1
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Tan L, Ma R, Reeves T, Katz AJ, Levi N. Repurposing Farnesol for Combating Drug-Resistant and Persistent Single and Polymicrobial Biofilms. Antibiotics (Basel) 2024; 13:350. [PMID: 38667026 PMCID: PMC11047559 DOI: 10.3390/antibiotics13040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Biofilm-associated infections caused by drug-resistant and persistent bacteria remain a significant clinical challenge. Here we report that farnesol, commercially available as a cosmetic and flavoring agent, shows significant anti-biofilm properties when dissolved in ethanol using a proprietary formulation emulsion technique. Farnesol in the new formulation inhibits biofilm formation and disrupts established biofilms for Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, including their polymicrobial biofilms, and, moreover, kills S. aureus persister cells that have developed tolerance to antibiotics. No resistance to farnesol was observed for S. aureus after twenty continuous passages. Farnesol combats biofilms by direct killing, while also facilitating biofilm detachment. Furthermore, farnesol was safe and effective for preventing and treating biofilm-associated infections of both types of bacteria in an ex vivo burned human skin model. These data suggest that farnesol in the new formulation is an effective broad-spectrum anti-biofilm agent with promising clinical potential. Due to its established safety, low-cost, versatility, and excellent efficacy-including ability to reduce persistent and resistant microbial populations-farnesol in the proprietary formulation represents a compelling transformative, translational, and commercial platform for addressing many unsolved clinical challenges.
Collapse
Affiliation(s)
- Li Tan
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.T.); (A.J.K.)
| | - Rong Ma
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.T.); (A.J.K.)
| | - Tony Reeves
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Adam J. Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.T.); (A.J.K.)
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.T.); (A.J.K.)
| |
Collapse
|
3
|
Wrobel D, Edr A, Zemanova E, Strašák T, Semeradtova A, Maly J. The influence of amphiphilic carbosilane dendrons on lipid model membranes. Chem Phys Lipids 2023; 255:105314. [PMID: 37356611 DOI: 10.1016/j.chemphyslip.2023.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Amphiphilic dendrons represent a relatively novel class of molecules which may show many unique properties suitable for applications in a field of molecular biology and nanomedicine. They were frequently studied as platforms suitable for drug delivery systems as were, e.g. polymersomes or hybrid lipid-polymer nanoparticles. Recently, natural extracellular lipid vesicles (EVs), called exosomes (EXs), were shown to be a promising candidate in drug delivery applications. Formation of hybrid exosome-dendron nanovesicles could bring benefits in their simple conjugation with selective targeting moieties. Unfortunately, the complex architecture of biological membranes, EXs included, makes obstacles in elucidating the important parameters and mechanisms of interaction with the artificial amphiphilic structures. The aim of the presented work was to study the interaction of two types of amphiphilic carbosilane dendritic structures (denoted as DDN-1 and DDN-2) suitable for further modification with streptavidin (DDN-1) or using click-chemistry approach (DDN-2), with selected neutral and negatively charged lipid model membranes, partially mimicking the basic properties of natural EXs biomembranes. To meet the goal, a number of biophysical methods were used for determination of the degree and mechanisms of the interaction. The results showed that the strength of interactions of amphiphilic dendrons with liposomes was related with surface charge of liposomes. Several steps of interactions were disclosed. The initialization step was mainly coupled with amphiphilic dendrons - liposomes surface interaction resulting in destabilization of large self-assembled amphiphilic dendrons structures. Such destabilization was more significant with liposomes of higher negative charge. With increasing concentration of amphiphilic dendrons in a solution the interactions were taking place also in the hydrophobic part of bilayer. Further increase of nanoparticle concentration resulted in a gradual dendritic cluster formation in a lipid bilayer structure. Due to high affinity of amphiphilic dendrons to model lipid bilayers the conclusion can be drawn that they represent promising platforms also for decoration of exosomes or other kinds of natural lipid vehicles. Such organized hybrid dendron-lipid biomembranes may be advantageous for their subsequent post-functionalization with small molecules, large biomacromolecules or polymers suitable for targeted drug-delivery or theranostic applications.
Collapse
Affiliation(s)
- Dominika Wrobel
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic.
| | - Antonin Edr
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Eliska Zemanova
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic
| | - Tomáš Strašák
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Alena Semeradtova
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic
| | - Jan Maly
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, 400 96 Ustí nad Labem, Czech Republic
| |
Collapse
|
4
|
Stampolaki M, Malwal SR, Alvarez-Cabrera N, Gao Z, Moniruzzaman M, Babii SO, Naziris N, Rey-Cibati A, Valladares-Delgado M, Turcu AL, Baek KH, Phan TN, Lee H, Alcaraz M, Watson S, van der Watt M, Coertzen D, Efstathiou N, Chountoulesi M, Shoen CM, Papanastasiou IP, Brea J, Cynamon MH, Birkholtz LM, Kremer L, No JH, Vázquez S, Benaim G, Demetzos C, Zgurskaya HI, Dick T, Oldfield E, D. Kolocouris A. Synthesis and Testing of Analogs of the Tuberculosis Drug Candidate SQ109 against Bacteria and Protozoa: Identification of Lead Compounds against Mycobacterium abscessus and Malaria Parasites. ACS Infect Dis 2023; 9:342-364. [PMID: 36706233 PMCID: PMC10615177 DOI: 10.1021/acsinfecdis.2c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 18 analogs of SQ109 and tested them against M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis, and Escherichia coli, as well as against the protozoan parasites Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana, and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ∼4-8-fold more active than SQ109 against M. abscessus, including a highly drug-resistant strain harboring an A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl, and benzyl analogs had 4-10× increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new antimalarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3 and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, which is expected to lead to enhanced uncoupler activity.
Collapse
Affiliation(s)
- Marianna Stampolaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Satish R. Malwal
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | | | - Zijun Gao
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Mohammad Moniruzzaman
- University of Oklahoma, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019-5251, USA
| | - Svitlana O. Babii
- University of Oklahoma, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019-5251, USA
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - André Rey-Cibati
- Instituto de Estudios Avanzados, Caracas, Venezuela Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Mariana Valladares-Delgado
- Instituto de Estudios Avanzados, Caracas, Venezuela Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, E-08028, Spain
| | - Kyung-Hwa Baek
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Trong-Nhat Phan
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Mattheo Alcaraz
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR9004, Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Savannah Watson
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Natasa Efstathiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Carolyn M. Shoen
- Central New York Research Corporation, Veterans Affairs Medical Center, Syracuse, NY 13210, U
| | - Ioannis P. Papanastasiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Jose Brea
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center, Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Michael H. Cynamon
- Central New York Research Corporation, Veterans Affairs Medical Center, Syracuse, NY 13210, U
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR9004, Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, E-08028, Spain
| | - Gustavo Benaim
- Instituto de Estudios Avanzados, Caracas, Venezuela Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019-5251, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20007, USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Antonios D. Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| |
Collapse
|
5
|
Ito T, Sims KR, Liu Y, Xiang Z, Arthur RA, Hara AT, Koo H, Benoit DSW, Klein MI. Farnesol delivery via polymeric nanoparticle carriers inhibits cariogenic cross-kingdom biofilms and prevents enamel demineralization. Mol Oral Microbiol 2022; 37:218-228. [PMID: 35859523 PMCID: PMC9529802 DOI: 10.1111/omi.12379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Streptococcus mutans and Candida albicans are frequently detected together in the plaque from patients with early childhood caries (ECC) and synergistically interact to form a cariogenic cross-kingdom biofilm. However, this biofilm is difficult to control. Thus, to achieve maximal efficacy within the complex biofilm microenvironment, nanoparticle carriers have shown increased interest in treating oral biofilms in recent years. Here, we assessed the anti-biofilm efficacy of farnesol (Far), a hydrophobic antibacterial drug and repressor of Candida filamentous forms, against cross-kingdom biofilms employing drug delivery via polymeric nanoparticle carriers (NPCs). We also evaluated the effect of the strategy on teeth enamel demineralization. The farnesol-loaded NPCs (NPC+Far) resulted in a 2-log CFU/mL reduction of S. mutans and C. albicans (hydroxyapatite disc biofilm model). High-resolution confocal images further confirmed a significant reduction in exopolysaccharides, smaller microcolonies of S. mutans, and no hyphal form of C. albicans after treatment with NPC+Far on human tooth enamel (HT) slabs, altering the biofilm 3D structure. Furthermore, NPC+Far treatment was highly effective in preventing enamel demineralization on HT, reducing lesion depth (79% reduction) and mineral loss (85% reduction) versus vehicle PBS-treated HT, while NPC or Far alone had no differences with the PBS. The drug delivery via polymeric NPCs has the potential for targeting bacterial-fungal biofilms associated with a prevalent and costly pediatric oral disease, such as ECC.
Collapse
Affiliation(s)
- Tatsuro Ito
- Department of Pediatric Dentistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth R. Sims
- Department of Translational Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenting Xiang
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rodrigo A. Arthur
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Anderson T. Hara
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, Department of Chemical Engineering, Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Marlise I. Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
6
|
Nguyen TQT, Lund FW, Zanjani AAH, Khandelia H. Magic mushroom extracts in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183957. [PMID: 35561790 DOI: 10.1016/j.bbamem.2022.183957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The active hallucinogen of magic mushrooms, psilocin, is being repurposed to treat nicotine addiction and treatment-resistant depression. Psilocin belongs to the tryptamine class of psychedelic compounds which include the hormone serotonin. It is believed that psilocin exerts its effect by binding to the serotonin 5-HT2A receptor. However, recent in-vivo evidence suggests that psilocin may employ a different mechanism to exert its effects. Membrane-mediated receptor desensitization of neurotransmitter receptors is one such mechanism. We compare the impact of the neutral and charged versions of psilocin and serotonin on the properties of zwitterionic and anionic lipid membranes using molecular dynamics simulations and calorimetry. Both compounds partition to the lipid interface and induce membrane thinning. The tertiary amine in psilocin, as opposed to the primary amine in serotonin, limits psilocin's impact on the membrane although more psilocin partitions into the membrane than serotonin. Calorimetry corroborates that both compounds induce a classical melting point depression like anesthetics do. Our results also lend support to a membrane-mediated receptor-binding mechanism for both psilocin and serotonin and provide physical insights into subtle chemical changes that can alter the membrane-binding of psychedelic compounds.
Collapse
Affiliation(s)
- Teresa Quynh Tram Nguyen
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Frederik Wendelboe Lund
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ali Asghar Hakami Zanjani
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Himanshu Khandelia
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
7
|
Altunayar-Unsalan C, Unsalan O, Mavromoustakos T. Molecular interactions of hesperidin with DMPC/cholesterol bilayers. Chem Biol Interact 2022; 366:110131. [PMID: 36037876 DOI: 10.1016/j.cbi.2022.110131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
Since cell membranes are complex systems, the use of model lipid bilayers is quite important for the study of their interactions with bioactive molecules. Mammalian cell membranes require cholesterol (CHOL) for their structure and function. For this reason, the mixtures of phospholipid and cholesterol are necessary to use in model membrane studies to better simulate the real systems. In the present study, we investigated the effect of the incorporation of hesperidin in model membranes consisting of dimyristoylphosphatidylcholine (DMPC) and CHOL by using differential scanning calorimetry (DSC), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and atomic force microscopy (AFM). ATR-FTIR results demonstrated that hesperidin increases the fluidity of the DMPC/CHOL binary system. DSC findings indicated that the presence of 5 mol% hesperidin induces a broadening of the main phase transition consisting of three overlapping components. AFM experiments showed that hesperidin increases the thickness of DMPC/CHOL lipid bilayer model membranes. In addition to experimental results, molecular docking studies were conducted with hesperidin and human lanosterol synthase (LS), which is an enzyme found in the final step of cholesterol synthesis, to characterize hesperidin's interactions with its surrounding via its hydroxyl and oxygen groups. Then, hesperidin's ADME/Tox (absorption, distribution, metabolism, excretion and toxicity) profile was computed to see the potential impact on living system. In conclusion, considering the data obtained from experimental studies, this work ensures molecular insights in the interaction between a flavonoid, as an antioxidant drug model, and lipids mimicking those found in mammalian membranes. Moreover, computational studies demonstrated that hesperidin may be a great potential for use as a therapeutic agent for hypercholesterolemia due to its antioxidant property.
Collapse
Affiliation(s)
- Cisem Altunayar-Unsalan
- Ege University Central Research Testing and Analysis Laboratory Research and Application Center, 35100, Bornova, Izmir, Turkey.
| | - Ozan Unsalan
- Ege University, Faculty of Science, Department of Physics, 35100, Bornova, Izmir, Turkey.
| | - Thomas Mavromoustakos
- Section of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece.
| |
Collapse
|
8
|
Yenice Gürsu B. Potential antibiofilm activity of farnesol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00241-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCandida species are ubiquitous fungal pathogens and are the most common causes of mucosal and invasive fungal infections in humans. Especially Candida albicans commonly resides as a commensal in the mucosal tissues of approximately half of the human population. When the balance of the normal flora is disrupted or the immune defenses are compromised, Candida species can become pathogenic, often causing recurrent disease in susceptible individuals.The treatments available for Candida infection are commonly drug-based and can involve topical and systemic antifungal agents. However, the use of standard antifungal therapies can be limited because of toxicity, low efficacy rates, and drug resistance. Candida species ability to produce drug-resistant biofilm is an important factor in human infections, because microorganisms within biofilm benefit from various advantages over their planktonic counterparts including protection from antimicrobials and chemicals. These limitations emphasize the need to develop new and more effective antifungal agents. Natural products are attractive alternatives for this purpose due to their broad spectrum of biological activities. Farnesol is produced by many microorganisms and found in some essential oils. It has also a great attention as a quorum-sensing molecule and virulence factor. It has also antimicrobial potential due to its inhibitory effects on various bacteria and fungi. However, as it is a hydrophobic component, its solubility and biofilm inhibiting properties are limited.To overcome these shortcomings, nanoparticle-based drug delivery systems have been successfully used. For this purpose, especially using biodegradable polymeric nanoparticles has gained increasing attention owing to their biocompatibility and minimal toxicity. Poly (DL-lactide-co-glycolide) (PLGA) is the most widely used polymer in this area. In this study, farnesol is loaded to PLGA nanoparticles (F-PLGA NPs) by emulsion evaporation method and characterized by DLS, TEM, and FT-IR analyses. Our TEM findings indicate that the sizes of F-PLGA NPs are approximately 140 nm. The effects of F-PLGA NPs on planktonic cells and biofilm formation of C. albicans were compared with effects of farnesol alone. Farnesol inhibits the growth at a range of 53% at a concentration of 2.5 μL compared to the control group. This rate is 45% for F-PLGA NPs at the same concentration. However, although farnesol amount in F-PLGA is approximately 22.5% of the total volume, the observed effect is significant. In TEM examinations, planktonic Candida cells treated with farnesol showed relatively regular ultrastructural morphology. Few membrane and wall damage and electron density in the cytoplasm were determined. In F-PLGA NP-treated cells, increased irregular cell morphology, membrane and wall damages, and large vacuoles are observed. Our SEM and XTT data suggest that F-PLGA NPs can reduce the biofilm formation at lower concentrations than farnesol alone 57%, and our results showed that F-PLGA NPs are effective and biocompatible alternatives for inhibiting growth and biofilm formation of C. albicans, but detailed studies are needed.
Collapse
|
9
|
Pinho JO, Amaral JD, Castro RE, Rodrigues CMP, Casini A, Soveral G, Gaspar MM. Copper complex nanoformulations featuring highly promising therapeutic potential in murine melanoma models. Nanomedicine (Lond) 2019; 14:835-850. [DOI: 10.2217/nnm-2018-0388] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Preclinical evaluation of a cytotoxic copper (II) complex formulated in long circulating nanoliposomes for melanoma treatment. Materials & methods: Liposomal nanoformulations of the copper complex were characterized in terms of thermodynamic behavior (differential scanning calorimeter), pH-sensitivity (spectrophotometry) and antiproliferative effects against murine melanoma B16F10 cells in vitro. Preclinical studies were performed in a C57BL/6 syngeneic melanoma model. Results: Nanoformulations were thermodynamically stable, and CHEMS-containing nanoliposomes were pH-sensitive and preserved the antiproliferative properties of the copper compound. These nanoformulations significantly impaired tumor progression in vivo, devoid of toxic side effects, compared with control mice or mice treated with the free metallodrug. Conclusion: Copper complex-containing nanoliposomes demonstrate high anticancer efficacy and safety, constituting a step forward to the development of more effective therapeutic strategies against melanoma.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília MP Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Angela Casini
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
10
|
Sims KR, Liu Y, Hwang G, Jung HI, Koo H, Benoit DSW. Enhanced design and formulation of nanoparticles for anti-biofilm drug delivery. NANOSCALE 2018; 11:219-236. [PMID: 30525159 PMCID: PMC6317749 DOI: 10.1039/c8nr05784b] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biofilms are surface-bound, structured microbial communities underpinning persistent bacterial infections. Biofilms often create acidic pH microenvironments, providing opportunities to leverage responsive drug delivery systems to improve antibacterial efficacy. Here, the antibacterial efficacy of novel formulations containing pH-responsive polymer nanoparticle carriers (NPCs) and farnesol, a hydrophobic antibacterial drug, were investigated. Multiple farnesol-loaded NPCs, which varied in overall molecular weight and corona-to-core molecular weight ratios (CCRs), were tested using standard and saturated drug loading conditions. NPCs loaded at saturated conditions exhibited ∼300% greater drug loading capacity over standard conditions. Furthermore, saturated loading conditions sustained zero-ordered drug release over 48 hours, which was 3-fold longer than using standard farnesol loading. Anti-biofilm activity of saturated NPC loading was markedly amplified using Streptococcus mutans as a biofilm-forming model organism. Specifically, reductions of ∼2-4 log colony forming unit (CFU) were obtained using microplate and saliva-coated hydroxyapatite biofilm assays. Mechanistically, the new formulation reduced total biomass by disrupting insoluble glucan formation and increased NPC-cell membrane localization. Finally, thonzonium bromide, a highly potent, FDA-approved antibacterial drug with similar alkyl chain structure to farnesol, was also loaded into NPCs and used to treat S. mutans biofilms. Similar to farnesol-loaded NPCs, thonzonium bromide-loaded NPCs increased drug loading capacity ≥2.5-fold, demonstrated nearly zero-order release kinetics over 96 hours, and reduced biofilm cell viability by ∼6 log CFU. This work provides foundational insights that may lead to clinical translation of novel topical biofilm-targeting therapies, such as those for oral diseases.
Collapse
Affiliation(s)
- Kenneth R. Sims
- Translational Biomedical Science, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Yuan Liu
- Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Geelsu Hwang
- Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hoi In Jung
- Department of Preventive Dentistry & Public Oral Health, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Hyun Koo
- Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corresponding Authors: ,
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Center for Oral Biology, University of Rochester, Rochester, New York, United States
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States
- Department of Chemical Engineering, University of Rochester, Rochester, New York, United States
- Corresponding Authors: ,
| |
Collapse
|
11
|
Nunes T, Cardoso P, Freitas R, Figueira E. Protective effects of farnesol on a Rhizobium strain exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:622-629. [PMID: 30241090 DOI: 10.1016/j.ecoenv.2018.07.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Soil acts as a repository for many metals that human activity releases into the environment. Cadmium enters agricultural soils primarily from application of phosphate fertilizers and sewage sludge. Among soil bacteria, rhizobia have a great agronomic and environmental significance and are major contributors to a sustainable maintenance of soil fertility. However, the services that this group of microorganisms provides are affected by environmental constraints, such as Cd contamination. Bioactive compounds also influence soil microorganisms. Farnesol is a phytocompound with recognized bioactivity, inducing both beneficial and harmful effects. In this study, Rhizobium sp. strain E20-8 was exposed to sole or combined exposure to Cd and farnesol. Results showed that farnesol (25 and 200 µM) did not affect rhizobia; exposure to Cd (µM) inhibited rhizobia growth and induced several biomarkers of oxidative stress; exposure to the combination of farnesol and Cd reduced oxidative damage, and the highest concentration of farnesol tested reduced Cd accumulation and allowed a significant growth recovery. Farnesol protective effects on rhizobia exposed to Cd is novel information which can be used in the development of microbe-based environmental engineering strategies for restoration of metal contaminated areas.
Collapse
Affiliation(s)
- Tiago Nunes
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Budziak I, Arczewska M, Sachadyn-Król M, Matwijczuk A, Waśko A, Gagoś M, Terpiłowski K, Kamiński DM. Effect of polyols on the DMPC lipid monolayers and bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2166-2174. [PMID: 30409512 DOI: 10.1016/j.bbamem.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
In this study, the effect of polyols, erythritol, xylitol, mannitol, on a model membrane systems composed of DMPC was investigated using differential scanning calorimetry and Fourier transform infrared spectroscopy. Generally, it is considered that polyols possess strong hydrophilic properties, and either does not interact with the hydrophobic environment at all, or these interactions are very weak. To better understand the mutual interactions between polyols and the lipid system, the Langmuir technique was used to examine the molecular organization of monolayers and to calculate their thickness in the presence of polyols at the subphase. The detailed description of the interactions between polyols and DMPC molecules was complemented by the analysis of the morphology of monolayers with the application of Brewster angle microscopy. From ATR FTIR, the significant spectral shift is observed only for the PO2- stretching band, which correlates strongly with the polyol chain-length. The longer the polyol chain, the weaker the observed interactions with lipid molecules. The most important findings, obtained from thickness measurements, reveal that short-chain polyols may prevent the formation of bilayers by the DMPC molecules under high surface pressure. The changes in the organization of DMPC monolayers on the surface, as visualized by Brewster angle microscopy, showed that the domains observed for phospholipid film spread on pure water differ substantially from those containing polyols in the subphase.
Collapse
Affiliation(s)
- Iwona Budziak
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Marta Arczewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Monika Sachadyn-Król
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Konrad Terpiłowski
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Square 3, 20-031 Lublin, Poland
| | - Daniel M Kamiński
- Department of Crystallography, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie Skłodowska Square 3, Lublin 20-031, Poland.
| |
Collapse
|
13
|
Zhang SY, Sperlich B, Li FY, Al-Ayoubi S, Chen HX, Zhao YF, Li YM, Weise K, Winter R, Chen YX. Phosphorylation Weakens but Does Not Inhibit Membrane Binding and Clustering of K-Ras4B. ACS Chem Biol 2017; 12:1703-1710. [PMID: 28448716 DOI: 10.1021/acschembio.7b00165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
K-Ras4B is one of the most frequently mutated Ras isoforms in cancer. The signaling activity of K-Ras4B depends on its localization to the plasma membrane (PM), which is mainly mediated by its polybasic farnesylated C-terminus. On top of the constitutive cycles that maintain the PM enrichment of K-Ras4B, conditional phosphorylation at Ser181 located within this motif has been found to be involved in regulating K-Ras4B's cell distribution and signaling activity. However, discordant observations have undermined our understanding of the role this phosphorylation plays. Here, we report an efficient strategy for producing K-Ras4B simultaneously bearing phosphate, farnesyl, and methyl modifications on a preparative scale, a very useful in vitro system when used in concert with model biomembranes. By using this system, we determined that phosphorylation at Ser181 does not fully inhibit membrane binding and clustering of K-Ras4B but reduces its membrane binding affinity, depending on membrane fluidity. In addition, phosphorylated K-Ras4B maintains tight association with its cytosolic shuttle protein PDEδ. After delivering K-Ras4B containing nonhydrolyzable phosphoserine mimetic into cells, the protein displayed a decreasing PM distribution compared with nonphosphorylable K-Ras4B, implying that phosphorylation might facilitate the dissociation of K-Ras4B from the PM. In addition, phosphorylation does not alter the localization of K-Ras4B in the liquid-disordered lipid subdomains of the membrane but slightly alters the thermotropic properties of K-Ras4B-incorporated membranes probably due to minor differences in membrane partitioning and dynamics. These results provide novel mechanistic insights into the role that phosphorylation at Ser181 plays in regulating K-Ras4B's distribution and activity.
Collapse
Affiliation(s)
- Si-Yu Zhang
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Benjamin Sperlich
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Fang-Yi Li
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Samy Al-Ayoubi
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Hong-Xue Chen
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Fen Zhao
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan-Mei Li
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Katrin Weise
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Roland Winter
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Yong-Xiang Chen
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Zhang T, Luo Q, Yang L, Jiang H, Yang H. Characterizing the interactions of two lipid modifications with lipid rafts: farnesyl anchors vs. palmitoyl anchors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:19-30. [PMID: 28585042 DOI: 10.1007/s00249-017-1217-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 05/22/2017] [Indexed: 11/30/2022]
Abstract
Farnesyl (Far) and palmitoyl (Pal) anchors play important roles in the traffic of many lipidated proteins. Herein, we show the distinctive interactions and influences of the two lipid modifications on lipid rafts (LRs) and non-raft-like membranes using molecular dynamics simulations. Palmitoyl anchors behave in a more ordered fashion, pack tighter with the lipids of LRs and diffuse at a slower rate than farnesyl anchors in LRs. When interacting with non-raft-like membranes these two types of anchors become less ordered, pack more loosely with lipids, and diffuse at a higher rate. By calculating both the number of contacts per chain and the number of contact atoms per carbon of the two anchors with the lipid components, we found that the palmitoyl chains preferred to associate with the saturated chains of lipids and cholesterol molecules in LRs, while farnesyl chains favored association with saturated chains and unsaturated chains. For non-raft-like membranes, these two lipid anchors had roughly the same preference for the three types of contact lipid chains. Additionally, palmitoyl anchors caused cholesterol to orient more perpendicular to the membrane surface, surrounding lipids to become more ordered, and lipid lateral fluidity to reduce significantly, compared to farnesyl anchors in LRs. By contrast, the POPE and DSPC became much less ordered, cholesterol became more tilted, and lipids became more fluid, when the two types lipid anchors were inserted in non-raft-like membranes. These findings are useful for understanding the traffic mechanisms of lipidated proteins with farnesyl and palmitoyl modifications in cell membranes.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qichao Luo
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Hualiang Jiang
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaiyu Yang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
15
|
Schmiele M, Busch S, Morhenn H, Schindler T, Schmutzler T, Schweins R, Lindner P, Boesecke P, Westermann M, Steiniger F, Funari SS, Unruh T. Structural Characterization of Lecithin-Stabilized Tetracosane Lipid Nanoparticles. Part II: Suspensions. J Phys Chem B 2016; 120:5513-26. [DOI: 10.1021/acs.jpcb.6b02520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Schmiele
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - S. Busch
- German
Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz
Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr.
1, 85747 Garching, Germany
| | - H. Morhenn
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85747 Garching, Germany
| | - T. Schindler
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - T. Schmutzler
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - R. Schweins
- DS/LSS, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS20156, 38042 Grenoble CEDEX 9, France
| | - P. Lindner
- DS/LSS, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS20156, 38042 Grenoble CEDEX 9, France
| | - P. Boesecke
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, CS40220, 38042 Grenoble CEDEX 9, France
| | - M. Westermann
- Center for Electron Microscopy of the Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - F. Steiniger
- Center for Electron Microscopy of the Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | | | - T. Unruh
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Wrobel D, Appelhans D, Signorelli M, Wiesner B, Fessas D, Scheler U, Voit B, Maly J. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1490-501. [PMID: 25843678 DOI: 10.1016/j.bbamem.2015.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/31/2023]
Abstract
The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers - OS) or completely (dense shell glycodendrimers - DS) modified with maltose residues. As a model membrane, two types of 100nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between maltose shell of glycodendrimers and surface membrane of liposome.
Collapse
Affiliation(s)
- Dominika Wrobel
- Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czech Republic.
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Marco Signorelli
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Universita di Milano, Milano, Italy
| | - Brigitte Wiesner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Dimitrios Fessas
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Universita di Milano, Milano, Italy
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Jan Maly
- Department of Biology, Jan Evangelista Purkinje University, Usti nad Labem, Czech Republic
| |
Collapse
|
17
|
Structural and functional analysis of Bacillus subtilis YisP reveals a role of its product in biofilm production. ACTA ACUST UNITED AC 2014; 21:1557-63. [PMID: 25308276 DOI: 10.1016/j.chembiol.2014.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/20/2022]
Abstract
YisP is involved in biofilm formation in Bacillus subtilis and has been predicted to produce C30 isoprenoids. We determined the structure of YisP and observed that it adopts the same fold as squalene and dehydrosqualene synthases. However, the first aspartate-rich motif found in essentially all isoprenoid synthases is aspartate poor in YisP and cannot catalyze head-to-head condensation reactions. We find that YisP acts as a phosphatase, catalyzing formation of farnesol from farnesyl diphosphate, and that it is the first phosphatase to adopt the fold seen in the head-to-head prenyl synthases. Farnesol restores biofilm formation in a Δyisp mutant and modifies lipid membrane structure similarly to the virulence factor staphyloxanthin. This work clarifies the role of YisP in biofilm formation and suggests an intriguing possibility that many of the YisP-like homologs found in other bacteria may also have interesting products and functions.
Collapse
|
18
|
Gagnon MC, Turgeon B, Savoie JD, Parent JF, Auger M, Paquin JF. Evaluation of the effect of fluorination on the property of monofluorinated dimyristoylphosphatidylcholines. Org Biomol Chem 2014; 12:5126-35. [DOI: 10.1039/c4ob00934g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis and characterization of three monofluorinated dimyristoylphosphatidylcholines, with the fluorine atom located at the extremities of the acyl chain in position 2 of the glycerol (sn-2), is described.
Collapse
Affiliation(s)
- Marie-Claude Gagnon
- Department of Chemistry
- PROTEO
- CERMA
- Québec, Canada
- Canada Research Chair in Organic and Medicinal Chemistry
| | - Bianka Turgeon
- Department of Chemistry
- PROTEO
- CERMA
- Québec, Canada
- Canada Research Chair in Organic and Medicinal Chemistry
| | - Jean-Daniel Savoie
- Department of Chemistry
- PROTEO
- CERMA
- Québec, Canada
- Canada Research Chair in Organic and Medicinal Chemistry
| | - Jean-François Parent
- Department of Chemistry
- PROTEO
- CERMA
- Québec, Canada
- Canada Research Chair in Organic and Medicinal Chemistry
| | | | - Jean-François Paquin
- Canada Research Chair in Organic and Medicinal Chemistry
- Department of Chemistry
- PROTEO
- CGCC
- Québec, Canada
| |
Collapse
|
19
|
Fogle C, Rowat AC, Levine AJ, Rudnick J. Shape transitions in soft spheres regulated by elasticity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052404. [PMID: 24329276 DOI: 10.1103/physreve.88.052404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Indexed: 06/03/2023]
Abstract
We study elasticity-driven morphological transitions of soft spherical core-shell structures in which the core can be treated as an isotropic elastic continuum and the surface or shell as a tensionless liquid layer, whose elastic response is dominated by bending. To generate the transitions, we consider the case where the surface area of the liquid layer is increased for a fixed amount of interior elastic material. We find that generically there is a critical excess surface area at which the isotropic sphere becomes unstable to buckling. At this point it adopts a lower symmetry wrinkled structure that can be described by a spherical harmonic deformation. We study the dependence of the buckled sphere and critical excess area of the transition on the elastic parameters and size of the system. We also relate our results to recent experiments on the wrinkling of gel-filled vesicles as their interior volume is reduced. The theory may have broader applications to a variety of related structures from the macroscopic to the microscopic, including the wrinkling of dried peas, raisins, as well as the cell nucleus.
Collapse
Affiliation(s)
- Craig Fogle
- Department of Physics, UCLA, Los Angeles, California 90095-1596, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095, USA and Department of Bioengineering, UCLA, Los Angeles, California 90095, USA
| | - Alex J Levine
- Department of Physics, UCLA, Los Angeles, California 90095-1596, USA and Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095-1596, USA and Department of Biomathematics, UCLA, Los Angeles, California 90095-1596, USA
| | - Joseph Rudnick
- Department of Physics, UCLA, Los Angeles, California 90095-1596, USA
| |
Collapse
|
20
|
Structure and conformational dynamics of DMPC/dicationic surfactant and DMPC/dicationic surfactant/DNA systems. Int J Mol Sci 2013; 14:7642-59. [PMID: 23571492 PMCID: PMC3645708 DOI: 10.3390/ijms14047642] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/21/2013] [Accepted: 03/29/2013] [Indexed: 11/25/2022] Open
Abstract
Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3- decyloxymethyl) pentane chloride (gemini surfactant) on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR) and circular dichroism (CD) spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase.
Collapse
|
21
|
Duelund L, Amiot A, Fillon A, Mouritsen OG. Influence of the active compounds of Perilla frutescens leaves on lipid membranes. JOURNAL OF NATURAL PRODUCTS 2012; 75:160-166. [PMID: 22272932 DOI: 10.1021/np200713q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The leaves of the annual plant Perilla frutescens are used widely as a spice and a preservative in Asian food as well as in traditional medicine. The active compounds in the leaves are the cyclic monoterpene limonene (1) and its bio-oxidation products, perillaldehyde (2), perillyl alcohol (3), and perillic acid (4). These compounds are known to be biologically active and exhibit antimicrobial, anticancer, and anti-inflammatory effects that could all be membrane mediated. In order to assess the possible biophysical effects of these compounds on membranes quantitatively, the influence of limonene and its bio-oxidation products has been investigated on a membrane model composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), and electron paramagnetic resonance spectroscopy (EPR). It was found that limonene (1), perillyl alcohol (2), and perillaldehyde (3) partitioned into the DMPC membrane, whereas perillic acid (4) did not. The DSC results demonstrated that all the partitioning compounds strongly perturbed the phase transition of DMPC, whereas no perturbation of the local membrane order was detected by EPR spectroscopy. The results of the study showed that limonene (1) and its bio-oxidation products affect membranes in rather subtle ways.
Collapse
Affiliation(s)
- Lars Duelund
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
22
|
Décanis N, Tazi N, Correia A, Vilanova M, Rouabhia M. Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. Open Microbiol J 2011; 5:119-26. [PMID: 22207890 PMCID: PMC3242405 DOI: 10.2174/1874285801105010119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to determine the effect of exogenous farnesol in yeast-to-hyphae morphogenesis, and Saps (2, 4, 5 and 6) mRNA expressions by a Candida strain that does not produce endogenous farnesol. C. albicans was cultured in the absence and presence of farnesol at various concentrations (10, 100, and 300 µM), in proteinase induction medium, and then used to determine yeast-to- hyphae changes, Candida ultrastructure and to determine Saps 2, 4, 5 and 6 expressions using q-TR-PCR and ELISA (for Sap2). Data demonstrated that farnesol greatly reduced the yeast-to-hyphae morphogenesis of a Candida strain that does not produce endogenous farnesol. Farnesol induced several ultrastructural alterations, including changes in the cell-wall shape, a visible disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, and the presence of electron-dense vacuoles. Tested on gene expressions, farnesol was able to significantly (p < 0.01) decrease Sap2 secretion and mRNA expression. Farnesol downregulated also Sap4-6 mRNA expression. These results demonstrated for the first time that farnesol modules Candida morphogenesis through a downregulation of Saps 2, 4, 5 and 6 expressions. Overall these data point to the potential use of farnesol as an antifungal molecule
Collapse
Affiliation(s)
- Nadège Décanis
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, G1V 0A6, Canada
| | | | | | | | | |
Collapse
|
23
|
Wrobel D, Ionov M, Gardikis K, Demetzos C, Majoral JP, Palecz B, Klajnert B, Bryszewska M. Interactions of phosphorus-containing dendrimers with liposomes. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:221-6. [DOI: 10.1016/j.bbalip.2010.11.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 12/19/2022]
|
24
|
Busch S, Unruh T. The influence of additives on the nanoscopic dynamics of the phospholipid dimyristoylphosphatidylcholine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:199-208. [PMID: 21036141 DOI: 10.1016/j.bbamem.2010.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/17/2010] [Accepted: 10/19/2010] [Indexed: 11/16/2022]
Abstract
The influence of additives on the molecular dynamics of the phospholipid dimyristoylphosphatidylcholine (DMPC) in its fully hydrated liquid crystalline phase was studied. Quasielastic neutron scattering (QENS) was used to detect motions with dimensions of some Ångstroms on two different time scales, namely 60ps and 900ps. The effects of myristic acid, farnesol, cholesterol, and sodium glycocholate could consistently be explained on the basis of collective, flow-like motions of the phospholipid molecules. The influence of the additives on these motions was explained by packing effects, corresponding to the reduction of free volume. Cholesterol was found to decrease the mobility of DMPC seen on the 900ps time scale with increasing cholesterol content. In contrast, all other studied additives have no significant effect on the mobility.
Collapse
Affiliation(s)
- Sebastian Busch
- Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibitz (FRM II), Lichtenbergstraße 1, 85748 Garching bei München, Germany.
| | | |
Collapse
|
25
|
Mansy SS, Schrum JP, Krishnamurthy M, Tobé S, Treco DA, Szostak JW. Template-directed synthesis of a genetic polymer in a model protocell. Nature 2008; 454:122-5. [PMID: 18528332 DOI: 10.1038/nature07018] [Citation(s) in RCA: 471] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 04/22/2008] [Indexed: 11/09/2022]
Abstract
Contemporary phospholipid-based cell membranes are formidable barriers to the uptake of polar and charged molecules ranging from metal ions to complex nutrients. Modern cells therefore require sophisticated protein channels and pumps to mediate the exchange of molecules with their environment. The strong barrier function of membranes has made it difficult to understand the origin of cellular life and has been thought to preclude a heterotrophic lifestyle for primitive cells. Although nucleotides can cross dimyristoyl phosphatidylcholine membranes through defects formed at the gel-to-liquid transition temperature, phospholipid membranes lack the dynamic properties required for membrane growth. Fatty acids and their corresponding alcohols and glycerol monoesters are attractive candidates for the components of protocell membranes because they are simple amphiphiles that form bilayer membrane vesicles that retain encapsulated oligonucleotides and are capable of growth and division. Here we show that such membranes allow the passage of charged molecules such as nucleotides, so that activated nucleotides added to the outside of a model protocell spontaneously cross the membrane and take part in efficient template copying in the protocell interior. The permeability properties of prebiotically plausible membranes suggest that primitive protocells could have acquired complex nutrients from their environment in the absence of any macromolecular transport machinery; that is, they could have been obligate heterotrophs.
Collapse
Affiliation(s)
- Sheref S Mansy
- Howard Hughes Medical Institute, Department of Molecular Biology and the Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
26
|
Rowat AC, Lammerding J, Herrmann H, Aebi U. Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 2008; 30:226-36. [PMID: 18293361 DOI: 10.1002/bies.20720] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Changes in the shape and structural organization of the cell nucleus occur during many fundamental processes including development, differentiation and aging. In many of these processes, the cell responds to physical forces by altering gene expression within the nucleus. How the nucleus itself senses and responds to such mechanical cues is not well understood. In addition to these external forces, epigenetic modifications of chromatin structure inside the nucleus could also alter its physical properties. To achieve a better understanding, we need to elucidate the relationship between nuclear structure and material properties. Recently, new approaches have been developed to systematically investigate nuclear mechanical properties. These experiments provide important new insights into the disease mechanism of a growing class of tissue-specific disorders termed 'nuclear envelopathies'. Here we review our current understanding of what determines the shape and mechanical properties of the cell nucleus.
Collapse
Affiliation(s)
- Amy C Rowat
- Department of Physics/School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
27
|
Lee H, Finckbeiner S, Yu JS, Wiemer DF, Eisner T, Attygalle AB. Characterization of (E,E)-farnesol and its fatty acid esters from anal scent glands of nutria (Myocastor coypus) by gas chromatography–mass spectrometry and gas chromatography–infrared spectrometry. J Chromatogr A 2007; 1165:136-43. [PMID: 17709112 DOI: 10.1016/j.chroma.2007.06.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 05/17/2007] [Accepted: 06/21/2007] [Indexed: 11/18/2022]
Abstract
Several volatile compounds, including terpenoids, fatty alcohols, fatty acids and some of their esters, were identified from solvent extracts prepared from anal scent glands of nutria (a.k.a. coypu), a serious rodent pest ravaging wetlands in the USA. The major terpenoid constituents were identified as (E,E)-farnesol and its esters by a comparison of their gas chromatographic retention times, and electron-ionization (EI) and chemical-ionization (CI) mass spectra with those of authentic compounds. EI mass spectra of the four farnesol isomers are very similar, however, the ChemStation (Agilent) and GC-MS Solution (Shimadzu) software algorithms were able to identify the natural compound as the (E,E)-isomer, when a high-quality mass spectral library was compiled from reference samples and used for searching. Similarly, the esters were identified as those of (E,E)-farnesol. In contrast to EI spectra, the CI spectra of the (E,E)- and (E,Z)-isomers are distinctly different from those of the (Z,E)- and (Z,Z)-isomers. The intensities (I) of the peaks for the m/z 137 and 121 ions in the CI spectra offer a way of determining the configuration of the C-2 double bond of farnesols (for 2E isomers I(137)>I(121), whereas for 2Z isomers I(137)<I(121)). Moreover, the infrared spectrum of the (E,E)-isomer is distinctly different from those of the other three isomers in the 2962-2968 cm(-1) and 2918-2922 cm(-1) bands, which represent asymmetric CH(3) and CH(2) stretching vibrations, respectively. Finally, the GC retention indices of farnesol and farnesyl ester isomers determined from authentic samples were used to confirm all identifications.
Collapse
Affiliation(s)
- Hyeunjoo Lee
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | | | | | | | | | | |
Collapse
|
28
|
Uppuluri P, Mekala S, Chaffin WL. Farnesol-mediated inhibition ofCandida albicansyeast growth and rescue by a diacylglycerol analogue. Yeast 2007; 24:681-93. [PMID: 17583896 DOI: 10.1002/yea.1501] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
During Candida albicans yeast cell growth to early stationary phase, metabolites accumulate in the medium, including the quorum-sensing molecule farnesol. We found that besides germ tube inhibition, 40 microM farnesol also inhibited C. albicans yeast growth under yeast growth permissive conditions. Consistent with this observation, transcriptional analysis of yeast cells resuspended in fresh medium with 40 microM farnesol revealed that genes involved in hyphal formation, GTPase activation, mitosis and DNA replication were downregulated many-fold. Farnesol-mediated inhibition of yeast growth was dependent on the growth phase of the C. albicans cells. The growth defect was relieved by addition of a diacylglycerol analogue, implicating phosphatidylinositol signalling in the delay. Although diacylglycerol is an activator of protein kinase C (PKC) in mammalian cells, there is some question about activation of fungal PKCs. A mutant strain deleted for PKC1 responded to farnesol and the diacylglycerol analogue similar to wild-type, suggesting that PKC is not the target of the diacylglycerol analogue.
Collapse
Affiliation(s)
- Priya Uppuluri
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
29
|
Non-ionic and cationic micelle nanostructures as drug solubilization vehicles: spectrofluorimetric and electrochemical studies. Colloid Polym Sci 2007. [DOI: 10.1007/s00396-007-1689-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Barceló F, Prades J, Encinar JA, Funari SS, Vögler O, González-Ros JM, Escribá PV. Interaction of the C-terminal region of the Ggamma protein with model membranes. Biophys J 2007; 93:2530-41. [PMID: 17545235 PMCID: PMC1965437 DOI: 10.1529/biophysj.106.101196] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G-proteins interact with membranes. They accumulate around membrane receptors and propagate messages to effectors localized in different cellular compartments. G-protein-lipid interactions regulate G-protein cellular localization and activity. Although we recently found that the Gbetagamma dimer drives the interaction of G-proteins with nonlamellar-prone membranes, little is known about the molecular basis of this interaction. Here, we investigated the interaction of the C-terminus of the Ggamma(2) protein (P(gamma)-FN) with model membranes and those of its peptide (P(gamma)) and farnesyl (FN) moieties alone. X-ray diffraction and differential scanning calorimetry demonstrated that P(gamma)-FN, segregated into P(gamma)-FN-poor and -rich domains in phosphatidylethanolamine (PE) and phosphatidylserine (PS) membranes. In PE membranes, FN increased the nonlamellar phase propensity. Fourier transform infrared spectroscopy experiments showed that P(gamma) and P(gamma)-FN interact with the polar and interfacial regions of PE and PS bilayers. The binding of P(gamma)-FN to model membranes is due to the FN group and positively charged amino acids near this lipid. On the other hand, membrane lipids partially altered P(gamma)-FN structure, in turn increasing the fluidity of PS membranes. These data highlight the relevance of the interaction of the C-terminal region of the Ggamma protein with the cell membrane and its effect on membrane structure.
Collapse
Affiliation(s)
- Francisca Barceló
- Laboratory of Molecular and Cellular Biomedicine, Associate Unit of the Instituto de la Grasa (Consejo Superior de Investigaciones Científicas), University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | | | | | | | | | | | | |
Collapse
|
31
|
Mavromoustakos TM. The use of differential scanning calorimetry to study drug-membrane interactions. Methods Mol Biol 2007; 400:587-600. [PMID: 17951761 DOI: 10.1007/978-1-59745-519-0_39] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Differential-scanning calorimetry is a thermodynamic technique widely used for studying drug-membrane interactions. This chapter provides practical examples on this topic, highlighting the caution to be taken in analyzing thermal data as well as scientific information that can be derived by the proper use of the technique. An example is given using model bilayers containing high concentration of the anesthetic steroid alphaxalone. It is shown that the breadth of the phase transitions and the maximum of the phase-transition temperature of the bilayer depend on the equilibration conditions before acquiring the thermal scan. In addition, the quality of the thermo-gram depends on its perturbation and incorporation effects; for dissecting these effects, a complementary technique such as solid-state nuclear magnetic resonance spectroscopy is necessary. Differential-scanning calorimetry is a useful technique to study the interdigitation effect of a drug by monitoring DeltaH changes. Cholesterol, a main constituent of membrane bilayers, appears to disrupt the interdigitating effect. In general, the thermal effects of the drug incorporated into a membrane bilayer depends on the drug stereoelectronic properties.
Collapse
Affiliation(s)
- Thomas M Mavromoustakos
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
32
|
Rowat AC, Lammerding J, Ipsen JH. Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J 2006; 91:4649-64. [PMID: 16997877 PMCID: PMC1779937 DOI: 10.1529/biophysj.106.086454] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 09/05/2006] [Indexed: 11/18/2022] Open
Abstract
Nuclear structure and mechanics are gaining recognition as important factors that affect gene expression, development, and differentiation in normal function and disease, yet the physical mechanisms that govern nuclear mechanical stability remain unclear. Here we examined the physical properties of the cell nucleus by imaging fluorescently labeled components of the inner nucleus (chromatin and nucleoli) and the nuclear envelope (lamins and membranes) in nuclei deformed by micropipette aspiration (confocal imaged microdeformation). We investigated nuclei, both isolated and in intact, living cells, and found that nuclear volume significantly decreased by 60-70% during aspiration. While nuclear membranes exhibited blebbing and fluid characteristics during aspiration, the nuclear lamina exhibited behavior of a solid-elastic shell. Under large deformations of GFP-lamin A-labeled nuclei, we observed a decay of fluorescence intensity into the tip of the deformed tongue that we interpreted in terms of nonlinear, two-dimensional elasticity theory. Here we applied this method to study nuclear envelope stability in disease and found that mouse embryo fibroblasts lacking the inner nuclear membrane protein, emerin, had a significantly decreased ratio of the area expansion to shear moduli (K/mu) compared to wild-type cells (2.1 +/- 0.2 versus 5.1 +/- 1.3). These data suggest that altered nuclear envelope elasticity caused by loss of emerin could contribute to increased nuclear fragility in Emery-Dreifuss muscular dystrophy patients with mutations in the emerin gene. Based on our experimental results and theoretical considerations, we present a model describing how the nucleus is stabilized in the pipette. Such a model is essential for interpreting the results of any micropipette study of the nucleus and porous materials in general.
Collapse
Affiliation(s)
- A C Rowat
- MEMPHYS Centre for Biomembrane Physics, Department of Physics, University of Southern Denmark, Odense, Denmark.
| | | | | |
Collapse
|
33
|
Abstract
The hypothesis that lipid rafts exist in plasma membranes and have crucial biological functions remains controversial. The lateral heterogeneity of proteins in the plasma membrane is undisputed, but the contribution of cholesterol-dependent lipid assemblies to this complex, non-random organization promotes vigorous debate. In the light of recent studies with model membranes, computational modelling and innovative cell biology, I propose an updated model of lipid rafts that readily accommodates diverse views on plasma-membrane micro-organization.
Collapse
Affiliation(s)
- John F Hancock
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|