1
|
Shimizu-Okabe C, Okada S, Okamoto S, Masuzaki H, Takayama C. Specific Expression of KCC2 in the α Cells of Normal and Type 1 Diabetes Model Mouse Pancreatic Islets. Acta Histochem Cytochem 2022; 55:47-56. [PMID: 35444351 PMCID: PMC8913275 DOI: 10.1267/ahc.21-00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the mature brain; however, it acts excitatory during development. This difference in action depends on the intracellular chloride ion concentration, primarily regulated by potassium chloride co-transporter2 (KCC2). Sufficient KCC2 expression results in its inhibitory action. GABA is also abundant in pancreatic islets, where it acts differentially on the islet cells, and is involved in carbohydrate metabolism. However, the mechanisms underlying the differential action remain unknown. We performed immunohistochemistry for glutamic acid decarboxylase (GAD), a synthetic enzyme for GABA, and KCC2 in normal adult islets. GAD was co-localized with insulin in β cells, whereas KCC2 was expressed in glucagon-positive α cells. These results are in line with previous observations that GABA decreases glucagon release but increases insulin release, and suggest that GABA and insulin may work together in reducing blood glucose levels under hyperglycemia. Next, we examined the streptozotocin-induced type1 diabetes mellitus mouse model. GAD and insulin expression levels were markedly decreased. KCC2 was expressed in glucagon-positive cells, whereas insulin- and somatostatin-positive cells were KCC2-negative. These findings suggest that in diabetes model, reduced GABA release may cause disinhibition of glucagon release, resulting in increased blood sugar levels and the maintenance of hyperglycemic state.
Collapse
Affiliation(s)
| | - Shigeki Okada
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus
| | - Shiki Okamoto
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology School of Medicine, University of the Ryukyus
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology School of Medicine, University of the Ryukyus
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus
| |
Collapse
|
2
|
The Case for Clinical Trials with Novel GABAergic Drugs in Diabetes Mellitus and Obesity. Life (Basel) 2022; 12:life12020322. [PMID: 35207609 PMCID: PMC8876029 DOI: 10.3390/life12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and diabetes mellitus have become the surprising menaces of relative economic well-being worldwide. Gamma amino butyric acid (GABA) has a prominent role in the control of blood glucose, energy homeostasis as well as food intake at several levels of regulation. The effects of GABA in the body are exerted through ionotropic GABAA and metabotropic GABAB receptors. This treatise will focus on the pharmacologic targeting of GABAA receptors to reap beneficial therapeutic effects in diabetes mellitus and obesity. A new crop of drugs selectively targeting GABAA receptors has been under investigation for efficacy in stroke recovery and cognitive deficits associated with schizophrenia. Although these trials have produced mixed outcomes the compounds are safe to use in humans. Preclinical evidence is summarized here to support the rationale of testing some of these compounds in diabetic patients receiving insulin in order to achieve better control of blood glucose levels and to combat the decline of cognitive performance. Potential therapeutic benefits could be achieved (i) By resetting the hypoglycemic counter-regulatory response; (ii) Through trophic actions on pancreatic islets, (iii) By the mobilization of antioxidant defence mechanisms in the brain. Furthermore, preclinical proof-of-concept work, as well as clinical trials that apply the novel GABAA compounds in eating disorders, e.g., olanzapine-induced weight-gain, also appear warranted.
Collapse
|
3
|
Rezazadeh H, Sharifi MR, Soltani N. Insulin resistance and the role of gamma-aminobutyric acid. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:39. [PMID: 34484371 PMCID: PMC8384006 DOI: 10.4103/jrms.jrms_374_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 12/09/2020] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Insulin resistance (IR) is mentioned to be a disorder in insulin ability in insulin-target tissues. Skeletal muscle (SkM) and liver function are more affected by IR than other insulin target cells. SkM is the main site for the consumption of ingested glucose. An effective treatment for IR has two properties: An inhibition of β-cell death and a promotion of β-cell replication. Gamma-aminobutyric acid (GABA) can improve beta-cell mass and function. Multiple studies have shown that GABA decreases IR probably via increase in glucose transporter 4 (GLUT4) gene expression and prevention of gluconeogenesis pathway in the liver. This review focused on the general aspects of IR in skeletal muscle (SkM), liver; the cellular mechanism(s) lead to the development of IR in these organs, and the role of GABA to reduce insulin resistance.
Collapse
Affiliation(s)
- Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Science, Isfahan Iran
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Science, Isfahan Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Science, Isfahan Iran
| |
Collapse
|
4
|
Chloride transporters and channels in β-cell physiology: revisiting a 40-year-old model. Biochem Soc Trans 2020; 47:1843-1855. [PMID: 31697318 PMCID: PMC6925527 DOI: 10.1042/bst20190513] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
It is accepted that insulin-secreting β-cells release insulin in response to glucose even in the absence of functional ATP-sensitive K+ (KATP)-channels, which play a central role in a 'consensus model' of secretion broadly accepted and widely reproduced in textbooks. A major shortcoming of this consensus model is that it ignores any and all anionic mechanisms, known for more than 40 years, to modulate β-cell electrical activity and therefore insulin secretion. It is now clear that, in addition to metabolically regulated KATP-channels, β-cells are equipped with volume-regulated anion (Cl-) channels (VRAC) responsive to glucose concentrations in the range known to promote electrical activity and insulin secretion. In this context, the electrogenic efflux of Cl- through VRAC and other Cl- channels known to be expressed in β-cells results in depolarization because of an outwardly directed Cl- gradient established, maintained and regulated by the balance between Cl- transporters and channels. This review will provide a succinct historical perspective on the development of a complex hypothesis: Cl- transporters and channels modulate insulin secretion in response to nutrients.
Collapse
|
5
|
Yi Z, Waseem Ghani M, Ghani H, Jiang W, Waseem Birmani M, Ye L, Bin L, Cun LG, Lilong A, Mei X. Gimmicks of gamma-aminobutyric acid (GABA) in pancreatic β-cell regeneration through transdifferentiation of pancreatic α- to β-cells. Cell Biol Int 2020; 44:926-936. [PMID: 31903671 DOI: 10.1002/cbin.11302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023]
Abstract
In vivo regeneration of lost or dysfunctional islet β cells can fulfill the promise of improved therapy for diabetic patients. To achieve this, many mitogenic factors have been attempted, including gamma-aminobutyric acid (GABA). GABA remarkably affects pancreatic islet cells' (α cells and β cells) function through paracrine and/or autocrine binding to its membrane receptors on these cells. GABA has also been studied for promoting the transformation of α cells to β cells. Nonetheless, the gimmickry of GABA-induced α-cell transformation to β cells has two different perspectives. On the one hand, GABA was found to induce α-cell transformation to β cells in vivo and insulin-secreting β-like cells in vitro. On the other hand, GABA treatment showed that it has no α- to β-cell transformation response. Here, we will summarize the physiological effects of GABA on pancreatic islet β cells with an emphasis on its regenerative effects for transdifferentiation of islet α cells to β cells. We will also critically discuss the controversial results about GABA-mediated transdifferentiation of α cells to β cells.
Collapse
Affiliation(s)
- Zhao Yi
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Muhammad Waseem Ghani
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Hammad Ghani
- Nawaz Sharif Medical College, University of Gujrat, Punjab, 50180, Pakistan
| | - Wu Jiang
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Muhammad Waseem Birmani
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Li Ye
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liu Bin
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Lang Guan Cun
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - An Lilong
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xiao Mei
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
6
|
Wang Q, Ren L, Wan Y, Prud'homme GJ. GABAergic regulation of pancreatic islet cells: Physiology and antidiabetic effects. J Cell Physiol 2019; 234:14432-14444. [PMID: 30693506 DOI: 10.1002/jcp.28214] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Diabetes occurs when pancreatic β-cell death exceeds β-cell growth, which leads to loss of β-cell mass. An effective therapy must have two actions: promotion of β-cell replication and suppression of β-cell death. Previous studies have established an important role for γ-aminobutyric acid (GABA) in islet-cell hormone homeostasis, as well as the maintenance of the β-cell mass. GABA exerts paracrine actions on α cells in suppressing glucagon secretion, and it has autocrine actions on β cells that increase insulin secretion. Multiple studies have shown that GABA increases the mitotic rate of β cells. In mice, following β-cell depletion with streptozotocin, GABA therapy can restore the β-cell mass. Enhanced β-cell replication appears to depend on growth and survival pathways involving Akt activation. Some studies have also suggested that it induces transdifferentiation of α cells into β cells, but this has been disputed and requires further investigation. In addition to proliferative effects, GABA protects β cells against injury and markedly reduces their apoptosis under a variety of conditions. The antiapoptotic effects depend at least in part on the enhancement of sirtuin-1 and Klotho activity, which both inhibit activation of the NF-κB inflammatory pathway. Importantly, in xenotransplanted human islets, GABA therapy stimulates β-cell replication and insulin secretion. Thus, the intraislet GABAergic system is a target for the amelioration of diabetes therapy, including β-cell survival and regeneration. GABA (or GABAergic drugs) can be combined with other antidiabetic drugs for greater effect.
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liwei Ren
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Yun Wan
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Gerald J Prud'homme
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Garneau AP, Marcoux AA, Frenette-Cotton R, Mac-Way F, Lavoie JL, Isenring P. Molecular insights into the normal operation, regulation, and multisystemic roles of K +-Cl - cotransporter 3 (KCC3). Am J Physiol Cell Physiol 2017; 313:C516-C532. [PMID: 28814402 DOI: 10.1152/ajpcell.00106.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
Long before the molecular identity of the Na+-dependent K+-Cl- cotransporters was uncovered in the mid-nineties, a Na+-independent K+-Cl- cotransport system was also known to exist. It was initially observed in sheep and goat red blood cells where it was shown to be ouabain-insensitive and to increase in the presence of N-ethylmaleimide (NEM). After it was established between the early and mid-nineties, the expressed sequence tag (EST) databank was found to include a sequence that was highly homologous to those of the Na+-dependent K+-Cl- cotransporters. This sequence was eventually found to code for the Na+-independent K+-Cl- cotransport function that was described in red blood cells several years before. It was termed KCC1 and led to the discovery of three isoforms called KCC2, KCC3, and KCC4. Since then, it has become obvious that each one of these isoforms exhibits unique patterns of distribution and fulfills distinct physiological roles. Among them, KCC3 has been the subject of great attention in view of its important role in the nervous system and its association with a rare hereditary sensorimotor neuropathy (called Andermann syndrome) that affects many individuals in Quebec province (Canada). It was also found to play important roles in the cardiovascular system, the organ of Corti, and circulating blood cells. As will be seen in this review, however, there are still a number of uncertainties regarding the transport properties, structural organization, and regulation of KCC3. The same is true regarding the mechanisms by which KCC3 accomplishes its numerous functions in animal cells.
Collapse
Affiliation(s)
- A P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - A A Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - R Frenette-Cotton
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - F Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - J L Lavoie
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - P Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| |
Collapse
|
8
|
Molecular features and physiological roles of K +-Cl - cotransporter 4 (KCC4). Biochim Biophys Acta Gen Subj 2017; 1861:3154-3166. [PMID: 28935604 DOI: 10.1016/j.bbagen.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
A K+-Cl- cotransport system was documented for the first time during the mid-seventies in sheep and goat red blood cells. It was then described as a Na+-independent and ouabain-insensitive ion carrier that could be stimulated by cell swelling and N-ethylmaleimide (NEM), a thiol-reacting agent. Twenty years later, this system was found to be dispensed by four different isoforms in animal cells. The first one was identified in the expressed sequence tag (EST) database by Gillen et al. based on the assumption that it would be homologous to the Na+-dependent K+-Cl- cotransport system for which the molecular identity had already been uncovered. Not long after, the three other isoforms were once again identified in the EST databank. Among those, KCC4 has generated much interest a few years ago when it was shown to sustain distal renal acidification and hearing development in mouse. As will be seen in this review, many additional roles were ascribed to this isoform, in keeping with its wide distribution in animal species. However, some of them have still not been confirmed through animal models of gene inactivation or overexpression. Along the same line, considerable knowledge has been acquired on the mechanisms by which KCC4 is regulated and the environmental cues to which it is sensitive. Yet, it is inferred to some extent from historical views and extrapolations.
Collapse
|
9
|
Feng AL, Xiang YY, Gui L, Kaltsidis G, Feng Q, Lu WY. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes. Diabetologia 2017; 60:1033-1042. [PMID: 28280900 DOI: 10.1007/s00125-017-4239-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/08/2017] [Indexed: 01/20/2023]
Abstract
AIMS/HYPOTHESIS This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. METHODS Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. RESULTS STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. CONCLUSIONS/INTERPRETATION GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.
Collapse
Affiliation(s)
- Allen L Feng
- Robarts Research Institute, Rome: 7240, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Yun-Yan Xiang
- Robarts Research Institute, Rome: 7240, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Le Gui
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Gesthika Kaltsidis
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Wei-Yang Lu
- Robarts Research Institute, Rome: 7240, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
10
|
Kursan S, McMillen TS, Beesetty P, Dias-Junior E, Almutairi MM, Sajib AA, Kozak JA, Aguilar-Bryan L, Di Fulvio M. The neuronal K +Cl - co-transporter 2 (Slc12a5) modulates insulin secretion. Sci Rep 2017; 7:1732. [PMID: 28496181 PMCID: PMC5431760 DOI: 10.1038/s41598-017-01814-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/03/2017] [Indexed: 11/09/2022] Open
Abstract
Intracellular chloride concentration ([Cl-]i) in pancreatic β-cells is kept above electrochemical equilibrium due to the predominant functional presence of Cl- loaders such as the Na+K+2Cl- co-transporter 1 (Slc12a2) over Cl-extruders of unidentified nature. Using molecular cloning, RT-PCR, Western blotting, immunolocalization and in vitro functional assays, we establish that the "neuron-specific" K+Cl- co-transporter 2 (KCC2, Slc12a5) is expressed in several endocrine cells of the pancreatic islet, including glucagon secreting α-cells, but particularly in insulin-secreting β-cells, where we provide evidence for its role in the insulin secretory response. Three KCC2 splice variants were identified: the formerly described KCC2a and KCC2b along with a novel one lacking exon 25 (KCC2a-S25). This new variant is undetectable in brain or spinal cord, the only and most abundant known sources of KCC2. Inhibition of KCC2 activity in clonal MIN6 β-cells increases basal and glucose-stimulated insulin secretion and Ca2+ uptake in the presence of glibenclamide, an inhibitor of the ATP-dependent potassium (KATP)-channels, thus suggesting a possible mechanism underlying KCC2-dependent insulin release. We propose that the long-time considered "neuron-specific" KCC2 co-transporter is expressed in pancreatic islet β-cells where it modulates Ca2+-dependent insulin secretion.
Collapse
Affiliation(s)
- Shams Kursan
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | | | - Pavani Beesetty
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | - Eduardo Dias-Junior
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | - Abu A Sajib
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH, 45435, USA
| | | | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH, 45435, USA.
| |
Collapse
|
11
|
Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1086-1101. [PMID: 26971832 DOI: 10.1016/j.bbabio.2016.03.012] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/31/2022]
Abstract
Succinate is an important metabolite at the cross-road of several metabolic pathways, also involved in the formation and elimination of reactive oxygen species. However, it is becoming increasingly apparent that its realm extends to epigenetics, tumorigenesis, signal transduction, endo- and paracrine modulation and inflammation. Here we review the pathways encompassing succinate as a metabolite or a signal and how these may interact in normal and pathological conditions.(1).
Collapse
|
12
|
Wan Y, Wang Q, Prud’homme GJ. GABAergic system in the endocrine pancreas: a new target for diabetes treatment. Diabetes Metab Syndr Obes 2015; 8:79-87. [PMID: 25678807 PMCID: PMC4322886 DOI: 10.2147/dmso.s50642] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Excessive loss of functional pancreatic β-cell mass, mainly due to apoptosis, is a major factor in the development of hyperglycemia in both type 1 and type 2 diabetes (T1D and T2D). In T1D, β-cells are destroyed by immunological mechanisms. In T2D, while metabolic factors are known to contribute to β-cell failure and subsequent apoptosis, mounting evidence suggests that islet inflammation also plays an important role in the loss of β-cell mass. Therefore, it is of great importance for clinical intervention to develop new therapies. γ-Aminobutyric acid (GABA), a major neurotransmitter, is also produced by islet β-cells, where it functions as an important intraislet transmitter in regulating islet-cell secretion and function. Importantly, recent studies performed in rodents, including in vivo studies of xenotransplanted human islets, reveal that GABA exerts β-cell regenerative effects. Moreover, it protects β-cells against apoptosis induced by cytokines, drugs, and other stresses, and has anti-inflammatory and immunoregulatory activities. It ameliorates the manifestations of diabetes in preclinical models, suggesting potential applications for the treatment of diabetic patients. This review outlines the actions of GABA relevant to β-cell regeneration, including its signaling mechanisms and potential interactions with other mediators. These studies increase our understanding of the regenerative processes of pancreatic β-cells, and help pave the way for the development of regenerative medicine for diabetes.
Collapse
Affiliation(s)
- Yun Wan
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College, Fudan University, Shanghai, People’s Republic of China
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St Michael’s Hospital, Toronto, ON, Canada
- Departments of Physiology and Medicine, Faculty of Medicine, Toronto, ON, Canada
- Correspondence: Qinghua Wang, Division of Endocrinology and Metabolism, St Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada, Tel +1 416 864 6060 ext 77 610, Fax +1 416 864 5140, Email
| | - Gerald J Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
13
|
Pondugula SR, Kampalli SB, Wu T, De Lisle RC, Raveendran NN, Harbidge DG, Marcus DC. cAMP-stimulated Cl- secretion is increased by glucocorticoids and inhibited by bumetanide in semicircular canal duct epithelium. BMC PHYSIOLOGY 2013; 13:6. [PMID: 23537040 PMCID: PMC3622586 DOI: 10.1186/1472-6793-13-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/11/2013] [Indexed: 12/13/2022]
Abstract
Background The vestibular system controls the ion composition of its luminal fluid through several epithelial cell transport mechanisms under hormonal regulation. The semicircular canal duct (SCCD) epithelium has been shown to secrete Cl- under β2-adrenergic stimulation. In the current study, we sought to determine the ion transporters involved in Cl- secretion and whether secretion is regulated by PKA and glucocorticoids. Results Short circuit current (Isc) from rat SCCD epithelia demonstrated stimulation by forskolin (EC50: 0.8 μM), 8-Br-cAMP (EC50: 180 μM), 8-pCPT-cAMP (100 μM), IBMX (250 μM), and RO-20-1724 (100 μM). The PKA activator N6-BNZ-cAMP (0.1, 0.3 & 1 mM) also stimulated Isc. Partial inhibition of stimulated Isc individually by bumetanide (10 & 50 μM), and [(dihydroindenyl)oxy]alkanoic acid (DIOA, 100 μM) were additive and complete. Stimulated Isc was also partially inhibited by CFTRinh-172 (5 & 30 μM), flufenamic acid (5 μM) and diphenylamine-2,2′-dicarboxylic acid (DPC; 1 mM). Native canals of CFTR+/− mice showed a stimulation of Isc from isoproterenol and forskolin+IBMX but not in the presence of both bumetanide and DIOA, while canals from CFTR−/− mice had no responses. Nonetheless, CFTR−/− mice showed no difference from CFTR+/− mice in their ability to balance (rota-rod). Stimulated Isc was greater after chronic incubation (24 hr) with the glucocorticoids dexamethasone (0.1 & 0.3 μM), prednisolone (0.3, 1 & 3 μM), hydrocortisone (0.01, 0.1 & 1 μM), and corticosterone (0.1 & 1 μM) and mineralocorticoid aldosterone (1 μM). Steroid action was blocked by mifepristone but not by spironolactone, indicating all the steroids activated the glucocorticoid, but not mineralocorticoid, receptor. Expression of transcripts for CFTR; for KCC1, KCC3a, KCC3b and KCC4, but not KCC2; for NKCC1 but not NKCC2 and for WNK1 but only very low WNK4 was determined. Conclusions These results are consistent with a model of Cl- secretion whereby Cl- is taken up across the basolateral membrane by a Na+-K+-2Cl- cotransporter (NKCC) and potentially another transporter, is secreted across the apical membrane via a Cl- channel, likely CFTR, and demonstrate the regulation of Cl- secretion by protein kinase A and glucocorticoids.
Collapse
|
14
|
Bansal P, Wang S, Liu S, Xiang YY, Lu WY, Wang Q. GABA coordinates with insulin in regulating secretory function in pancreatic INS-1 β-cells. PLoS One 2011; 6:e26225. [PMID: 22031825 PMCID: PMC3198728 DOI: 10.1371/journal.pone.0026225] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/22/2011] [Indexed: 11/18/2022] Open
Abstract
Pancreatic islet β-cells produce large amounts of γ-aminobutyric acid (GABA), which is co-released with insulin. GABA inhibits glucagon secretion by hyperpolarizing α-cells via type-A GABA receptors (GABA(A)Rs). We and others recently reported that islet β-cells also express GABA(A)Rs and that activation of GABA(A)Rs increases insulin release. Here we investigate the effects of insulin on the GABA-GABA(A)R system in the pancreatic INS-1 cells using perforated-patch recording. The results showed that GABA produces a rapid inward current and depolarizes INS-1 cells. However, pre-treatment of the cell with regular insulin (1 µM) suppressed the GABA-induced current (I(GABA)) by 43%. Zinc-free insulin also suppressed I(GABA) to the same extent of inhibition by regular insulin. The inhibition of I(GABA) occurs within 30 seconds after application of insulin. The insulin-induced inhibition of I(GABA) persisted in the presence of PI3-kinase inhibitor, but was abolished upon inhibition of ERK, indicating that insulin suppresses GABA(A)Rs through a mechanism that involves ERK activation. Radioimmunoassay revealed that the secretion of C-peptide was enhanced by GABA, which was blocked by pre-incubating the cells with picrotoxin (50 µM, p<0.01) and insulin (1 µM, p<0.01), respectively. Together, these data suggest that autocrine GABA, via activation of GABA(A)Rs, depolarizes the pancreatic β-cells and enhances insulin secretion. On the other hand, insulin down-regulates GABA-GABA(A)R signaling presenting a feedback mechanism for fine-tuning β-cell secretion.
Collapse
Affiliation(s)
- Paul Bansal
- Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, The Keenan Research Centre in the Li Ka-Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Shuanglian Wang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Shenghao Liu
- Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, The Keenan Research Centre in the Li Ka-Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yun-Yan Xiang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- * E-mail: (W-YL); (QW)
| | - Qinghua Wang
- Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, The Keenan Research Centre in the Li Ka-Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- * E-mail: (W-YL); (QW)
| |
Collapse
|
15
|
GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci U S A 2011; 108:11692-7. [PMID: 21709230 DOI: 10.1073/pnas.1102715108] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by insulitis and islet β-cell loss. Thus, an effective therapy may require β-cell restoration and immune suppression. Currently, there is no treatment that can achieve both goals efficiently. We report here that GABA exerts antidiabetic effects by acting on both the islet β-cells and immune system. Unlike in adult brain or islet α-cells in which GABA exerts hyperpolarizing effects, in islet β-cells, GABA produces membrane depolarization and Ca(2+) influx, leading to the activation of PI3-K/Akt-dependent growth and survival pathways. This provides a potential mechanism underlying our in vivo findings that GABA therapy preserves β-cell mass and prevents the development of T1D. Remarkably, in severely diabetic mice, GABA restores β-cell mass and reverses the disease. Furthermore, GABA suppresses insulitis and systemic inflammatory cytokine production. The β-cell regenerative and immunoinhibitory effects of GABA provide insights into the role of GABA in regulating islet cell function and glucose homeostasis, which may find clinical application.
Collapse
|
16
|
Isolation of Viable Porcine Islets by Selective Osmotic Shock Without Enzymatic Digestion. Transplant Proc 2010; 42:381-6. [DOI: 10.1016/j.transproceed.2009.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Davies SL, Best L, Brown PD. HCO 3--dependent volume regulation in alpha-cells of the rat endocrine pancreas. Pflugers Arch 2009; 458:621-9. [PMID: 19214560 PMCID: PMC2691524 DOI: 10.1007/s00424-009-0644-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/21/2009] [Accepted: 01/27/2009] [Indexed: 11/05/2022]
Abstract
Ion transport activity in pancreatic α-cells was assessed by studying cell volume regulation in response to anisotonic solutions. Cell volume was measured by a video imaging method, and cells were superfused with either 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid-buffered or HCO3−-buffered solutions. α-Cells did not exhibit a regulatory volume increase (RVI) in response to cell shrinkage caused by hypertonic solutions. A RVI was observed, however, in cells that had first undergone a regulatory volume decrease (RVD), but only in HCO3−-buffered solutions. RVI was also observed in response to a HCO3−-buffered hypertonic solution in which the glucose concentration was increased from 4 to 20 mM. The post-RVD RVI and the glucose-induced RVI were both inhibited by 10 μM 5-(N-methyl-N-isobutyl) amiloride or 100 μM 2,2′-(1,2-ethenediyl) bis (5-isothio-cyanatobenzenesulfonic acid), but not by 10 μM benzamil nor 10 μM bumetanide. These data suggest that Na+–H+ exchangers and Cl−–HCO3− exchangers contribute to volume regulation in α-cells.
Collapse
Affiliation(s)
- Sarah L Davies
- Faculty of Life Sciences, University of Manchester, Second Floor CTF Building, Manchester, M13 9NT, UK
| | | | | |
Collapse
|
18
|
Boom A, Lybaert P, Pollet JF, Jacobs P, Jijakli H, Golstein PE, Sener A, Malaisse WJ, Beauwens R. Expression and localization of cystic fibrosis transmembrane conductance regulator in the rat endocrine pancreas. Endocrine 2007; 32:197-205. [PMID: 18040894 DOI: 10.1007/s12020-007-9026-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/08/2007] [Accepted: 10/17/2007] [Indexed: 12/12/2022]
Abstract
Impaired glucose tolerance and overt diabetes mellitus are becoming increasingly common complications of cystic fibrosis (CF), most probably merely as a result of increased life expectancy. In order to understand the pathophysiology of cystic fibrosis-related diabetes (CFRD), knowledge on the possible expression and cell distribution of the cystic fibrosis transmembrane conductance regulator (CFTR) protein within the endocrine pancreas is required. In this report, we establish the first evidence for expression of CFTR protein in rat pancreatic islets by using independent techniques. First reverse transcriptase-polymerase chain reaction (RT-PCR) amplification showed that CFTR mRNA is present in isolated islets of Langerhans. Furthermore, the analysis of flow cytometry-separated islet cells indicated that the level of CFTR transcripts is significantly higher in the non-beta than in beta-cell populations. The expression of CFTR protein in rat islet cells was also demonstrated by Western blotting and the level of expression was also found significantly higher in the non-beta than in beta-cell populations. Last, in situ immunocytochemistry studies with two monoclonal antibodies recognizing different CFTR epitopes indicated that CFTR expression occurs mainly in glucagon-secreting alpha-cells.
Collapse
Affiliation(s)
- Alain Boom
- Laboratory of Histology, Neuroanatomy and Neuropathology, School of Medicine, Université Libre de Bruxelles, CP 620, 808, route de Lennik, 1070, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Davies SL, Brown PD, Best L. Glucose-induced swelling in rat pancreatic alpha-cells. Mol Cell Endocrinol 2007; 264:61-7. [PMID: 17112656 DOI: 10.1016/j.mce.2006.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 07/31/2006] [Accepted: 10/05/2006] [Indexed: 11/23/2022]
Abstract
Pancreatic beta-cells increase in volume when exposed to elevated concentrations of extracellular glucose. This study has examined the effects of glucose on the volumes of pancreatic alpha-cells, which like beta-cells are regulated by glucose, and intestinal epithelial Caco-2 cells which are unresponsive to glucose. Cell volume changes were monitored by a video-imaging method. Increasing the extracellular glucose concentration caused a concentration-dependent increase in alpha-cell volume over the range 1-20mM. Glucose-induced swelling was not, however, observed in Caco-2 cells. The glucose-induced swelling in both alpha- and beta-cells was abolished by 0.5mM phloretin, an inhibitor of the GLUT proteins, indicating that GLUT mediated glucose transport is a pre-requisite for swelling. Glucose metabolism also appears to be essential, as islet cell swelling was not observed with 16 mM 3-O-methyl glucose. These data suggest that glucose-induced swelling may be a property exclusive to glucose-regulated cells.
Collapse
Affiliation(s)
- Sarah L Davies
- Faculty of Life Sciences, University of Manchester, 2nd Floor Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | | | | |
Collapse
|
20
|
Klein T, Cooper TG, Yeung CH. The role of potassium chloride cotransporters in murine and human sperm volume regulation. Biol Reprod 2006; 75:853-8. [PMID: 16943364 DOI: 10.1095/biolreprod.106.054064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatozoa need to undergo regulatory volume decrease (RVD) upon ejaculation to counteract swelling due to the hypo-osmolality of female tract fluids. Defects in sperm RVD lead to failure in both cervical mucus penetration in humans and utero-tubal junction passage in mice. The role of K/Cl cotransporters (KCCs) in RVD was investigated by incubation of spermatozoa from the murine cauda epididymidis and from human ejaculates in media mimicking female tract fluid osmolalities in the presence of KCC inhibitors. Furosemide at 100 microM or more caused swelling of murine spermatozoa as detected with a flow cytometer by increased laser forward scatter over 30 to 75 min of incubation. Bumetanide, known to have low affinity for KCCs, was effective at 1 mM, whereas 10 microM and 20 microM of the specific inhibitor DIOA (dihydroindenyl-oxy alkanoic acid) increased cell volume. These drug doses were ineffective in human spermatozoa, which, however, responded to quinine, confirming the occurrence of RVD under control conditions. The molecular identity of the murine KCC isoform involved was determined at both mRNA and protein levels. Conventional RT-PCR indicated the presence of transcripts from Slc12a4 (KCC1), Slc12a6 (KCC3), and Slc12a7 (KCC4) in the testis, whereas RT-nested PCR revealed the latter two isoforms in sperm mRNA. Of these three isoforms, only SLC12A7 (KCC4) was detected in murine sperm protein by Western blotting. Therefore, besides organic osmolyte efflux and KCl release through separate K(+) and Cl(-) ion channels, SLC12A7 also is involved in murine but not human sperm RVD mechanisms.
Collapse
Affiliation(s)
- T Klein
- Institute of Reproductive Medicine, University of Münster, D-48129 Münster, Germany
| | | | | |
Collapse
|
21
|
Le Rouzic P, Ivanov TR, Stanley PJ, Baudoin FMH, Chan F, Pinteaux E, Brown PD, Luckman SM. KCC3 and KCC4 expression in rat adult forebrain. Brain Res 2006; 1110:39-45. [PMID: 16872584 DOI: 10.1016/j.brainres.2006.06.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 06/12/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
Potassium chloride ion cotransporters (KCCs) are part of a family of transporters classically described as being involved in cell volume regulation. Recently, KCC2 has been shown to have a role in the development of the inhibitory actions of amine transmitters, whereas KCC3 also plays a fundamental role in the development and function of the central and peripheral nervous system. We have re-assessed the expression of each of the known KCCs in the rat forebrain using RT-PCR and in situ hybridisation histochemistry. As well as confirming the widespread expression of KCC1 and KCC2 throughout the brain, we now show a more restricted expression of KCC3a in the hippocampus, choroid plexus and piriform cortex, as well as KCC4 in the choroid plexus and the suprachiasmatic nucleus of the hypothalamus. The expression of KCC4 in the latter and KCC2 in the lateral hypothalamic and ventromedial hypothalamic nuclei suggests that these cotransporters may have selective roles in neuroendocrine or homeostatic functions. Finally, we demonstrate the existence of a truncated splice variation of KCC3a in the rat that appears to be expressed exclusively in neurons (as is KCC2), whereas the native form of KCC3a and KCC4 appears to be expressed in glial cells.
Collapse
Affiliation(s)
- P Le Rouzic
- Faculty of Life Sciences, Stopford Building, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Best L. Glucose-induced electrical activity in rat pancreatic beta-cells: dependence on intracellular chloride concentration. J Physiol 2005; 568:137-44. [PMID: 16024506 PMCID: PMC1474780 DOI: 10.1113/jphysiol.2005.093740] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A rise in glucose concentration depolarizes the beta-cell membrane potential leading to electrical activity and insulin release. It is generally believed that closure of KATP channels underlies the depolarizing action of glucose, though work from several laboratories has indicated the existence of an additional anionic mechanism. It has been proposed that glucose activates a volume-regulated anion channel, generating an inward current due to Cl- efflux. This mechanism requires that intracellular [Cl-] is maintained above its electrochemical equilibrium. This hypothesis was tested in rat beta-cells by varying [Cl-] in the patch pipette solution using the Cl--permeable antibiotic amphotericin B to allow Cl- equilibration with the cell interior. Under such conditions, a depolarization and electrical activity could be evoked by 16 mM glucose with pipette solutions containing 80 or 150 mM Cl-. At 40 or 20 mM Cl-, a subthreshold depolarization was usually observed, whilst further reduction to 12 or 6 mM abolished depolarization, in some cases leading to a glucose-induced hyperpolarization. With a pipette solution containing gramicidin, which forms Cl--impermeable pores, glucose induced a depolarization and electrical activity irrespective of [Cl-] in the pipette solution. Under the latter conditions, glucose-induced electrical activity was prevented by bumetanide, an inhibitor of the Na+-K+-2Cl- co-transporter. This inhibition could be overcome by the use of amphotericin B with a high [Cl-] pipette solution. These findings suggest that the maintenance of high intracellular [Cl-] in the beta-cell is an important determinant in glucose-induced depolarization, and support the hypothesis that beta-cell stimulation by glucose involves activation of the volume-regulated anion channel and generation of an inward Cl- current.
Collapse
Affiliation(s)
- L Best
- Department of Medicine, University of Manchester, Multipurpose Building, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, UK.
| |
Collapse
|