1
|
Wang Y, Huang L, Cen X, Liang Y, Chen K. Canonical MAPK signaling in auditory neuropathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167619. [PMID: 39662753 DOI: 10.1016/j.bbadis.2024.167619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auditory neuropathy (AN) is an under-recognized form of hearing loss characterized by lesions in inner hair cells (IHCs), ribbon synapses and spiral ganglion neurons (SGNs). The lack of a targeted therapy for AN has increased the need for a better understanding of the pathogenic mechanism of AN. As mitogen-activated protein kinase (MAPK) signaling is ubiquitous in many biological processes, its alteration may facilitate the pathogenesis of multiple sites in AN. Here, we summaries the characteristics of AN under different molecular bases and first explore the mechanism of MAPK at different lesion sites. Alterations of extracellular signal-regulated kinase (ERK)/MAPK occur in IHCs and SGNs, whereas modulations of p38 and c-Jun NH2-terminal kinase (JNK) were found in ribbon synapses and SGNs. In conclusion, inductive MAPK alterations in the pathogenesis and development of AN are likely to represent a potential therapeutic target to guide the development of treatments.
Collapse
Affiliation(s)
- Yueying Wang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Lusha Huang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoqing Cen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Liang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaitian Chen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Rose O, Croonenberg T, Clemens S, Hinteregger T, Eppacher S, Huber-Cantonati P, Garcia-Miralles M, Liuni R, Dossena S. Cisplatin-Induced Hearing Loss, Oxidative Stress, and Antioxidants as a Therapeutic Strategy-A State-of-the-Art Review. Antioxidants (Basel) 2024; 13:1578. [PMID: 39765905 PMCID: PMC11673797 DOI: 10.3390/antiox13121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025] Open
Abstract
Cisplatin is an established component of treatment protocols for various solid malignancies but carries a significant potential for serious adverse effects. Ototoxicity from cisplatin treatment is an important dose-limiting toxicity that manifests as bilateral, progressive, irreversible, dose-dependent sensorineural hearing loss, ear pain, tinnitus, and vestibular dysfunction. Despite the recent approval of sodium thiosulphate for the prevention of cisplatin-induced hearing loss (CIHL) in pediatric patients, structured prevention programs are not routinely implemented in most hospitals, and reducing platinum-induced ototoxicity in adults remains an important clinical problem without established treatment options. Cochlear oxidative stress plays a fundamental role in CIHL. Here, we review the molecular mechanisms leading to oxidative stress in CIHL and the clinical and preclinical studies testing antioxidants in CIHL to guide future clinical trials in assessing the efficacy and safety of candidate antioxidant compounds in this clinical setting.
Collapse
Affiliation(s)
- Olaf Rose
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
- Center of Public Health and Health Services Research, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tim Croonenberg
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Stephanie Clemens
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
- Center of Public Health and Health Services Research, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tobias Hinteregger
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Stefanie Eppacher
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Petra Huber-Cantonati
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Marta Garcia-Miralles
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Raffaella Liuni
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
- Research and Innovation Center Regenerative Medicine & Novel Therapies (FIZ RM&NT), Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Dai D, Chen C, Lu C, Guo Y, Li Q, Sun C. Apoptosis, autophagy, ferroptosis, and pyroptosis in cisplatin-induced ototoxicity and protective agents. Front Pharmacol 2024; 15:1430469. [PMID: 39380912 PMCID: PMC11459463 DOI: 10.3389/fphar.2024.1430469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Cisplatin is widely used to treat various solid tumors. However, its toxicity to normal tissues limits its clinical application, particularly due to its ototoxic effects, which can result in hearing loss in patients undergoing chemotherapy. While significant progress has been made in preclinical studies to elucidate the cellular and molecular mechanisms underlying cisplatin-induced ototoxicity (CIO), the precise mechanisms remain unclear. Moreover, the optimal protective agent for preventing or mitigating cisplatin-induced ototoxicity has yet to be identified. This review summarizes the current understanding of the roles of apoptosis, autophagy, ferroptosis, pyroptosis, and protective agents in cisplatin-induced ototoxicity. A deeper understanding of these cell death mechanisms in the inner ear, along with the protective agents, could facilitate the translation of these agents into clinical therapeutics, help identify new therapeutic targets, and provide novel strategies for cisplatin-based cancer treatment.
Collapse
Affiliation(s)
- Dingyuan Dai
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Chen
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Lu
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Guo
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Li
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chen Sun
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Lu X, Yin N, Chen C, Zhou Y, Ji L, Zhang B, Hu H. Mangiferin alleviates cisplatin-induced ototoxicity in sensorineural hearing loss. Biomed Pharmacother 2024; 178:117174. [PMID: 39098177 DOI: 10.1016/j.biopha.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Mangiferin(MGF) exhibits crucial biological roles, including antioxidant and anti-inflammatory functions. However, how to clearly elucidate the functioning mechanism of MGF for inhibiting cisplatin-induced hearing loss requires in-depth investigation. In this work, we aimed at gaining insight into how MGF functions as the protective agent against cisplatin-triggered ototoxicity using various assays. The variation for reactive oxygen species (ROS) concentrations was determined with MitoSOX-Red and 2',7'-Dichlorodihydrofluorescein diacetate staining (DCFH-DA). The protective function and corresponding mechanism of MGF in hair cell survival in the House Ear Institute-Organ of Corti (HEI-OC1) cell line were assessed using RNA sequencing (RNA-Seq). Our findings demonstrated that MGF significantly alleviated cisplatin-induced injury to hair cells in vitro, encompassing cell lines and cochlear explants, as well as in vivo models, including C57BL/6 J mice and zebrafish larvae. Mechanistic studies revealed that MGF reversed the increased accumulation of ROS and inhibited cell apoptosis through mitochondrial-mediated intrinsic pathway. Moreover, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting data indicated MGF protected against cisplatin-mediated ototoxicity via the mitogen-activated protein kinase pathway (MAPK). These findings demonstrated MGF has significant potential promise in combating cisplatin-induced ototoxicity, offering a foundation for expanded investigation into therapeutic approaches for auditory protection.
Collapse
Affiliation(s)
- Xiaochan Lu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Na Yin
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chen Chen
- Department of Otorhinolaryngology, Shenzhen Children's Hospital, Shenzhen 518034, China
| | - Yaqi Zhou
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lingchao Ji
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Bin Zhang
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China.
| | - Hongyi Hu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
5
|
Litwiniuk-Kosmala M, Makuszewska M, Niemczyk K, Bartoszewicz R, Wojtas B, Gielniewski B. Small RNA Deep Sequencing Uncovers microRNAs Associated with Hearing Loss in Vestibular Schwannoma. Laryngoscope 2024; 134:3778-3785. [PMID: 38459949 DOI: 10.1002/lary.31385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE To analyze the correlation between the miRNA expression profile in vestibular schwannoma (VS) tumor tissue and preoperative patient's hearing status, using the RNA-seq technique. METHODS Nineteen tumor samples were collected from patients operated for VS in a Tertiary Academic Center. Samples were classified into "good hearing" and "poor hearing" study group based on the results of audiometric studies. Tumor miRNA expression was analyzed using high-throughput RNA sequencing (RNA-seq) technique, using NovaSeq 6000 Illumina system. Functional analysis was performed with the use of DIANA miRpath v. 4.0 online tool. RESULTS The most overexpressed miRNAs in VS samples derived from poor hearing patients belonged to miR 449a/b, miR 15/16-1, and hypoxamiR families. Functional analysis showed that the differentially expressed miRNAs regulate cellular pathways associated with hypoxia, adherence junction functions, and signaling pathways such as Hippo, FOXO, MAPK, and Wnt signaling pathway. CONCLUSION Our study identified a specific miRNA expression profile in VS tumor tissues that correlates with hearing impairment. These results suggest potential new molecular mechanisms related to hearing loss in the course of VS. LEVEL OF EVIDENCE 3 (cohort study) Laryngoscope, 134:3778-3785, 2024.
Collapse
Affiliation(s)
| | - Maria Makuszewska
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Kazimierz Niemczyk
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Robert Bartoszewicz
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
6
|
Cai X, Cai D, Wang X, Zhang D, Qiu L, Diao Z, Liu Y, Sun J, Cui D, Liu Y, Yin T. Manganese self-boosting hollow nanoenzymes with glutathione depletion for synergistic cancer chemo-chemodynamic therapy. Biomater Sci 2024; 12:3622-3632. [PMID: 38855985 DOI: 10.1039/d4bm00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chemodynamic therapy (CDT) has outstanding potential as a combination therapy to treat cancer. However, the effectiveness of CDT in the treatment of solid tumors is limited by the overexpression of glutathione (GSH) in the tumor microenvironment (TME). GSH overexpression diminishes oxidative stress and attenuates chemotherapeutic drug-induced apoptosis in cancer cells. To counter these effects, a synergistic CDT/chemotherapy cancer treatment, involving the use of a multifunctional bioreactor of hollow manganese dioxide (HMnO2) loaded with cisplatin (CDDP), was developed. Metal nanoenzymes that can auto-degrade to produce Mn2+ exhibit Fenton-like, GSH-peroxidase-like activity, which effectively depletes GSH in the TME to attenuate the tumor antioxidant capacity. In an acidic environment, Mn2+ catalyzed the decomposition of intra-tumor H2O2 into highly toxic ·OH as a CDT. HMnO2 with large pores, pore volume, and surface area exhibited a high CDDP loading capacity (>0.6 g-1). Treatment with CDDP-loaded HMnO2 increased the intratumor Pt-DNA content, leading to the up-regulation of γ-H2Aχ and an increase in tumor tissue damage. The decreased GSH triggered by HMnO2 auto-degradation protected Mn2+-generated ·OH from scavenging to amplify oxidative stress and enhance the efficacy of CDT. The nanoenzymes with encapsulated chemotherapeutic agents deplete GSH and remodel the TME. Thus, tumor CDT/chemotherapy combination therapy is an effective therapeutic strategy.
Collapse
Affiliation(s)
- Xinyi Cai
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Deng Cai
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Xiaozhen Wang
- Respiratory department, Tsinghua University Yuquan Hospital, Beijing, 100040, P. R. China
| | - Dou Zhang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Long Qiu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Zhenying Diao
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Yong Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Jianbo Sun
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| | - Daxiang Cui
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, P. R. China.
| | - Yanlei Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Ting Yin
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
| |
Collapse
|
7
|
Li K, Li J, Li Z, Men L, Zuo H, Gong X. Cisplatin-based combination therapies: Their efficacy with a focus on ginsenosides co-administration. Pharmacol Res 2024; 203:107175. [PMID: 38582357 DOI: 10.1016/j.phrs.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the clinical utility of cisplatin is constrained by its severe adverse effects and the burgeoning problem of drug resistance. Ginsenosides, potent bioactive constituents derived from ginseng, possess an array of biological activities. Recent scientific investigations underscore the substantial amplification of cisplatin's anticancer potency and the mitigation of its harmful side effects when administered concomitantly with ginsenosides. This review aims to explore the underlying mechanisms at play in this combination therapy. Initially, we provide a concise introduction to the cisplatin. Then, we pivot towards illuminating how ginsenosides bolster the anticancer efficacy of cisplatin and counteract cisplatin resistance, culminating in enhanced therapeutic outcomes. Furthermore, we provide an extensive discussion on the reduction of cisplatin-induced toxicity in the kidneys, liver, gastrointestinal tract, nervous system, and ear, accompanied by immune-fortification with ginsenosides. The existing clinical combined use of cisplatin and ginsenosides is also discussed. We propose several recommendations to propel additional research into the mechanisms governing the synergistic use of ginsenosides and cisplatin, thereby furnishing invaluable insights and fostering advancement in combined modality therapy.
Collapse
Affiliation(s)
- Keke Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiwen Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zhongyu Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Lei Men
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Haibin Zuo
- School of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Xiaojie Gong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Lin J, Gang L, Wen L, Zi HY, Xia S. 20(S)-Ginsenoside Rh1 alleviates sevoflurane-induced ototoxicity by reducing oxidative stress levels. Neuroreport 2024; 35:152-159. [PMID: 38141010 DOI: 10.1097/wnr.0000000000001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
CONTEXT Sevoflurane is an inhalational anesthetic widely used in pediatric surgery. However, animal studies have shown that multiple sevoflurane exposures during the neonatal period led to ototoxicity. 20(S)-Ginsenoside Rh1, a ginsenoside extract, protects against cisplatin-induced ototoxicity by scavenging free radicals. OBJECTIVE This study aimed to assess the effects of Rh1 on sevoflurane-induced ototoxicity. MATERIALS AND METHODS Neonatal cochlear explants and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were cultured and randomly divided into three groups: the control group, the sevoflurane group and the Rh1 pretreatment group. We pretreated cochlear explants or HEI-OC1 cells with 100 μM Rh1 2 hours before performing sevoflurane exposure. Immunofluorescence was used to detect hair cells and spiral ganglion neurons. Cell Counting Kit-8 assay was used to determine cell viability. Annexin V-fluorescein isothiocyanate and propidium iodide were used to evaluate apoptosis. CellROX-Green and MitoSOX-Red probes were used to measure the amount of reactive oxygen species (ROS). Tetramethylrhodamine methyl ester labeling was used to examine mitochondrial membrane potential. RESULTS Rh1 attenuated spiral ganglion neuron nerve fibers and synapses degeneration in cochlear explants after sevoflurane exposure. Rh1 significantly increased the viability of HEI-OC1 cells, reduced reactive oxygen species accumulation in HEI-OC1 cells, and prevented mitochondrial damage in HEI-OC1 cells after sevoflurane exposure. DISCUSSION AND CONCLUSION These findings suggest that Rh1 is a promising drug for preventing sevoflurane-induced ototoxicity.
Collapse
Affiliation(s)
- Jin Lin
- Department of Anesthesiology, Eye and ENT Hospital
| | - Li Gang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital
| | - Li Wen
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratoryof Hearing Medicine
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - He Ying Zi
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratoryof Hearing Medicine
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Shen Xia
- Department of Anesthesiology, Eye and ENT Hospital
| |
Collapse
|
9
|
Ingersoll MA, Lutze RD, Kelmann RG, Kresock DF, Marsh JD, Quevedo RV, Zuo J, Teitz T. KSR1 knockout mouse model demonstrates MAPK pathway's key role in cisplatin- and noise-induced hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566316. [PMID: 38014104 PMCID: PMC10680565 DOI: 10.1101/2023.11.08.566316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared to their wild-type KSR1 littermates. KSR1 is expressed in the cochlea and is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK and ERK and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, downregulated the MAPK kinase cascade and protected the KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, as excepted, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induce hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.
Collapse
Affiliation(s)
- Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Daniel F. Kresock
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jordan D. Marsh
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Rene V. Quevedo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
10
|
Huang M, Zou M, Mao S, Xu W, Hong Y, Wang H, Gui F, Yang L, Lian F, Chen R. 3,5,6-Trichloro-2-pyridinol confirms ototoxicity in mouse cochlear organotypic cultures and induces cytotoxicity in HEI-OC1 cells. Toxicol Appl Pharmacol 2023; 475:116612. [PMID: 37463651 DOI: 10.1016/j.taap.2023.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
The metabolite of organophosphate pesticide chlorpyrifos (CPF), 3,5,6-Trichloro-2-pyridinol (TCP), is persistent and mobile toxic substance in soil and water environments, exhibiting cytotoxic, genotoxic, and neurotoxic properties. However, little is known about its effects on the peripheral auditory system. Herein, we investigated the effects of TCP exposure on mouse postnatal day 3 (P3) cochlear culture and an auditory cell line HEI-OC1 to elucidate the underlying molecular mechanisms of ototoxicity. The damage of TCP to outer hair cells (OHC) and support cells (SC) was observed in a dose and time-dependent manner. OHC and SC were a significant loss from basal to apical turn of the cochlea under exposure over 800 μM TCP for 96 h. As TCP concentrations increased, cell viability was reduced whereas reactive oxygen species (ROS) generation, apoptotic cells, and the extent of DNA damage were increased, accordingly. TCP-induced phosphorylation of the p38 and JNK MAPK are the downstream effectors of ROS. The antioxidant agent, N-acetylcysteine (NAC), could reverse TCP-mediated intracellular ROS generation, inhibit the expressive level of cleaved-caspase 3 and block phosphorylation of p38/JNK. Overall, this is the first demonstration of TCP damaging to peripheral sensory HCs and SC in organotypic cultures from the postnatal cochlea. Data also showed that TCP exposure induced oxidase stress, cell apoptosis and DNA damage in the HEI-OC1 cells. These findings serve as an important reference for assessing the risk of TCP exposure.
Collapse
Affiliation(s)
- Mao Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mingshan Zou
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuangshuang Mao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wenqi Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haiyan Wang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fei Gui
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fuzhi Lian
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|