the underlying mechanism of NO production in vivo. In conclusion, BE contributes to the improvement of vascular functions by promoting NO production. Regarding the putative underlying mechanism, GLP-1 secreted from intestinal cells by the polyphenols in BE activates eNOS in vascular endothelial cells.
Collapse
Affiliation(s)
- Chiaki Domae
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Mitani T, Watanabe S, Wada K, Fujii H, Nakamura S, Katayama S. Intracellular cAMP contents regulate NAMPT expression via induction of C/EBPβ in adipocytes. Biochem Biophys Res Commun 2019; 522:770-775. [PMID: 31791580 DOI: 10.1016/j.bbrc.2019.11.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 11/28/2022]
Abstract
A decline in intracellular nicotinamide adenine mononucleotide (NAD+) causes adipose tissue dysfunction. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in the NAD+ biosynthesis pathway. However, the molecular mechanism that mediates regulation of NAMPT expression in adipocytes is yet to be elucidated. This study found that intracellular cAMP regulates NAMPT expression and promoter activity in 3T3-L1 adipocytes. cAMP-mediated Nampt promoter activity was suppressed by protein kinase A inhibitor H89, whereas AMP-activated protein kinase inhibitor compound C did not affect cAMP-mediated Nampt promoter activity. Intracellular cAMP induced CCAAT/enhancer-binding protein β (C/EBPβ) expression. Knockdown of C/EBPβ suppressed NAMPT expression and promoter activity. Furthermore, the Nampt promoter was activated by C/EBPβ, while LIP activated the dominant-negative form of C/EBPβ. Promoter sequence analysis revealed that the region from -96 to -76 on Nampt was required for C/EBPβ-mediated promoter activity. Additionally, chromatin immunoprecipitation assay demonstrated that C/EBPβ was bound to the promoter sequences of Nampt. Finally, NAMPT inhibitor FK866 suppressed adipogenesis in 3T3-L1 cells, and this suppressive effect was restored by nicotinamide mononucleotide treatment. These findings showed that intracellular cAMP increased NAMPT levels by induction of C/EBPβ expression and indicated that the induction of NAMPT expression was important for adipogenesis.
Collapse
Affiliation(s)
- Takakazu Mitani
- Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan.
| | - Shun Watanabe
- Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan
| | - Kenjiro Wada
- Department of Bioscience and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan
| | - Hiroshi Fujii
- Graduate School of Science and Technology, Department of Biomedical Engineering, Shinshu University, Kami-ina, Nagano, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Kami-ina, Nagano, Japan
| | - Soichiro Nakamura
- Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan
| | - Shigeru Katayama
- Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Kami-ina, Nagano, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Kami-ina, Nagano, Japan
| |
Collapse
|
18
|
Jiang H, Yoshioka Y, Yuan S, Horiuchi Y, Yamashita Y, Croft KD, Ashida H. Enzymatically modified isoquercitrin promotes energy metabolism through activating AMPKα in male C57BL/6 mice. Food Funct 2019; 10:5188-5202. [PMID: 31380532 DOI: 10.1039/c9fo01008d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Quercetin possesses various health beneficial functions, but its poor bioavailability limits these functions. Enzymatically modified isoquercitrin (EMIQ) is a quercetin glycoside with a greater bioavailability than quercetin. In this study, we investigated whether EMIQ regulates energy metabolism in mice and its underlying molecular mechanism. Male C57BL/6 mice were fed a normal diet with different doses of EMIQ or quercetin (0.02%, 0.1% and 0.5%) for two weeks. Supplementation with 0.1% EMIQ significantly decreased white adipose tissue (WAT) weight. Supplementation with 0.02% and 0.1% EMIQ promoted phosphorylation of adenosine monophosphate activated protein kinase (AMPK) in the WAT, liver, and muscle. In the WAT, 0.1% EMIQ downregulated peroxisome proliferator-activated receptor (PPAR)γ, CCAAT-enhancer-binding protein (C/EBP)α, C/EBPβ, and sterol regulatory element-binding protein 1 expression, as well as upregulated mitochondrial uncoupling protein (UCP) 2 and carnitine palmitoyltransferase-1 expression. Supplementation with 0.1% EMIQ also promoted the expression of thermogenesis-associated factors including PPARγ coactivator α (PGC-1α), UCP1, PR-domain containing protein 16, and sirtuin 1 in the WAT. In the liver, EMIQ promoted the phosphorylation of acetyl-CoA carboxylase, and increased the expression of PPARα, constitutive androstane-receptor, and farnesoid X receptor. Furthermore, supplementation with 0.02% or 0.1% EMIQ suppressed the plasma glucose level accompanied by the translocation of glucose transporter 4 to the plasma membrane of the muscle. Our results suggest that EMIQ is a potential food additive for the regulation of energy metabolism through AMPK phosphorylation.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Inflammatory Microenvironment and Adipogenic Differentiation in Obesity: The Inhibitory Effect of Theobromine in a Model of Human Obesity In Vitro. Mediators Inflamm 2019; 2019:1515621. [PMID: 30804705 PMCID: PMC6360562 DOI: 10.1155/2019/1515621] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 12/11/2022] Open
Abstract
Objective Obesity is considered a clinic condition characterized by a state of chronic low-grade inflammation. The role of macrophages and adipocytokines in adipose tissue inflammation is in growing investigation. The physiopathological mechanisms involved in inflammatory state in obesity are not fully understood though the adipocytokines seem to characterize the biochemical link between obesity and inflammation. The aim of this work is to analyze the effect of theobromine, a methylxanthine present in the cocoa, on adipogenesis and on proinflammatory cytokines evaluated in a model of fat tissue inflammation in vitro. Methods In order to mimic in vitro this inflammatory condition, we investigated the interactions between human-like macrophages U937 and human adipocyte cell lines SGBS. The effect of theobromine on in vitro cell growth, cell cycle, adipogenesis, and cytokines release in the supernatants has been evaluated. Results Theobromine significantly inhibits the differentiation of preadipocytes in mature adipocytes and reduces the levels of proinflammatory cytokines as MCP-1 and IL-1β in the supernatants obtained by the mature adipocytes and macrophages interaction. Conclusion Theobromine reduces adipogenesis and proinflammatory cytokines; these data suggest its potential therapeutic effect for treating obesity by control of macrophages infiltration in adipose tissue and inflammation.
Collapse
|
20
|
Jang MH, Kang NH, Mukherjee S, Yun JW. Theobromine, a Methylxanthine in Cocoa Bean, Stimulates Thermogenesis by Inducing White Fat Browning and Activating Brown Adipocytes. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0434-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Shimizu A, Mitani T, Tanaka S, Fujii H, Maebuchi M, Amiya Y, Tanaka M, Matsui T, Nakamura S, Katayama S. Soybean-Derived Glycine-Arginine Dipeptide Administration Promotes Neurotrophic Factor Expression in the Mouse Brain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7935-7941. [PMID: 29985005 DOI: 10.1021/acs.jafc.8b01581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in cognitive abilities, including memory and learning. We demonstrated that soybean protein hydrolysate (SPH) diet suppresses age-related cognitive decline via the upregulation of BDNF in a mouse model of senescence. Our purpose was to identify novel bioactive peptides in SPH, which enhance BDNF expression. We treated mouse primary astrocytes with SPH as well as with its positively charged chromatographic fraction. Significant increases in the expression of BDNF were observed in the treatment with positively charged fraction of SPH. Among the synthesized peptides, the dipeptide glycine-arginine (GR) increased BDNF expression in vitro, and LC-TOF-MS analysis showed the presence of GR in the SPH. Furthermore, its administration in vivo increased the expression of BDNF in the cerebral cortex and the number of neurons in hippocampus and cerebral cortex. These data indicate that GR might promote neurogenesis by upregulating BDNF levels.
Collapse
Affiliation(s)
- Ayano Shimizu
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Takakazu Mitani
- Interdisciplinary Cluster for Cutting Edge Research (ICCER) , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Sachi Tanaka
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Hiroshi Fujii
- Interdisciplinary Cluster for Cutting Edge Research (ICCER) , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Motohiro Maebuchi
- Research Institute for Creating the Future , Fuji Oil Holdings Inc. , 4-3, Kinunodai , Tsukuba , Ibaraki 300-2497 , Japan
| | - Yusuke Amiya
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture , Graduate School, Kyushu University , 744, Motooka , Nishi-ku Fukuoka 819-0395 , Japan
| | - Mitsuru Tanaka
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture , Graduate School, Kyushu University , 744, Motooka , Nishi-ku Fukuoka 819-0395 , Japan
| | - Toshiro Matsui
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture , Graduate School, Kyushu University , 744, Motooka , Nishi-ku Fukuoka 819-0395 , Japan
| | - Soichiro Nakamura
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| | - Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
- Interdisciplinary Cluster for Cutting Edge Research (ICCER) , Shinshu University , 8304 Minamiminowa Kamiina , Nagano 399-4598 , Japan
| |
Collapse
|
22
|
YAMASHITA Y, MITANI T, WANG L, ASHIDA H. Methylxanthine Derivative-Rich Cacao Extract Suppresses Differentiation of Adipocytes through Downregulation of PPARγ and C/EBPs. J Nutr Sci Vitaminol (Tokyo) 2018; 64:151-160. [DOI: 10.3177/jnsv.64.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yoko YAMASHITA
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Takakazu MITANI
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Liuqing WANG
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Hitoshi ASHIDA
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|