1
|
Bellanger T, Wien F, Combet S, Varela PF, Weidmann S. The role of membrane physiology in sHSP Lo18-lipid interaction and lipochaperone activity. Sci Rep 2024; 14:17048. [PMID: 39048624 PMCID: PMC11269701 DOI: 10.1038/s41598-024-67362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
To cope with environmental stresses, organisms, including lactic acid bacteria such as O. oeni, produce stress proteins called HSPs. In wine, O. oeni is constantly confronted by stress affecting its membrane fluidity. To survive through in these deleterious conditions, O. oeni synthesizes Lo18, a unique, small HSP which acts as a molecular chaperone and a lipochaperone. The molecular mechanism underlying its lipochaperone activity, particularly regarding membrane lipid composition, remains poorly understood. In this context, Lo18 lipochaperone activity and the associated modification in protein structure were studied during interaction with different liposomes from O. oeni cultures representing unstressed, stressed and stressed-adapted physiological states. The results showed that the presence of the membrane (whatever its nature) induces a modification of Lo18's structure. Also, the presence of oleic acid and/or phosphatidylglycerol is important to favor Lo18-membrane interaction, allowing lipochaperone activity. This research enhances understanding of sHSP-membrane interactions in bacterial systems.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne, UMR PAM A 02.102, Institut Agro Dijon, INRAE, 21000, Dijon, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme Des Merisiers, Saint Aubin BP 48, 91192, Gif-Sur-Yvette, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, 91191, Gif-Sur-Yvette CEDEX, France
| | | | - Stéphanie Weidmann
- Univ. Bourgogne, UMR PAM A 02.102, Institut Agro Dijon, INRAE, 21000, Dijon, France.
| |
Collapse
|
2
|
Bellanger T, da Silva Barreira D, Wien F, Delarue P, Senet P, Rieu A, Neiers F, Varela PF, Combet S, Weidmann S. Significant influence of four highly conserved amino-acids in lipochaperon-active sHsps on the structure and functions of the Lo18 protein. Sci Rep 2023; 13:19036. [PMID: 37923897 PMCID: PMC10624808 DOI: 10.1038/s41598-023-46306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
To cope with environmental stresses, bacteria have developed different strategies, including the production of small heat shock proteins (sHSP). All sHSPs are described for their role as molecular chaperones. Some of them, like the Lo18 protein synthesized by Oenococcus oeni, also have the particularity of acting as a lipochaperon to maintain membrane fluidity in its optimal state following cellular stresses. Lipochaperon activity is poorly characterized and very little information is available on the domains or amino-acids key to this activity. The aim in this paper is to investigate the importance at the protein structure and function level of four highly conserved residues in sHSP exhibiting lipochaperon activity. Thus, by combining in silico, in vitro and in vivo approaches the importance of three amino-acids present in the core of the protein was shown to maintain both the structure of Lo18 and its functions.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - David da Silva Barreira
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, 21078, Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, 21078, Dijon, France
| | - Aurélie Rieu
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Paloma Fernández Varela
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette CEDEX, France
| | - Stéphanie Weidmann
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France.
| |
Collapse
|
3
|
Mitra A, Bhakta K, Kar A, Roy A, Mohid SA, Ghosh A, Ghosh A. Insight into the biochemical and cell biological function of an intrinsically unstructured heat shock protein, Hsp12 of Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2023; 24:1063-1077. [PMID: 37434353 PMCID: PMC10423329 DOI: 10.1111/mpp.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/13/2023]
Abstract
Small heat shock proteins (sHsps) play diverse roles in the stress response and maintenance of cellular functions. The Ustilago maydis genome codes for few sHsps. Among these, Hsp12 has previously been demonstrated to be involved in the pathogenesis of the fungus by our group. In the present study we further investigated the biological function of the protein in the pathogenic development of U. maydis. Analysis of the primary amino acid sequence of Hsp12 in combination with spectroscopic methods to analyse secondary protein structures revealed an intrinsically disordered nature of the protein. We also carried out detailed analysis on the protein aggregation prevention activity associated with Hsp12. Our data suggest Hsp12 has trehalose-dependent protein aggregation prevention activity. Through assaying the interaction of Hsp12 with lipid membranes in vitro we also showed the ability of U. maydis Hsp12 to induce stability in lipid vesicles. U. maydis hsp12 deletion mutants exhibited defects in the endocytosis process and delayed completion of the pathogenic life cycle. Therefore, U. maydis Hsp12 contributes to the pathogenic development of the fungus through its ability to relieve proteotoxic stress during infection as well as its membrane-stabilizing function.
Collapse
Affiliation(s)
- Aroni Mitra
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | - Ankita Kar
- Division of Plant BiologyBose InstituteKolkataIndia
| | - Anisha Roy
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
4
|
Bellanger T, Weidmann S. Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence? Cell Stress Chaperones 2023; 28:21-33. [PMID: 36367671 PMCID: PMC9877275 DOI: 10.1007/s12192-022-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies have been put in place by organisms to adapt to their environment. One of these strategies is the production of stress proteins such as sHSPs, which have been widely described over the last 30 years for their role as molecular chaperones. Some sHSPs have, in addition, the particularity to exert a lipochaperone role by interacting with membrane lipids to maintain an optimal membrane fluidity. However, the mechanisms involved in this sHSP-lipid interaction remain poorly understood and described rather sporadically in the literature. This review gathers the information concerning the structure and function of these proteins available in the literature in order to highlight the mechanism involved in this interaction. In addition, analysis of primary sequence data of sHSPs available in database shows that sHSPs can interact with lipids via certain amino acid residues present on some β sheets of these proteins. These residues could have a key role in the structure and/or oligomerization dynamics of sHPSs, which is certainly essential for interaction with membrane lipids and consequently for maintaining optimal cell membrane fluidity.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Stéphanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
5
|
Rocchetti MT, Bellanger T, Trecca MI, Weidmann S, Scrima R, Spano G, Russo P, Capozzi V, Fiocco D. Molecular chaperone function of three small heat-shock proteins from a model probiotic species. Cell Stress Chaperones 2023; 28:79-89. [PMID: 36417097 PMCID: PMC9877261 DOI: 10.1007/s12192-022-01309-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Small heat-shock proteins (sHSP) are ubiquitous ATP-independent chaperones that prevent irreversible aggregation of heat-damaged denaturing proteins. Lactiplantibacillus plantarum is a widespread Gram-positive bacterium with probiotic claims and vast potential for agro-food, biotechnological and biomedical applications. L. plantarum possesses a family of three sHSP, which were previously demonstrated to be involved in its stress tolerance mechanisms. Here, the three L. plantarum sHSP were heterologously expressed, purified and shown to have a chaperone activity in vitro, measuring their capacity to suppress protein aggregation, as assayed spectrophotometrically by light scattering. Their anti-aggregative capacity was found to be differently influenced by pH. Differences were also found relative to their holdase function and their capacity to modulate liposome membrane fluidity, suggesting interplays between them and indicating diversified activities. This is the first study assessing the chaperone action of sHSP from a probiotic model. The different roles of the three sHSP can increase L. plantarum's capabilities to survive the various types of stress characterising the diverse habitats of this highly adaptable species. Reported evidence supports the interest in L. plantarum as one of the model species for bacteria that have three different sHSP-encoding genes in their genomes.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Tiffany Bellanger
- Univ. Bourgogne, Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Maria Incoronata Trecca
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Stephanie Weidmann
- Univ. Bourgogne, Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Via Michele Protano, 71122, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
6
|
Hu Y, Zhou Y, Fu S, Zhou M, Xu N, Li D, Wang C, Hu Y. Coordination of characteristic cytomembrane and energy metabolism contributes to ethanol-tolerance of Acetobacter pasteurianus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Csoboz B, Gombos I, Kóta Z, Dukic B, Klement É, Varga-Zsíros V, Lipinszki Z, Páli T, Vígh L, Török Z. The Small Heat Shock Protein, HSPB1, Interacts with and Modulates the Physical Structure of Membranes. Int J Mol Sci 2022; 23:ijms23137317. [PMID: 35806322 PMCID: PMC9266964 DOI: 10.3390/ijms23137317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Small heat shock proteins (sHSPs) have been demonstrated to interact with lipids and modulate the physical state of membranes across species. Through these interactions, sHSPs contribute to the maintenance of membrane integrity. HSPB1 is a major sHSP in mammals, but its lipid interaction profile has so far been unexplored. In this study, we characterized the interaction between HSPB1 and phospholipids. HSPB1 not only associated with membranes via membrane-forming lipids, but also showed a strong affinity towards highly fluid membranes. It participated in the modulation of the physical properties of the interacting membranes by altering rotational and lateral lipid mobility. In addition, the in vivo expression of HSPB1 greatly affected the phase behavior of the plasma membrane under membrane fluidizing stress conditions. In light of our current findings, we propose a new function for HSPB1 as a membrane chaperone.
Collapse
Affiliation(s)
- Balint Csoboz
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Institute of Medical Biology, University of Tromsø, 9008 Tromsø, Norway
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Barbara Dukic
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Éva Klement
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Vanda Varga-Zsíros
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Lipinszki
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Correspondence:
| |
Collapse
|
8
|
Balmaseda A, Rozès N, Bordons A, Reguant C. Molecular adaptation response of Oenococcus oeni in non-Saccharomyces fermented wines: A comparative multi-omics approach. Int J Food Microbiol 2022; 362:109490. [PMID: 34844030 DOI: 10.1016/j.ijfoodmicro.2021.109490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Oenococcus oeni is the main agent responsible for malolactic fermentation (MLF) in wine. This usually takes place in red wines after alcoholic fermentation (AF) carried out by Saccharomyces cerevisiae. In recent years, there is an increasing interest in using non-Saccharomyces yeast, usually in combination with S. cerevisiae, to improve wine quality. Current studies report a stimulatory effect of non-Saccharomyces on MLF, generally related to a decrease in the inhibitor compounds found in wine. In this work, we followed a comparative multi-omics approach, including transcriptomic and proteomic analysis, to study the molecular adaptation of O. oeni in wines fermented with Torulaspora delbrueckii and Metschnikowia pulcherrima, two of the most frequently used non-Saccharomyces, in sequential inoculation with S. cerevisiae. We compared the results to the adaptation of O. oeni in S. cerevisiae wine to determine the main changes arising from the use of non-Saccharomyces. The duration of MLF was shortened when using non-Saccharomyces, to half the time with T. delbrueckii and to a quarter with M. pulcherrima. In this work, we observed for the first time how O. oeni responds at molecular level to the changes brought about by non-Saccharomyces. We showed a differential adaptation of O. oeni in the wines studied. In this regard, the main molecular functions affected were amino acid and carbohydrate transport and metabolism, from which peptide metabolism appeared as a key feature under wine-like conditions. We also showed that the abundance of Hsp20, a well-known stress protein, depended on the duration time. Thus, the use of non-Saccharomyces reduced the abundance of Hsp20, which could mean a less stressful wine-like condition for O. oeni.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Microbiana dels Aliments, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
9
|
Chen Q, Yang X, Meng Q, Zhao L, Yuan Y, Chi W, He L, Shi K, Liu S. Integrative multiomics analysis of the acid stress response of Oenococcus oeni mutants at different growth stages. Food Microbiol 2021; 102:103905. [PMID: 34809937 DOI: 10.1016/j.fm.2021.103905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acid stress is one of the most important environmental stresses that adversely affect the growth of lactic acid bacteria (LAB), such as Oenococcus oeni which was isolated from grape-berries and mainly used in wine fermentation. The aim of this paper is to comprehensively characterize the mechanisms of acid stress regulation in O. oeni and to provide a viable theoretical basis for breed and improvement of existing LAB. METHOD First, six O. oeni mutants with acid-sensitive (strains b2, a1, c2) and acid-tolerant (strains b1, a3, c1) phenotypes were screened from three wild-type O. oeni, and then their genome (sequencing), transcriptome and metabolome (LC-MS/MS) were examined. RESULTS A total of 459 genes were identified with one or more intragenic single nucleotide polymorphisms (SNPs) in these mutants, and were extensively involved in metabolism and cellular functions with a high mutation rates in purine (46%) and pyrimidine (48%) metabolic pathways. There were 210 mutated genes that cause significant changes in expression levels. In addition, 446 differentially accumulated metabolites were detected, and they were consistently detected at relatively high levels in the acid-tolerant O. oeni mutant. The levels of intracellular differentially expressed genes and differential metabolites changed with increasing culture time. CONCLUSION The integrative pathways analysis showed that the intracellular response associated with acid regulation differed significantly between acid-sensitive and acid-tolerant O. oeni mutants, and also changed at different growth stages.
Collapse
Affiliation(s)
- Qiling Chen
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China; College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xiangke Yang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China; Henan University of Animal Husbandry and Economy, Zhenzhou, Henan, China
| | - Qiang Meng
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lili Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Yuan
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Chi
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ling He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Kan Shi
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of, Northwest A&F University, Yongning, Ningxia, 750104, China.
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of, Northwest A&F University, Yongning, Ningxia, 750104, China.
| |
Collapse
|
10
|
Onetto CA, Costello PJ, Kolouchova R, Jordans C, McCarthy J, Schmidt SA. Analysis of Transcriptomic Response to SO 2 by Oenococcus oeni Growing in Continuous Culture. Microbiol Spectr 2021; 9:e0115421. [PMID: 34612664 PMCID: PMC8510247 DOI: 10.1128/spectrum.01154-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
To successfully complete malolactic fermentation (MLF), Oenococcus oeni must overcome wine stress conditions of low pH, high ethanol, and the presence of SO2. Failure to complete MLF may result in detrimental effects to the quality and stability of the resulting wines. Research efforts to date have focused on elucidating the mechanisms and genetic features that confer the ability to withstand low pH and high ethanol concentrations on O. oeni; however, the responses to SO2 stress are less well defined. This study focused on characterizing the transcriptional response of O. oeni to SO2 challenge during cultivation in a continuous system at wine-like pH (3.5). This experimental design allowed the precise discrimination of transcriptional changes linked to SO2 stress from responses associated with growth stage and cultivation parameters. Differential gene expression analysis revealed major transcriptional changes following SO2 exposure and suggested that this compound primarily interacts with intracellular proteins, DNA, and the cell envelope of O. oeni. The molecular chaperone hsp20, which has a demonstrated function in the heat, ethanol, and acid stress response, was highly upregulated, confirming its additional role in the response of this species to SO2 stress. This work also reports the first nanopore-based complete genome assemblies for O. oeni. IMPORTANCE Malolactic fermentation is an indispensable step in the elaboration of most wines and is generally performed by Oenococcus oeni, a Gram-positive heterofermentative lactic acid bacterium species. While O. oeni is tolerant to many of the wine stresses, including low pH and high ethanol concentrations, it has high sensitivity to SO2, an antiseptic and antioxidant compound regularly used in winemaking. Understanding the physiological changes induced in O. oeni by SO2 stress is essential for the development of more robust starter cultures and methods for their use. This study describes the main transcriptional changes induced by SO2 stress in the wine bacterium O. oeni and provides foundational understanding on how this compound interacts with the cellular components and the induced protective mechanisms of this species.
Collapse
Affiliation(s)
- Cristobal A. Onetto
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Peter J. Costello
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Radka Kolouchova
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Charlotte Jordans
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Jane McCarthy
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Simon A. Schmidt
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| |
Collapse
|
11
|
Qi Y, Wang H, Chen X, Wei G, Tao S, Fan M. Altered Metabolic Strategies: Elaborate Mechanisms Adopted by Oenococcus oeni in Response to Acid Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2906-2918. [PMID: 33587641 DOI: 10.1021/acs.jafc.0c07599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oenococcus oeni plays a key role in inducing malolactic fermentation in wine. Acid stress is often encountered under wine conditions. However, the lack of systematic studies of acid resistance mechanisms limits the downstream fermentation applications. In this study, the acid responses of O. oeni were investigated by combining transcriptome, metabolome, and genome-scale metabolic modeling approaches. Metabolite profiling highlighted the decreased abundance of nucleotides under acid stress. The gene-metabolite bipartite network showed negative correlations between nucleotides and genes involved in ribosome assembly, translation, and post-translational processes, suggesting that stringent response could be activated under acid stress. Genome-scale metabolic modeling revealed marked flux rerouting, including reallocation of pyruvate, attenuation of glycolysis, utilization of carbon sources other than glucose, and enhancement of nucleotide salvage and the arginine deiminase pathway. This study provided novel insights into the acid responses of O. oeni, which will be useful for designing strategies to address acid stress in wine malolactic fermentation.
Collapse
Affiliation(s)
- Yiman Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangdan Chen
- College of Life Sciences and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- College of Life Sciences and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Zheng F, Wang T, Niu C, Jia Y, Zheng R, Liu C, Wang J, Li Q. Proteomic Analysis of Hop Bitter Compound Iso-α-acid Tolerance in Beer Spoilage Lactobacillus casei 2-9-5. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2020.1864710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Tianmu Wang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ruilong Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
13
|
Wojdyło A, Samoticha J, Chmielewska J. The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region. J Food Sci 2020; 85:1070-1081. [PMID: 32125714 DOI: 10.1111/1750-3841.15061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/16/2019] [Accepted: 01/02/2020] [Indexed: 11/30/2022]
Abstract
Wines produced from grapes cultivated in cool climate areas are characterized by high levels of organic acids. One method to correct this is malolactic fermentation (MLF). The aim of this study was to determine the effectiveness of different strains of Oenococcus oeni bacteria (Viniflora CH11, Viniflora CH16, Viniflora CH35, Viniflora Oenos, SIHA LACT Oeno) during the biological acidity reduction process. Red wine from Rondo and Regent cultivars was obtained by ethanol fermentation of the pulp, at 20 °C for 14 days. The profile of organic acids was examined with a particular focus on changes in the content of l-malic and l-lactic acids. Additionally, the impact on profile and quantity of phenolic compounds and antioxidant capacity was measured. The results showed that MLF had a positive influence on content of organic acids through the reduction of l-malic acid content with a simultaneous increase of the amount of l-lactic acid. The best effect was obtained with the CH11 and CH35 bacterial strains. The biological acidity reduction process had no significant (P > 0.05) impact on phenolic content or antioxidant capacity. However, the wine making process (ethanol fermentation, maturation) contributed to the reduction of polyphenols and in consequence lower antioxidant capacity of the final tested wines. PRACTICAL APPLICATION: The present study provides useful information on the impact of different Oenococcus oeni bacterial strains on MLF in red wines, reduction of l-malic to l-lactic acid, and stability of phenolic compounds during MLF and the maturation period. Also, this article provides information about phenolic compounds and antioxidant capacity during malolactic fermentation and maturity of red wines made from hybrids of Vitis vinifera such as Rondo and Regent cultivars.
Collapse
Affiliation(s)
- Aneta Wojdyło
- Dept. of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław Univ. of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Justyna Samoticha
- Dept. of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław Univ. of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Joanna Chmielewska
- Dept. of Fermentation and Cereal Technology, Wrocław Univ. of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| |
Collapse
|
14
|
Avelange-Macherel MH, Rolland A, Hinault MP, Tolleter D, Macherel D. The Mitochondrial Small Heat Shock Protein HSP22 from Pea is a Thermosoluble Chaperone Prone to Co-Precipitate with Unfolding Client Proteins. Int J Mol Sci 2019; 21:E97. [PMID: 31877784 PMCID: PMC6981728 DOI: 10.3390/ijms21010097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
The small heat shock proteins (sHSPs) are molecular chaperones that share an alpha-crystallin domain but display a high diversity of sequence, expression, and localization. They are especially prominent in plants, populating most cellular compartments. In pea, mitochondrial HSP22 is induced by heat or oxidative stress in leaves but also strongly accumulates during seed development. The molecular function of HSP22 was addressed by studying the effect of temperature on its structural properties and chaperone effects using a recombinant or native protein. Overexpression of HSP22 significantly increased bacterial thermotolerance. The secondary structure of the recombinant protein was not affected by temperature in contrast with its quaternary structure. The purified protein formed large polydisperse oligomers that dissociated upon heating (42 °C) into smaller species (mainly monomers). The recombinant protein appeared thermosoluble but precipitated with thermosensitive proteins upon heat stress in assays either with single protein clients or within complex extracts. As shown by in vitro protection assays, HSP22 at high molar ratio could partly prevent the heat aggregation of rhodanese but not of malate dehydrogenase. HSP22 appears as a holdase that could possibly prevent the aggregation of some proteins while co-precipitating with others to facilitate their subsequent refolding by disaggregases or clearance by proteases.
Collapse
Affiliation(s)
| | | | | | | | - David Macherel
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France; (M.-H.A.-M.)
| |
Collapse
|
15
|
Complex Responses to Hydrogen Peroxide and Hypochlorous Acid by the Probiotic Bacterium Lactobacillus reuteri. mSystems 2019; 4:4/5/e00453-19. [PMID: 31481604 PMCID: PMC6722424 DOI: 10.1128/msystems.00453-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammatory diseases of the gut are associated with increased intestinal oxygen concentrations and high levels of inflammatory oxidants, including hydrogen peroxide (H2O2) and hypochlorous acid (HOCl), which are antimicrobial compounds produced by the innate immune system. This contributes to dysbiotic changes in the gut microbiome, including increased populations of proinflammatory enterobacteria (Escherichia coli and related species) and decreased levels of health-associated anaerobic Firmicutes and Bacteroidetes The pathways for H2O2 and HOCl resistance in E. coli have been well studied, but little is known about how commensal and probiotic bacteria respond to inflammatory oxidants. In this work, we have characterized the transcriptomic response of the anti-inflammatory, gut-colonizing Gram-positive probiotic Lactobacillus reuteri to both H2O2 and HOCl. L. reuteri mounts distinct but overlapping responses to each of these stressors, and both gene expression and survival were strongly affected by the presence or absence of oxygen. Oxidative stress response in L. reuteri required several factors not found in enterobacteria, including the small heat shock protein Lo18, polyphosphate kinase 2, and RsiR, an L. reuteri-specific regulator of anti-inflammatory mechanisms.IMPORTANCE Reactive oxidants, including hydrogen peroxide and hypochlorous acid, are antimicrobial compounds produced by the immune system during inflammation. Little is known, however, about how many important types of bacteria present in the human microbiome respond to these oxidants, especially commensal and other health-associated species. We have now mapped the stress response to both H2O2 and HOCl in the intestinal lactic acid bacterium Lactobacillus reuteri.
Collapse
|
16
|
Arena MP, Capozzi V, Longo A, Russo P, Weidmann S, Rieu A, Guzzo J, Spano G, Fiocco D. The Phenotypic Analysis of Lactobacillus plantarum shsp Mutants Reveals a Potential Role for hsp1 in Cryotolerance. Front Microbiol 2019; 10:838. [PMID: 31114549 PMCID: PMC6503756 DOI: 10.3389/fmicb.2019.00838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous, low molecular weight (MW) proteins that share a conserved alpha-crystallin domain. sHSPs oligomers exhibit chaperon-like activities by interacting with unfolded substrates, thereby preventing their aggregation and precipitation. Unlike most lactobacilli, which have single shsp genes, three different sHSP-encoding genes, i.e., hsp1, hsp2, and hsp3, were previously identified in the probiotic Lactobacillus plantarum WCFS1. Early studies, including the characterization of the knock out (KO) mutant for hsp2, indicated a different organization and transcriptional regulation of these genes and suggested that the three L. plantarum sHSPs might accomplish different tasks in stress response. To unravel the role of sHSPs, KO mutants of hsp1 and hsp3 were generated using a Cre-lox based system. Mutation of either genes resulted in impaired growth capacity under normal conditions, heat-stress and stresses typically found during host interactions and food technological process. However, survival to heat shock and the level of thermal stabilization of cytoplasmic proteins were similar between mutants and parental strain. Transcriptional analysis revealed that in the mutant genetic backgrounds there is an upregulated basal expression of the un-mutated mate hsps and other stress-related genes, which may compensate for the loss of HSP function, hence possibly accounting for the lack of a remarkable susceptibility to heat challenge. HSP3 seemed relevant for the induction of thermotolerance, while HSP1 was required for improved cryotolerance. Cell surface properties and plasma membrane fluidity were investigated to ascertain the possible membrane association of sHSP. Intriguingly, the loss of hsp1 was associated to a lower level of maximal membrane fluidity upon heat stress. A role for HSP1 in controlling and improving membrane fluidity is suggested which may pertains its cryoprotective function.
Collapse
Affiliation(s)
- Mattia Pia Arena
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Stephanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Aurélie Rieu
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Jean Guzzo
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
Heat resistance, membrane fluidity and sublethal damage in Staphylococcus aureus cells grown at different temperatures. Int J Food Microbiol 2019; 289:49-56. [DOI: 10.1016/j.ijfoodmicro.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/24/2018] [Accepted: 09/01/2018] [Indexed: 11/21/2022]
|
18
|
Darsonval M, Julliat F, Msadek T, Alexandre H, Grandvalet C. CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1. Front Microbiol 2018; 9:3135. [PMID: 30619203 PMCID: PMC6305308 DOI: 10.3389/fmicb.2018.03135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Oenococcus oeni is a lactic acid bacterium responsible for malolactic fermentation of wine. While many stress response mechanisms implemented by O. oeni during wine adaptation have been described, little is known about their regulation. CtsR is the only regulator of stress response genes identified to date in O. oeni. Extensively characterized in Bacillus subtilis, the CtsR repressor is active as a dimer at 37°C and degraded at higher temperatures by a proteolytic mechanism involving two adapter proteins, McsA and McsB, together with the ClpCP complex. The O. oeni genome does not encode orthologs of these adapter proteins and the regulation of CtsR activity remains unknown. In this study, we investigate CtsR function in O. oeni by using antisense RNA silencing in vivo to modulate ctsR gene expression. Inhibition of ctsR gene expression by asRNA leads to a significant loss in cultivability after heat shock (58%) and acid shock (59%) highlighting the key role of CtsR in the O. oeni stress response. Regulation of CtsR activity was studied using a heterologous expression system to demonstrate that O. oeni CtsR controls expression and stress induction of the O. oeni hsp18 gene when produced in a ctsR-deficient B. subtilis strain. Under heat stress conditions, O. oeni CtsR acts as a temperature sensor and is inactivated at growth temperatures above 33°C. Finally, using an E. coli bacterial two-hybrid system, we showed that CtsR and ClpL1 interact, suggesting a key role for ClpL1 in controlling CtsR activity in O. oeni.
Collapse
Affiliation(s)
- Maud Darsonval
- UMR A. 02.102 Procédés Alimentaires et Microbiologique, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Frédérique Julliat
- UMR A. 02.102 Procédés Alimentaires et Microbiologique, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Tarek Msadek
- Unité de Biologie des Bactéries Pathogènes à Gram Positif, Institut Pasteur, Paris, France.,CNRS ERL 6002, Paris, France
| | - Hervé Alexandre
- UMR A. 02.102 Procédés Alimentaires et Microbiologique, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France.,Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France
| | - Cosette Grandvalet
- UMR A. 02.102 Procédés Alimentaires et Microbiologique, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France.,Institut National Supérieur des Sciences Agronomiques, de L'Alimentation et de L'Environnement, AgroSup Dijon, Dijon, France
| |
Collapse
|
19
|
Zhang W, Cao C, Zhang J, Kwok LY, Zhang H, Chen Y. Lactobacillus casei asp23 gene contributes to gentamycin resistance via regulating specific membrane-associated proteins. J Dairy Sci 2018; 101:1915-1920. [DOI: 10.3168/jds.2017-13961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022]
|
20
|
Cebrián G, Condón S, Mañas P. Physiology of the Inactivation of Vegetative Bacteria by Thermal Treatments: Mode of Action, Influence of Environmental Factors and Inactivation Kinetics. Foods 2017; 6:E107. [PMID: 29189748 PMCID: PMC5742775 DOI: 10.3390/foods6120107] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 12/03/2022] Open
Abstract
Heat has been used extensively in the food industry as a preservation method, especially due to its ability to inactivate microorganisms present in foods. However, many aspects regarding the mechanisms of bacterial inactivation by heat and the factors affecting this process are still not fully understood. The purpose of this review is to offer a general overview of the most important aspects of the physiology of the inactivation or survival of microorganisms, particularly vegetative bacteria, submitted to heat treatments. This could help improve the design of current heat processes methods in order to apply milder and/or more effective treatments that could fulfill consumer requirements for fresh-like foods while maintaining the advantages of traditional heat treatments.
Collapse
Affiliation(s)
- Guillermo Cebrián
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50009 Zaragoza, Spain.
| | - Santiago Condón
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50009 Zaragoza, Spain.
| | - Pilar Mañas
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50009 Zaragoza, Spain.
| |
Collapse
|
21
|
Weidmann S, Maitre M, Laurent J, Coucheney F, Rieu A, Guzzo J. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance. Int J Food Microbiol 2017; 247:18-23. [DOI: 10.1016/j.ijfoodmicro.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/30/2016] [Accepted: 06/05/2016] [Indexed: 11/17/2022]
|
22
|
Zheng H, Liu E, Shi T, Ye L, Konno T, Oda M, Ji ZS. Strand-specific RNA-seq analysis of the Lactobacillus delbrueckii subsp. bulgaricus transcriptome. MOLECULAR BIOSYSTEMS 2016; 12:508-19. [PMID: 26675359 DOI: 10.1039/c5mb00547g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lactobacillus delbrueckii subsp. bulgaricus 2038 (Lb. bulgaricus 2038) is an industrial bacterium that is used as a starter for dairy products. We proposed several hypotheses concerning its industrial features previously. Here, we utilized RNA-seq to explore the transcriptome of Lb. bulgaricus 2038 from four different growth phases under whey conditions. The most abundantly expressed genes in the four stages were mainly involved in translation (for the logarithmic stage), glycolysis (for control/lag stages), lactic acid production (all the four stages), and 10-formyl tetrahydrofolate production (for the stationary stage). The high expression of genes like d-lactate dehydrogenase was thought as a result of energy production, and consistent expression of EPS synthesis genes, the restriction-modification (RM) system and the CRISPR/Cas system were validated for explaining the advantage of this strain in yoghurt production. Several postulations, like NADPH production through GapN bypass, converting aspartate into carbon-skeleton intermediates, and formate production through degrading GTP, were proved not working under these culture conditions. The high expression of helicase genes and co-expressed amino acids/oligopeptides transporting proteins indicated that the helicase might mediate the strain obtaining nitrogen source from the environment. The transport system of Lb. bulgaricus 2038 was found to be regulated by antisense RNA, hinting the potential application of non-coding RNA in regulating lactic acid bacteria (LAB) gene expression. Our study has primarily uncovered Lb. bulgaricus 2038 transcriptome, which could gain a better understanding of the regulation system in Lb. bulgaricus and promote its industrial application.
Collapse
Affiliation(s)
- Huajun Zheng
- Laboratory of Medical Foods, Shanghai Institute of Planned Parenthood Research, 2140 Xie-Tu Road, Shanghai 200032, China.
| | - Enuo Liu
- Laboratory of Medical Foods, Shanghai Institute of Planned Parenthood Research, 2140 Xie-Tu Road, Shanghai 200032, China.
| | - Tao Shi
- Laboratory of Medical Foods, Shanghai Institute of Planned Parenthood Research, 2140 Xie-Tu Road, Shanghai 200032, China.
| | - Luyi Ye
- Laboratory of Medical Foods, Shanghai Institute of Planned Parenthood Research, 2140 Xie-Tu Road, Shanghai 200032, China.
| | - Tomonobu Konno
- Division of Research and Development, Meiji Co., Ltd, 540 Naruda, Odawara, Kanagawa 250-0862, Japan
| | - Munehiro Oda
- Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa City, Kanagawa 252-0880, Japan
| | - Zai-Si Ji
- Laboratory of Medical Foods, Shanghai Institute of Planned Parenthood Research, 2140 Xie-Tu Road, Shanghai 200032, China. and Division of Research and Development, Meiji Co., Ltd, 540 Naruda, Odawara, Kanagawa 250-0862, Japan
| |
Collapse
|
23
|
Jaomanjaka F, Claisse O, Blanche-Barbat M, Petrel M, Ballestra P, Marrec CL. Characterization of a new virulent phage infecting the lactic acid bacterium Oenococcus oeni. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium. Appl Environ Microbiol 2015; 82:18-26. [PMID: 26452552 DOI: 10.1128/aem.02495-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
Oenococcus oeni is a wine-associated lactic acid bacterium mostly responsible for malolactic fermentation in wine. In wine, O. oeni grows in an environment hostile to bacterial growth (low pH, low temperature, and ethanol) that induces stress response mechanisms. To survive, O. oeni is known to set up transitional stress response mechanisms through the synthesis of heat stress proteins (HSPs) encoded by the hsp genes, notably a unique small HSP named Lo18. Despite the availability of the genome sequence, characterization of O. oeni genes is limited, and little is known about the in vivo role of Lo18. Due to the lack of genetic tools for O. oeni, an efficient expression vector in O. oeni is still lacking, and deletion or inactivation of the hsp18 gene is not presently practicable. As an alternative approach, with the goal of understanding the biological function of the O. oeni hsp18 gene in vivo, we have developed an expression vector to produce antisense RNA targeting of hsp18 mRNA. Recombinant strains were exposed to multiple stresses inducing hsp18 gene expression: heat shock and acid shock. We showed that antisense attenuation of hsp18 affects O. oeni survival under stress conditions. These results confirm the involvement of Lo18 in heat and acid tolerance of O. oeni. Results of anisotropy experiments also confirm a membrane-protective role for Lo18, as previous observations had already suggested. This study describes a new, efficient tool to demonstrate the use of antisense technology for modulating gene expression in O. oeni.
Collapse
|
25
|
Guyot S, Gervais P, Young M, Winckler P, Dumont J, Davey HM. Surviving the heat: heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ Microbiol 2015; 17:2982-92. [PMID: 25845620 PMCID: PMC4676927 DOI: 10.1111/1462-2920.12866] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/30/2015] [Indexed: 01/03/2023]
Abstract
Environmental heat stress impacts on the physiology and viability of microbial cells with concomitant implications for microbial activity and diversity. Previously, it has been demonstrated that gradual heating of Saccharomyces cerevisiae induces a degree of thermal resistance, whereas a heat shock results in a high level of cell death. Here, we show that the impact of exogenous nutrients on acquisition of thermal resistance differs between strains. Using single-cell methods, we demonstrate the extent of heterogeneity of the heat-stress response within populations of yeast cells and the presence of subpopulations that are reversibly damaged by heat stress. Such cells represent potential for recovery of entire populations once stresses are removed. The results show that plasma membrane permeability and potential are key factors involved in cell survival, but thermal resistance is not related to homeoviscous adaptation of the plasma membrane. These results have implications for growth and regrowth of populations experiencing environmental heat stress and our understanding of impacts at the level of the single cell. Given the important role of microbes in biofuel production and bioremediation, a thorough understanding of the impact of stress responses of populations and individuals is highly desirable.
Collapse
Affiliation(s)
- Stéphane Guyot
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Patrick Gervais
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Michael Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityPenglais, Aberystwyth, Wales, SY23 3DA, UK
| | - Pascale Winckler
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| | - Jennifer Dumont
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Hazel Marie Davey
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| |
Collapse
|
26
|
Overexpression of Small Heat Shock Protein Enhances Heat- and Salt-Stress Tolerance of Bifidobacterium longum NCC2705. Curr Microbiol 2015; 71:8-15. [DOI: 10.1007/s00284-015-0811-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/23/2015] [Indexed: 12/24/2022]
|
27
|
Bordas M, Araque I, Bordons A, Reguant C. Differential expression of selected Oenococcus oeni genes for adaptation in wine-like media and red wine. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1069-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
Chang Z. Understanding What Small Heat Shock Proteins Do for Bacterial Cells. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Tóth ME, Vígh L, Sántha M. Alcohol stress, membranes, and chaperones. Cell Stress Chaperones 2014; 19:299-309. [PMID: 24122554 PMCID: PMC3982023 DOI: 10.1007/s12192-013-0472-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Ethanol, which affects all body organs, exerts a number of cytotoxic effects, most of them independent of cell type. Ethanol treatment leads to increased membrane fluidity and to changes in membrane protein composition. It can also interact directly with membrane proteins, causing conformational changes and thereby influencing their function. The cytotoxic action may include an increased level of oxidative stress. Heat shock protein molecular chaperones are ubiquitously expressed evolutionarily conserved proteins which serve as critical regulators of cellular homeostasis. Heat shock proteins can be induced by various forms of stresses such as elevated temperature, alcohol treatment, or ischemia, and they are also upregulated in certain pathological conditions. As heat shock and ethanol stress provoke similar responses, it is likely that heat shock protein activation also has a role in the protection of membranes and other cellular components during alcohol stress.
Collapse
Affiliation(s)
- Melinda E. Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| |
Collapse
|
30
|
Adaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity. Appl Environ Microbiol 2014; 80:2973-80. [PMID: 24584255 DOI: 10.1128/aem.04178-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malolactic fermentation in wine is often carried out by Oenococcus oeni. Wine is a stressful environment for bacteria because ethanol is a toxic compound that impairs the integrity of bacterial membranes. The small heat shock protein (sHsp) Lo18 is an essential actor of the stress response in O. oeni. Lo18 prevents the thermal aggregation of proteins and plays a crucial role in membrane quality control. Here, we investigated the interaction between Lo18 and four types of liposomes: one was prepared from O. oeni grown under optimal growth conditions (here, control liposomes), one was prepared from O. oeni grown in the presence of 8% ethanol (here, ethanol liposomes), one was prepared from synthetic phospholipids, and one was prepared from phospholipids from Bacillus subtilis or Lactococcus lactis. We observed the strongest interaction between Lo18 and control liposomes. The lipid binding activity of Lo18 required the dissociation of oligomeric structures into dimers. Protein protection experiments carried out in the presence of the liposomes from O. oeni suggested that Lo18 had a higher affinity for control liposomes than for a model protein. In anisotropy experiments, we mimicked ethanol action by temperature-dependent fluidization of the liposomes. Results suggest that the principal determinant of Lo18-membrane interaction is lipid bilayer phase behavior rather than phospholipid composition. We suggest a model to describe the ethanol adaptation of O. oeni. This model highlights the dual role of Lo18 in the protection of proteins from aggregation and membrane stabilization and suggests how modifications of phospholipid content may be a key factor determining the balance between these two functions.
Collapse
|
31
|
Mohedano MDLL, Russo P, de Los Ríos V, Capozzi V, Fernández de Palencia P, Spano G, López P. A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163. Open Biol 2014; 4:130154. [PMID: 24573368 PMCID: PMC3938052 DOI: 10.1098/rsob.130154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oenococcus oeni is the main lactic acid bacterium that carries out the malolactic fermentation in virtually all red wines and in some white and sparkling wines. Oenococcus oeni possesses an array of metabolic activities that can modify the taste and aromatic properties of wine. There is, therefore, industrial interest in the proteins involved in these metabolic pathways and related transport systems of this bacterium. In this work, we report the characterization of the O. oeni ATCC BAA-1163 proteome. Total and membrane protein preparations from O. oeni were standardized and analysed by two-dimensional gel electrophoresis. Using tandem mass spectrometry, we identified 224 different spots corresponding to 152 unique proteins, which have been classified by their putative function and subjected to bioinformatics analysis.
Collapse
Affiliation(s)
- María de la Luz Mohedano
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Calle Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Kong F, Deng Y, Wang G, Wang J, Liang X, Meng Q. LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:63-74. [PMID: 24148796 DOI: 10.1111/jipb.12119] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/15/2013] [Indexed: 05/22/2023]
Abstract
The roles of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ1) were investigated using wild-type (WT) and sense transgenic tomatoes. The LeCDJ1 expression was upregulated by 38 °C, 42 °C, 45 °C, NaCl, PEG, methyl viologen (MV) and hydrogen peroxide (H2O2), but not by 30 °C and 35 °C. Meanwhile, LeCDJ1 was involved in the response of plants to abscisic acid (ABA). Under heat stress, the sense plants showed better growth, higher chlorophyll content, lower malondialdehyde (MDA) accumulation and relative electrical conductivity (REC), and also less PSII photoinhibition than WT. Interestingly, the sense plants treated with streptomycin (SM), an inhibitor of organellar translation, still showed higher maximum photochemistry efficiency of PSII (Fv/Fm) and D1 protein levels than the SM-untreated WT, suggesting that the protective effect of LeCDJ1 on PSII was, at least partially, independent of D1 protein synthesis. Furthermore, the relatively lower superoxide radical (O2(•-)) and H2O2 levels in the sense plants were considered to be due to the higher ascorbate peroxidase (APX) and superoxide dismutase (SOD) activity, which seemed unlikely dependent on their transcription level. These results indicated that LeCDJ1 overexpression facilitated heat tolerance in transgenic tomatoes.
Collapse
Affiliation(s)
- Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | | | | | | | | | | |
Collapse
|
33
|
Van Bokhorst-van de Veen H, Bongers RS, Wels M, Bron PA, Kleerebezem M. Transcriptome signatures of class I and III stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation. Microb Cell Fact 2013; 12:112. [PMID: 24238744 PMCID: PMC3842655 DOI: 10.1186/1475-2859-12-112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/11/2013] [Indexed: 01/17/2023] Open
Abstract
Background To cope with environmental challenges bacteria possess sophisticated defense mechanisms that involve stress-induced adaptive responses. The canonical stress regulators CtsR and HrcA play a central role in the adaptations to a plethora of stresses in a variety of organisms. Here, we determined the CtsR and HrcA regulons of the lactic acid bacterium Lactobacillus plantarum WCFS1 grown under reference (28°C) and elevated (40°C) temperatures, using ctsR, hrcA, and ctsR-hrcA deletion mutants. Results While the maximum specific growth rates of the mutants and the parental strain were similar at both temperatures (0.33 ± 0.02 h-1 and 0.34 ± 0.03 h-1, respectively), DNA microarray analyses revealed that the CtsR or HrcA deficient strains displayed altered transcription patterns of genes encoding functions involved in transport and binding of sugars and other compounds, primary metabolism, transcription regulation, capsular polysaccharide biosynthesis, as well as fatty acid metabolism. These transcriptional signatures enabled the refinement of the gene repertoire that is directly or indirectly controlled by CtsR and HrcA of L. plantarum. Deletion of both regulators, elicited transcriptional changes of a large variety of additional genes in a temperature-dependent manner, including genes encoding functions involved in cell-envelope remodeling. Moreover, phenotypic assays revealed that both transcription regulators contribute to regulation of resistance to hydrogen peroxide stress. The integration of these results allowed the reconstruction of CtsR and HrcA regulatory networks in L. plantarum, highlighting the significant intertwinement of class I and III stress regulons. Conclusions Taken together, our results enabled the refinement of the CtsR and HrcA regulatory networks in L. plantarum, illustrating the complex nature of adaptive stress responses in this bacterium.
Collapse
|
34
|
Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine. PLoS One 2012; 7:e49082. [PMID: 23139835 PMCID: PMC3489775 DOI: 10.1371/journal.pone.0049082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022] Open
Abstract
Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine.
Collapse
|
35
|
The oligomer plasticity of the small heat-shock protein Lo18 from Oenococcus oeni influences its role in both membrane stabilization and protein protection. Biochem J 2012; 444:97-104. [PMID: 22360742 DOI: 10.1042/bj20120066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of the small Hsp (heat-shock protein) Lo18 from Oenococcus oeni to modulate the membrane fluidity of liposomes or to reduce the thermal aggregation of proteins was studied as a function of the pH in the range 5-9. We have determined by size-exclusion chromatography and analytical ultracentrifugation that Lo18 assembles essentially as a 16-mer at acidic pH. Its quaternary structure evolves to a mixture of lower molecular mass oligomers probably in dynamic equilibrium when the pH increases. The best Lo18 activities are observed at pH 7 when the particle distribution contains a major proportion of dodecamers. At basic pH, particles corresponding to a dimer prevail and are thought to be the building blocks leading to oligomerization of Lo18. At acidic pH, the dimers are organized in a double-ring of stacked octamers to form the 16-mer as shown by the low-resolution structure determined by electron microscopy. Experiments performed with a modified protein (A123S) shown to preferentially form dimers confirm these results. The α-crystallin domain of Methanococcus jannaschii Hsp16.5, taken as a model of the Lo18 counterpart, fits with the electron microscopy envelope of Lo18.
Collapse
|
36
|
Guzzo J. Biotechnical applications of small heat shock proteins from bacteria. Int J Biochem Cell Biol 2012; 44:1698-705. [PMID: 22706478 DOI: 10.1016/j.biocel.2012.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 01/05/2023]
Abstract
The stress responses of most bacteria are thought to involve the upregulation of small heat shock proteins. We describe here some of the most pertinent aspects of small heat shock proteins, to highlight their potential for use in various applications. Bacterial species have between one and 13 genes encoding small heat shock proteins, the precise number depending on the species considered. Major efforts have recently been made to characterize the protein protection and membrane stabilization mechanisms involving small heat shock proteins in bacteria. These proteins seem to be involved in the acquisition of cellular heat tolerance. They could therefore potentially be used to maintain cell viability under unfavorable conditions, such as heat shock or chemical treatments. This review highlights the potential roles of applications of small heat shock proteins in stabilizing overproduced heterologous proteins in Escherichia coli, purified bacterial small heat shock proteins in protein biochip technology, proteomic analysis and food technology and the potential impact of these proteins on some diseases. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Jean Guzzo
- UMR A PAM Université de Bourgogne/Agrosup Dijon Equipe Valmis Institut Jules Guyot, 1 Rue Claude Ladrey, BP27877, 21078 Dijon, France.
| |
Collapse
|
37
|
Suzuki K. 125th Anniversary Review: Microbiological Instability of Beer Caused by Spoilage Bacteria. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00454.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Montagna GN, Matuschewski K, Buscaglia CA. Small heat shock proteins in cellular adhesion and migration: evidence from Plasmodium genetics. Cell Adh Migr 2012; 6:78-84. [PMID: 22568951 DOI: 10.4161/cam.20101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cellular locomotion and adhesion critically depend on regulated turnover of filamentous actin. Biochemical data from diverse model systems support a role for the family of small heat shock proteins (HSPBs) in microfilament regulation. The small chaperones could either act directly, through competition with the motor myosin, or indirectly, through modulation of actin depolymerizing factor/cofilin activity. However, a direct link between HSPBs and actin-based cellular motility remained to be established. In a recent experimental genetics study, we provided evidence for regulation of Plasmodium motility by HSPB6/Hsp20. The infectious forms of malaria parasites, termed sporozoites, display fast and continuous substrate-dependent motility, which is largely driven by turnover of actin microfilaments. Sporozoite gliding locomotion is essential to avoid destruction by host defense mechanisms and to ultimately reach a hepatocyte, the target cell, where to transform and replicate. Genetic ablation of Plasmodium HSP20 dramatically changed sporozoite speed and substrate adhesion, resulting in impaired natural malaria transmission. In this article, we discuss the function of Hsp20 in this fast-moving unicellular protozoan and implications for the roles of HSPBs in adhesion and migration of eukaryotic cells.
Collapse
|
39
|
Co-expression of the small heat shock protein, Lo18, with β-glucosidase in Escherichia coli improves solubilization and reveals various associations with overproduced heterologous protein, GroEL/ES. Biotechnol Lett 2012; 34:935-9. [DOI: 10.1007/s10529-012-0854-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
|
40
|
Kim DH, Xu ZY, Na YJ, Yoo YJ, Lee J, Sohn EJ, Hwang I. Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:132-46. [PMID: 21730198 PMCID: PMC3165864 DOI: 10.1104/pp.111.178681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/03/2011] [Indexed: 05/20/2023]
Abstract
Plastid proteins that are encoded by the nuclear genome and synthesized in the cytosol undergo posttranslational targeting to plastids. Ankyrin repeat protein 2A (AKR2A) and AKR2B were recently shown to be involved in the targeting of proteins to the plastid outer envelope. However, it remains unknown whether other factors are involved in this process. In this study, we investigated a factor involved in AKR2A-mediated protein targeting to chloroplasts in Arabidopsis (Arabidopsis thaliana). Hsp17.8, a member of the class I (CI) cytosolic small heat shock proteins (sHsps), was identified in interactions with AKR2A. The interaction between Hsp17.8 and AKR2A was further confirmed by coimmunoprecipitation experiments. The carboxyl-terminal ankyrin repeat domain of AKR2A was responsible for AKR2A binding to Hsp17.8. Other CI cytosolic sHsps also interact with AKR2A to varying degrees. Additionally, Hsp17.8 binds to chloroplasts in vitro and enhances AKR2A binding to chloroplasts. HSP17.8 was expressed under normal growth conditions, and its expression increased after heat shock. Hsp17.8 exists as a dimer under normal physiological conditions, and it is converted to high oligomeric complexes, ranging from 240 kD to greater than 480 kD, after heat shock. High levels of Hsp17.8 together with AKR2A resulted in increased plastid targeting of Outer Envelope Protein7 (OEP7), a plastid outer envelope protein expressed as a green fluorescent protein fusion protein. In contrast, artificial microRNA suppression of HSP17.8 and closely related CI cytosolic sHSPs in protoplasts resulted in a reduction of OEP7:green fluorescent protein targeting to plastids. Based on these data, we propose that Hsp17.8 functions as an AKR2A cofactor in targeting membrane proteins to plastid outer membranes under normal physiological conditions.
Collapse
|
41
|
The hsp 16 gene of the probiotic Lactobacillus acidophilus is differently regulated by salt, high temperature and acidic stresses, as revealed by reverse transcription quantitative PCR (qRT-PCR) analysis. Int J Mol Sci 2011; 12:5390-405. [PMID: 21954366 PMCID: PMC3179173 DOI: 10.3390/ijms12085390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022] Open
Abstract
Small heat shock proteins (sHsps) are ubiquitous conserved chaperone-like proteins involved in cellular proteins protection under stressful conditions. In this study, a reverse transcription quantitative PCR (RT-qPCR) procedure was developed and used to quantify the transcript level of a small heat shock gene (shs) in the probiotic bacterium Lactobacillus acidophilus NCFM, under stress conditions such as heat (45 °C and 53 °C), bile (0.3% w/v), hyperosmosis (1 M and 2.5 M NaCl), and low pH value (pH 4). The shs gene of L. acidophilus NCFM was induced by salt, high temperature and acidic stress, while repression was observed upon bile stress. Analysis of the 5′ noncoding region of the hsp16 gene reveals the presence of an inverted repeat (IR) sequence (TTAGCACTC-N9-GAGTGCTAA) homologue to the controlling IR of chaperone expression (CIRCE) elements found in the upstream regulatory region of Gram-positive heat shock operons, suggesting that the hsp16 gene of L. acidophilus might be transcriptionally controlled by HrcA. In addition, the alignment of several small heat shock proteins identified so far in lactic acid bacteria, reveals that the Hsp16 of L. acidophilus exhibits a strong evolutionary relationship with members of the Lactobacillus acidophilus group.
Collapse
|
42
|
Capozzi V, Fiocco D, Weidmann S, Guzzo J, Spano G. Increasing membrane protection in Lactobacillus plantarum cells overproducing small heat shock proteins. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0285-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
43
|
Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 2011; 77:3327-34. [PMID: 21421775 DOI: 10.1128/aem.02518-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.
Collapse
|
44
|
Capozzi V, Weidmann S, Fiocco D, Rieu A, Hols P, Guzzo J, Spano G. Inactivation of a small heat shock protein affects cell morphology and membrane fluidity in Lactobacillus plantarum WCFS1. Res Microbiol 2011; 162:419-25. [PMID: 21349328 DOI: 10.1016/j.resmic.2011.02.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/31/2011] [Indexed: 11/16/2022]
Abstract
A small heat shock gene of Lactobacillus plantarum strain WCFS1 was deleted using a Cre-lox based system. Compared to the wild type, the ∆hsp 18.55 mutant strain displayed a similar growth rate when cultivated either under optimal temperature or under different stress conditions such as heat, low pH and salt stress. However, a longer lag phase was observed when the ∆hsp 18.55 mutant strain was cultivated under short intense heat stress (50 °C). This suggests that the hsp 18.55 gene of L. plantarum may be involved in recovery of L. plantarum stressed cells in the early stage of high temperature stress. In addition, morphology of the mutant cells, investigated by scanning electron microscopy, revealed that cells clumped together and had rough surfaces, and that some of the cells had a shrunken empty appearance, which clearly contrasted with the characteristic rod-shaped, smooth-surface morphology of control L. plantarum cells. Furthermore, inactivation of the hsp 18.55 gene affected membrane fluidity and physicochemical surface properties of L. plantarum WCFS1.
Collapse
Affiliation(s)
- Vittorio Capozzi
- Department of Food Science, University of Foggia, via Napoli 25, 71100 Foggia, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Toth ME, Gonda S, Vigh L, Santha M. Neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic alcohol administration. Cell Stress Chaperones 2010; 15:807-17. [PMID: 20461564 PMCID: PMC3024073 DOI: 10.1007/s12192-010-0188-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 02/05/2023] Open
Abstract
Alcohol induces degeneration of neurons and inhibits neurogenesis in the brain. Small heat shock proteins are able to protect neurons in cerebral ischemia and oxidative stress. In this study, we investigated the neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic ethanol administrations using transgenic mice overexpressing the human Hsp27 protein. Transgenic mice and wild-type littermates were injected with 2 g/kg ethanol intraperitoneally, and then motor coordination and muscle strength were analyzed using different behavioral tests, such as footprint analysis, balance beam, and inverted screen tests. Ethanol-injected transgenic mice showed similar footprints to control saline-injected mice, did not fall of the beam, and were able to climb to the top of the inverted screen, while wild-type mice showed ataxia and incoordination after ethanol injection. The effect of Hsp27 on chronic ethanol consumption was also investigated. Drinking water of mice was replaced by a 20% ethanol solution for 5 weeks, and then brain sections were stained with Fluoro Jade C staining. We found significantly lesser amount of degenerating neurons in the brain of ethanol-drinking transgenic mice compared to wild-type mice. We conclude that Hsp27 can protect neurons against the acute and chronic toxic effects of ethanol.
Collapse
Affiliation(s)
- Melinda Erzsebet Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Szilvia Gonda
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Miklos Santha
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| |
Collapse
|
46
|
Guyot S, Pottier L, Ferret E, Gal L, Gervais P. Physiological responses of Escherichia coli exposed to different heat-stress kinetics. Arch Microbiol 2010; 192:651-61. [PMID: 20549191 DOI: 10.1007/s00203-010-0597-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/26/2010] [Accepted: 05/31/2010] [Indexed: 11/28/2022]
Abstract
The effects of heat-stress kinetics on the viability of Escherichia coli were investigated. Cells were exposed to heat-stress treatments extending from 30 to 50 degrees C, with either a slope (40 min) or a shock (10 s), both followed by a 1-h plateau at 50 degrees C in nutritive medium. A higher survival rate was observed after the slope than after the shock, when both were followed by a plateau, so the heat slope induced a certain degree of thermotolerance. This tolerance was partly (i) linked to de novo protein synthesis during the subsequent plateau phase, and (ii) abolished after rapid cooling from 50 to 30 degrees C, which means that cellular components with rapidly reversible thermal properties are involved in this type of thermotolerance. The heat-slope-induced thermotolerance was chiefly linked to the maintenance of the plasma membrane integrity (preservation of structure, fluidity, and permeability), and not to GroEL or DnaK overexpression. Moreover, the high level of cell mortality induced by the heat shock could be related to changes in the membrane integrity.
Collapse
Affiliation(s)
- Stéphane Guyot
- Laboratoire de Génie des Procédés Microbiologiques et Alimentaires-AgroSup Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France
| | | | | | | | | |
Collapse
|
47
|
Weidmann S, Rieu A, Rega M, Coucheney F, Guzzo J. Distinct amino acids of the Oenococcus oeni small heat shock protein Lo18 are essential for damaged protein protection and membrane stabilization. FEMS Microbiol Lett 2010; 309:8-15. [PMID: 20546310 DOI: 10.1111/j.1574-6968.2010.01999.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The small heat shock protein (smHsp) Lo18 from lactic acid bacteria Oenococcus oeni reduces in vitro thermal aggregation of proteins and modulates the membrane fluidity of native liposomes. An absence of information relating to the way in which the smHsp demonstrates a stabilizing effect for both proteins and membranes prompted this study. We expressed three Lo18 proteins with amino acid substitutions in Escherichia coli to investigate their ability to prevent E. coli protein aggregation and their capacity to stabilize E. coli whole-cell membranes. Our results showed that the alanine 123 to serine substitution induces a decrease in chaperone activity in denaturated proteins, and that the tyrosine 107 is required for membrane stabilization. Moreover, this study revealed that the oligomeric structures of proteins with amino acid substitutions do not appear to be modified. Our data strongly suggest that different amino acids are involved in the thermostabilization of proteins and in membrane fluidity regulation and are localized in the alpha-crystallin domain.
Collapse
|
48
|
Sico MA, Bonomo MG, D'Adamo A, Bochicchio S, Salzano G. Fingerprinting analysis ofOenococcus oenistrains under stress conditions. FEMS Microbiol Lett 2009; 296:11-7. [DOI: 10.1111/j.1574-6968.2009.01611.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
49
|
Hongsthong A, Sirijuntarut M, Prommeenate P, Lertladaluck K, Porkaew K, Cheevadhanarak S, Tanticharoen M. Proteome analysis at the subcellular level of the cyanobacterium Spirulina platensis in response to low-temperature stress conditions. FEMS Microbiol Lett 2009; 288:92-101. [PMID: 18764876 DOI: 10.1111/j.1574-6968.2008.01330.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The present study addresses the differential expression of Spirulina platensis proteins detected during cold-induced stress, analyzed at the subcellular level. In performing differential expression analysis, the results revealed upregulated proteins in every subcellular fraction, including two-component response systems, DNA repair, molecular chaperones, stress-induced proteins and proteins involved in other biological processes such as secretion systems and nitrogen assimilation. The chlorophyll biosynthetic proteins, protochlorophyllide oxidoreductase and ChlI, had unique expression patterns as detected in the thylakoid membrane; the levels of these proteins immediately decreased during the first 45 min of low-temperature exposure. In contrast, their expression levels significantly increased after low-temperature exposure, indicating the relevance of the chlorophyll biosynthesis in Spirulina in response to low-temperature stress in the light condition. In addition, this is the first report in which genome-based protein identification in S. platensis by peptide mass fingerprinting was performed using the database derived from the unpublished Spirulina genome sequence.
Collapse
|
50
|
Sugimoto S, Abdullah-Al-Mahin, Sonomoto K. Molecular Chaperones in Lactic Acid Bacteria: Physiological Consequences and Biochemical Properties. J Biosci Bioeng 2008; 106:324-36. [DOI: 10.1263/jbb.106.324] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/25/2008] [Indexed: 01/16/2023]
|