1
|
Salvador GHM, Cardoso FF, Lomonte B, Fontes MRM. Inhibitors and activators for myotoxic phospholipase A 2-like toxins from snake venoms - A structural overview. Biochimie 2024:S0300-9084(24)00175-5. [PMID: 39089640 DOI: 10.1016/j.biochi.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Snakebite envenomations result in acute and chronic physical and psychological health effects on their victims, leading to a substantial socio-economic burden in tropical and subtropical countries. Local necrosis is one of the serious effects caused by envenomation, primarily induced by snake venoms from the Viperidae family through the direct action of components collectively denominated as myotoxins, including the phopholipase A2-like (PLA2-like) toxins. Considering the limitations of antivenoms in preventing the rapid development of local tissue damage caused by envenomation, the use of small molecule therapeutics has been suggested as potential first-aid treatments or as adjuvants to antivenom therapy. In this review, we provide an overview of the structural interactions of molecules exhibiting inhibitory activity toward PLA2-like toxins. Additionally, we discuss the implications for the myotoxic mechanism of PLA2-like toxins and the molecules involved in their activation, highlighting key differences between activators and inhibitors. Finally, we integrate all these results to propose a classification of inhibitors into three different classes and five sub-classes. Taking into account the structural and affinity information, we compare the different inhibitors/ligands to gain a deeper understanding of the structural basis for the effective inhibition of PLA2-like toxins. By offering these insights, we aim to contribute to the search for new and efficient inhibitor molecules to complement and improve current therapy by conventional antivenoms.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil
| | - Fábio F Cardoso
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente-SP, Brazil.
| |
Collapse
|
2
|
de Oliveira ALN, Lacerda MT, Ramos MJ, Fernandes PA. Viper Venom Phospholipase A2 Database: The Structural and Functional Anatomy of a Primary Toxin in Envenomation. Toxins (Basel) 2024; 16:71. [PMID: 38393149 PMCID: PMC10893444 DOI: 10.3390/toxins16020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Viper venom phospholipase A2 enzymes (vvPLA2s) and phospholipase A2-like (PLA2-like) proteins are two of the principal toxins in viper venom that are responsible for the severe myotoxic and neurotoxic effects caused by snakebite envenoming, among other pathologies. As snakebite envenoming is the deadliest neglected tropical disease, a complete understanding of these proteins' properties and their mechanisms of action is urgently needed. Therefore, we created a database comprising information on the holo-form, cofactor-bound 3D structure of 217 vvPLA2 and PLA2-like proteins in their physiologic environment, as well as 79 membrane-bound viper species from 24 genera, which we have made available to the scientific community to accelerate the development of new anti-snakebite drugs. In addition, the analysis of the sequenced, 3D structure of the database proteins reveals essential aspects of the anatomy of the proteins, their toxicity mechanisms, and the conserved binding site areas that may anchor universal interspecific inhibitors. Moreover, it pinpoints hypotheses for the molecular origin of the myotoxicity of the PLA2-like proteins. Altogether, this study provides an understanding of the diversity of these toxins and how they are conserved, and it indicates how to develop broad, interspecies, efficient small-molecule inhibitors to target the toxin's many mechanisms of action.
Collapse
Affiliation(s)
| | | | | | - Pedro A. Fernandes
- Requimte-Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-000 Porto, Portugal; (A.L.N.d.O.); (M.T.L.); (M.J.R.)
| |
Collapse
|
3
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
4
|
Salvador GHM, Pinto ÊKR, Ortolani PL, Fortes-Dias CL, Cavalcante WLG, Soares AM, Lomonte B, Lewin MR, Fontes MRM. Structural basis of the myotoxic inhibition of the Bothrops pirajai PrTX-I by the synthetic varespladib. Biochimie 2023; 207:1-10. [PMID: 36403756 DOI: 10.1016/j.biochi.2022.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Varespladib (LY315920) is a potent inhibitor of human group IIA phospholipase A2 (PLA2) originally developed to control inflammatory cascades of diseases associated with high or dysregulated levels of endogenous PLA2. Recently, varespladib was also found to inhibit snake venom PLA2 and PLA2-like toxins. Herein, ex vivo neuromuscular blocking activity assays were used to test the inhibitory activity of varespladib. The binding affinity between varespladib and a PLA2-like toxin was quantified and compared with other potential inhibitors for this class of proteins. Crystallographic and bioinformatic studies showed that varespladib binds to PrTX-I and BthTX-I into their hydrophobic channels, similarly to other previously characterized PLA2-like myotoxins. However, a new finding is that an additional varespladib binds to the MDiS region, a particular site that is related to muscle cell disruption by these toxins. The present results further advance the characterization of the molecular interactions of varespladib with PLA2-like myotoxins and provide additional evidence for this compound as a promising inhibitor candidate for different PLA2 and PLA2-like toxins.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Êmylle K R Pinto
- Departmento de Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Paula L Ortolani
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Brazil
| | | | - Walter L G Cavalcante
- Departmento de Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, LABIOPROT, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia e Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EPIAMO, Porto Velho, RO, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Matthew R Lewin
- Ophirex, Inc. Corte Madera, CA, 94925, USA; Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
6
|
The secretory phenotypes of envenomed cells: Insights into venom cytotoxicity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:193-230. [PMID: 36707202 DOI: 10.1016/bs.apcsb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Snake envenomation is listed as Category A Neglected Tropical Diseases (NTD) by World Health Organization, indicates a severe public health problem. The global figures for envenomation cases are estimated to be more than 1.8 million annually. Even if the affected victims survive the envenomation, they might suffer from permanent morbidity due to local envenomation. One of the most prominent local envenomation is dermonecrosis. Dermonecrosis is a pathophysiological outcome of envenomation that often causes disability in the victims due to surgical amputations, deformities, contracture, and chronic ulceration. The key venom toxins associated with this local symptom are mainly attributed to substantial levels of enzymatic and non-enzymatic toxins as well as their possible synergistic actions. Despite so, the severity of the local tissue damage is based on macroscopic observation of the bite areas. Furthermore, limited knowledge is known about the key biomarkers involved in the pathogenesis of dermonecrosis. The current immunotherapy with antivenom is also ineffective against dermonecrosis. These local effects eventually end up as sequelae. There is also a global shortage of toxins-targeted therapeutics attributed to inadequate knowledge of the actual molecular mechanisms of cytotoxicity. This chapter discusses the characterization of secretory phenotypes of dermonecrosis as an advanced tool to indicate its severity and pathogenesis in envenomation. Altogether, the secretory phenotypes of envenomed cells and tissues represent the precise characteristics of dermonecrosis caused by venom toxins.
Collapse
|
7
|
Solving the microheterogeneity of Bothrops asper myotoxin-II by high-resolution mass spectrometry: Insights into C-terminal region variability in Lys49-phospholipase A2 homologs. Toxicon 2022; 210:123-131. [DOI: 10.1016/j.toxicon.2022.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
|
8
|
Proleón A, Torrejón D, Urra FA, Lazo F, López-Torres C, Fuentes-Retamal S, Quispe E, Bautista L, Agurto A, Gavilan RG, Sandoval GA, Rodríguez E, Sánchez EF, Yarlequé A, Vivas-Ruiz DE. Functional, immunological characterization, and anticancer activity of BaMtx: A new Lys49- PLA 2 homologue isolated from the venom of Peruvian Bothrops atrox snake (Serpentes: Viperidae). Int J Biol Macromol 2022; 206:990-1002. [PMID: 35321814 DOI: 10.1016/j.ijbiomac.2022.03.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Bothorps atrox is responsible for most of the ophidism cases in Perú. As part of the envenoming, myotoxicity is one of the most recurrent and destructive effects. In this study, a myotoxin, named BaMtx, was purified from B. atrox venom to elucidate its biological, immunological, and molecular characteristics. BaMtx was purified using CM-Sephadex-C-25 ion-exchange resin and SDS-PAGE analysis showed a unique protein band of 13 kDa or 24 kDa under reducing or non-reducing conditions, respectively. cDNA sequence codified a 122-aa mature protein with high homology with other Lys49-PLA2s; modeled structure showed a N-terminal helix, a β-wing region, and a C-terminal random coil. This protein has a poor phospholipase A2 enzymatic activity. BaMtx has myotoxic (DMM = 12.30 ± 0.95 μg) and edema-forming (DEM = 26.00 ± 1.15 μg) activities. Rabbit immunization with purified enzyme produced anti-BaMtx antibodies that reduced 50.28 ± 10.15% of myotoxic activity and showed significant cross-reactivity against B. brazili and B pictus venoms. On the other hand, BaMtx exhibits mild anti-proliferative and anti-migratory effects on breast cancer cells, affecting the ROS and NADH levels, which may reduce mitochondrial respiration. These results contribute to the understanding of B. atrox Lys49-PLA2 effects and establish the anticancer potential de BaMtx.
Collapse
Affiliation(s)
- Alex Proleón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Felix A Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Camila López-Torres
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Sebastián Fuentes-Retamal
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Edwin Quispe
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Lorgio Bautista
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Andrés Agurto
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Ronnie G Gavilan
- Centro Nacional de Salud Pública, Instituto Nacional de Salud-Perú, Jesús María, Lima, Peru; Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Gustavo A Sandoval
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Edith Rodríguez
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Eladio F Sánchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú.
| |
Collapse
|
9
|
Barbosa ED, Lima Neto JX, Bezerra KS, Oliveira JIN, Machado LD, Fulco UL. Quantum Biochemical Investigation of Lys49-PLA 2 from Bothrops moojeni. J Phys Chem B 2021; 125:12972-12980. [PMID: 34793159 DOI: 10.1021/acs.jpcb.1c07298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Envenomation via snakebites occurs largely in areas where it is harder to access the hospital. Its mortality rate and sequelae acquired by the survivors symbolize a big challenge for antivenom therapy. In particular, the homologous phospholipase A2 (Lys49-PLA2) proteins can induce myonecrosis and are not effectively neutralized by current treatments. Thus, by taking advantage of crystallographic structures of Bothrops moojeni Lys49-PLA2 complexed with VRD (varespladib) and AIN (aspirin), a quantum biochemistry study based on the molecular fractionation with conjugate cap scheme within the density functional theory formalism is performed to unveil these complexes' detailed interaction energies. The calculations revealed that important interactions between ligands and the Lys49-PLA2 pocket could occur up to a pocket radius of r = 6.5 (5.0 Å) for VRD (AIN), with the total interaction energy of the VRD ligand being higher than that of the AIN ligand, which is well-correlated with the experimental binding affinity. Furthermore, we have identified the role played by the amino acids LYS0069, LYS0049, LEU0005, ILE0009, CYS0029, GLY0030, HIS0048, PRO0018, ALA0019, CYS0045, TYR0052, TYR0022, PRO0125*, and PHE0126* (LYS0069, LYS0049, GLY0032, LEU0002, and LEU0005) in the VRD↔Lys49-PLA2 (AIN↔Lys49-PLA2) complex. Our simulations are a valuable tool to support the big challenge for neutralizing the damages in victims of snakebites.
Collapse
Affiliation(s)
- E D Barbosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - J X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - K S Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - J I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - L D Machado
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - U L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| |
Collapse
|
10
|
BthTX-II from Bothrops jararacussu venom has variants with different oligomeric assemblies: An example of snake venom phospholipases A 2 versatility. Int J Biol Macromol 2021; 191:255-266. [PMID: 34547312 DOI: 10.1016/j.ijbiomac.2021.09.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Phospholipases A2 (PLA2s) are found in almost every venomous snake family. In snakebites, some PLA2s can quickly cause local myonecrosis, which may lead to permanent sequelae if antivenom is administered belatedly. They hydrolyse phospholipids in membranes through a catalytic calcium ions-dependent mechanism. BthTX-II is a basic PLA2 and the second major component in the venom of Bothrops jararacussu. Herein, using the software SEQUENCE SLIDER, which integrates crystallographic, mass spectrometry and genetic data, we characterized the primary, tertiary and quaternary structure of two BthTX-II variants (called a and b), which diverge in 7 residues. Crystallographic structure BthTX-IIa is in a Tense-state with its distorted calcium binding loop buried in the dimer interface, contrarily, the novel BthTX-IIb structure is a monomer in a Relax-state with a fatty acid in the hydrophobic channel. Structural data in solution reveals that both variants are monomeric in neutral physiological conditions and mostly dimeric in an acidic environment, being catalytic active in both situations. Therefore, we propose two myotoxic mechanisms for BthTX-II, a catalytic one associated with the monomeric assembly, whereas the other has a calcium independent activity related to its C-terminal region, adopting a dimeric conformation similar to PLA2-like proteins.
Collapse
|
11
|
Short Linear Motifs Characterizing Snake Venom and Mammalian Phospholipases A2. Toxins (Basel) 2021; 13:toxins13040290. [PMID: 33923919 PMCID: PMC8073766 DOI: 10.3390/toxins13040290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Snake venom phospholipases A2 (PLA2s) have sequences and structures very similar to those of mammalian group I and II secretory PLA2s, but they possess many toxic properties, ranging from the inhibition of coagulation to the blockage of nerve transmission, and the induction of muscle necrosis. The biological properties of these proteins are not only due to their enzymatic activity, but also to protein–protein interactions which are still unidentified. Here, we compare sequence alignments of snake venom and mammalian PLA2s, grouped according to their structure and biological activity, looking for differences that can justify their different behavior. This bioinformatics analysis has evidenced three distinct regions, two central and one C-terminal, having amino acid compositions that distinguish the different categories of PLA2s. In these regions, we identified short linear motifs (SLiMs), peptide modules involved in protein–protein interactions, conserved in mammalian and not in snake venom PLA2s, or vice versa. The different content in the SLiMs of snake venom with respect to mammalian PLA2s may result in the formation of protein membrane complexes having a toxic activity, or in the formation of complexes whose activity cannot be blocked due to the lack of switches in the toxic PLA2s, as the motif recognized by the prolyl isomerase Pin1.
Collapse
|
12
|
Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochem Soc Trans 2021; 48:719-731. [PMID: 32267491 PMCID: PMC7200639 DOI: 10.1042/bst20200110] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
Collapse
|
13
|
The allosteric activation mechanism of a phospholipase A 2-like toxin from Bothrops jararacussu venom: a dynamic description. Sci Rep 2020; 10:16252. [PMID: 33004851 PMCID: PMC7529814 DOI: 10.1038/s41598-020-73134-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
The activation process of phospholipase A2-like (PLA2-like) toxins is a key step in their molecular mechanism, which involves oligomeric changes leading to the exposure of specific sites. Few studies have focused on the characterization of allosteric activators and the features that distinguish them from inhibitors. Herein, a comprehensive study with the BthTX-I toxin from Bothrops jararacussu venom bound or unbound to α-tocopherol (αT) was carried out. The oligomerization state of BthTX-I bound or unbound to αT in solution was studied and indicated that the toxin is predominantly monomeric but tends to oligomerize when complexed with αT. In silico molecular simulations showed the toxin presents higher conformational changes in the absence of αT,
which suggests that it is important to stabilize the structure of the toxin. The transition between the two states (active/inactive) was also studied, showing that only the unbound BthTX-I system could migrate to the inactive state. In contrast, the presence of αT induces the toxin to leave the inactive state, guiding it towards the active state, with more regions exposed to the solvent, particularly its active site. Finally, the structural determinants necessary for a molecule to be an inhibitor or activator were analyzed in light of the obtained results.
Collapse
|
14
|
SDS-induced oligomerization of Lys49-phospholipase A 2 from snake venom. Sci Rep 2019; 9:2330. [PMID: 30787342 PMCID: PMC6382788 DOI: 10.1038/s41598-019-38861-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
Phospholipase A2 (PLA2) is one of the representative toxic components of snake venom. PLA2s are categorized into several subgroups according to the amino acid at position 49, which comprises either Asp49, Lys49, Arg49 or Ser49. Previous studies suggested that the Lys49-PLA2 assembles into an extremely stable dimer. Although the behavior on Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing or non-reducing conditions suggested the presence of intermolecular disulfide bonds, these bonds were not observed in the crystal structure of Lys49-PLA2. The reason for this discrepancy between the crystal structure and SDS-PAGE of Lys49-PLA2 remains unknown. In this study, we analyzed a Lys49-PLA2 homologue from Protobothrops flavoviridis (PflLys49-PLA2 BPII), by biophysical analyses including X-ray crystallography, SDS-PAGE, native-mass spectrometry, and analytical ultracentrifugation. The results demonstrated that PflLys49-PLA2 BPII spontaneously oligomerized in the presence of SDS, which is one of the strongest protein denaturants.
Collapse
|
15
|
Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia. Toxins (Basel) 2017; 9:toxins9120406. [PMID: 29311537 PMCID: PMC5744126 DOI: 10.3390/toxins9120406] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022] Open
Abstract
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms.
Collapse
|
16
|
Snake Venom PLA 2, a Promising Target for Broad-Spectrum Antivenom Drug Development. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6592820. [PMID: 29318152 PMCID: PMC5727668 DOI: 10.1155/2017/6592820] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/30/2017] [Indexed: 12/04/2022]
Abstract
Snakebite envenomation is a neglected global health problem, causing substantial mortality, disability, and psychological morbidity, especially in rural tropical and subtropical zones. Antivenin is currently the only specific medicine for envenomation. However, it is restricted by cold storage, snakebite diagnosis, and high price. Snake venom phospholipase A2s (svPLA2s) are found in all kinds of venomous snake families (e.g., Viperidae, Elapidae, and Colubridae). Along with their catalytic activity, svPLA2s elicit a wide variety of pharmacological effects that play a pivotal role in envenomation damage. Hence, neutralization of the svPLA2s could weaken or inhibit toxic damage. Here we overviewed the latest knowledge on the distribution, pathophysiological effects, and inhibitors of svPLA2s to elucidate the potential for a novel, wide spectrum antivenom drug targeting svPLA2s.
Collapse
|
17
|
Tracing the evolution of venom phospholipases A 2 in Gloydius strauchii and related pitvipers: A tale of two acidic isozymes. Toxicon 2017; 141:65-72. [PMID: 29191388 DOI: 10.1016/j.toxicon.2017.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/29/2023]
Abstract
Two acidic Asp49-PLA2s with Glu6 substitution and a neutral Lys49-PLA (designated Gst-K49) were cloned from G. strauchii venom glands, their full amino acid sequences were deduced. The predominant acidic PLA2 (designated Gst-E6a) contains 124 residues and the M18W30 substitutions, while the minor acidic PLA2 (designated Gst-E6b) contains 122 residues and the V18A30 substitutions. Their sequences are most similar to those of the respective orthologous PLA2s of G. intermedius venom. Gst-E6a and Gst-E6b appear to be paralogs and possibly have different predatory targets or functions. The LC-MS/MS results indicate the presence of only three PLA2 gene products in the crude venom, the relative expression levels were in the order of Gst-E6a ≫ Gst-E6b > Gst-K49, as confirmed by qPCR results. In contrast to other Gloydius, G. strauchii venom does not contain neurotoxic or basic anticoagulant Asp49-PLA2s, but Gst-K49 is the first Lys49-PLA2 identified in Gloydius venoms. However, its venom content is relatively low and its pI value 7.3 is much lower than those of other Lys49-PLA2s and. The Lys49-PLA2 genes appear to regress in the venom of most of Gloydius and related rattlesnake, and this evolutionary regression occurred before the dispersal of Asian pitvipers to the New World.
Collapse
|
18
|
PLA 2-like proteins myotoxic mechanism: a dynamic model description. Sci Rep 2017; 7:15514. [PMID: 29138410 PMCID: PMC5686144 DOI: 10.1038/s41598-017-15614-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/19/2017] [Indexed: 11/23/2022] Open
Abstract
Phospholipase A2-like (PLA2-like) proteins contribute to the development of muscle necrosis in Viperidae snake bites and are not efficiently neutralized by current antivenom treatments. The toxic mechanisms of PLA2-like proteins are devoid of catalytic activity and not yet fully understood, although structural and functional experiments suggest a dimeric assembly and that the C-terminal residues are essential to myotoxicity. Herein, we characterized the functional mechanism of bothropic PLA2-like structures related to global and local measurements using the available models in the Protein Data Bank and normal mode molecular dynamics (NM-MD). Those measurements include: (i) new geometric descriptions between their monomers, based on Euler angles; (ii) characterizations of canonical and non-canonical conformations of the C-terminal residues; (iii) accessibility of the hydrophobic channel; (iv) inspection of ligands; and (v) distance of clustered residues to toxin interface of interaction. Thus, we described the allosteric activation of PLA2-like proteins and hypothesized that the natural movement between monomers, calculated from NM-MD, is related to their membrane disruption mechanism, which is important for future studies of the inhibition process. These methods and strategies can be applied to other proteins to help understand their mechanisms of action.
Collapse
|
19
|
Structural studies with BnSP-7 reveal an atypical oligomeric conformation compared to phospholipases A2-like toxins. Biochimie 2017; 142:11-21. [DOI: 10.1016/j.biochi.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
|
20
|
Zambelli VO, Chioato L, Gutierrez VP, Ward RJ, Cury Y. Structural determinants of the hyperalgesic activity of myotoxic Lys49-phospholipase A 2. J Venom Anim Toxins Incl Trop Dis 2017; 23:7. [PMID: 28203248 PMCID: PMC5303236 DOI: 10.1186/s40409-017-0099-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bothropstoxin-I (BthTx-I) is a Lys49-phospholipase A2 (Lys49-PLA2) from the venom of Bothrops jararacussu, which despite of the lack of catalytic activity induces myotoxicity, inflammation and pain. The C-terminal region of the Lys49-PLA2s is important for these effects; however, the amino acid residues that determine hyperalgesia and edema are unknown. The aim of this study was to characterize the structural determinants for the Lys49-PLA2-induced nociception and inflammation. METHODS Scanning alanine mutagenesis in the active-site and C-terminal regions of BthTx-I has been used to study the structural determinants of toxin activities. The R118A mutant was employed as this substitution decreases PLA2 myotoxicity. In addition, K115A and K116A mutants - which contribute to decrease cytotoxicity - and the K122A mutant - which decreases both myotoxicity and cytotoxicity - were also used. The H48Q mutant - which does not interfere with membrane damage or myotoxic activity - was used to evaluate if the PLA2 catalytic site is relevant for the non-catalytic PLA2-induced pain and inflammation. Wistar male rats received intraplantar injections with mutant PLA2. Subsequently, hyperalgesia and edema were evaluated by the paw pressure test and by a plethysmometer. Native and recombinant BthTx-I were used as controls. RESULTS Native and recombinant BthTx-I induced hyperalgesia and edema, which peaked at 2 h. The R118A mutant did not induce nociception or edema. The mutations K115A and K116A abolished hyperalgesia without interfering with edema. Finally, the K122A mutant did not induce hyperalgesia and presented a decreased inflammatory response. CONCLUSIONS The results obtained with the BthTx-I mutants suggest, for the first time, that there are distinct residues responsible for the hyperalgesia and edema induced by BthTx-I. In addition, we also showed that cytolytic activity is essential for the hyperalgesic effect but not for edematogenic activity, corroborating previous data showing that edema and hyperalgesia can occur in a non-dependent manner. Understanding the structure-activity relationship in BthTx-I has opened new possibilities to discover the target for PLA2-induced pain.
Collapse
Affiliation(s)
- Vanessa Olzon Zambelli
- Butantan Institute, Special Laboratory for Pain and Signaling, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Lucimara Chioato
- Department of Chemistry, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Vanessa Pacciari Gutierrez
- Butantan Institute, Special Laboratory for Pain and Signaling, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Richard John Ward
- Department of Chemistry, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Yara Cury
- Butantan Institute, Special Laboratory for Pain and Signaling, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
21
|
Functional and structural studies of a Phospholipase A2-like protein complexed to zinc ions: Insights on its myotoxicity and inhibition mechanism. Biochim Biophys Acta Gen Subj 2017; 1861:3199-3209. [DOI: 10.1016/j.bbagen.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 12/28/2022]
|
22
|
Corrêa EA, Kayano AM, Diniz-Sousa R, Setúbal SS, Zanchi FB, Zuliani JP, Matos NB, Almeida JR, Resende LM, Marangoni S, da Silva SL, Soares AM, Calderon LA. Isolation, structural and functional characterization of a new Lys49 phospholipase A2 homologue from Bothrops neuwiedi urutu with bactericidal potential. Toxicon 2016; 115:13-21. [DOI: 10.1016/j.toxicon.2016.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 11/16/2022]
|
23
|
Tsai IH, Wang YM, Huang KF. Structures of Azemiops feae venom phospholipases and cys-rich-secretory protein and implications for taxonomy and toxinology. Toxicon 2016; 114:31-9. [DOI: 10.1016/j.toxicon.2016.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/31/2016] [Accepted: 02/11/2016] [Indexed: 11/28/2022]
|
24
|
Prinholato da Silva C, Costa TR, Paiva RMA, Cintra ACO, Menaldo DL, Antunes LMG, Sampaio SV. Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J Venom Anim Toxins Incl Trop Dis 2015; 21:44. [PMID: 26539212 PMCID: PMC4632473 DOI: 10.1186/s40409-015-0044-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background Phospholipases A2 (PLA2s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA2 isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines. Methods The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I. Results It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %). Conclusions These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Cássio Prinholato da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Tássia R Costa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Raquel M Alves Paiva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Adélia C O Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Danilo L Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Lusânia M Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Suely V Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| |
Collapse
|
25
|
Fernandes CAH, Cardoso FF, Cavalcante WGL, Soares AM, Dal-Pai M, Gallacci M, Fontes MRM. Structural Basis for the Inhibition of a Phospholipase A2-Like Toxin by Caffeic and Aristolochic Acids. PLoS One 2015; 10:e0133370. [PMID: 26192963 PMCID: PMC4508052 DOI: 10.1371/journal.pone.0133370] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/25/2015] [Indexed: 11/18/2022] Open
Abstract
One of the main challenges in toxicology today is to develop therapeutic alternatives for the treatment of snake venom injuries that are not efficiently neutralized by conventional serum therapy. Venom phospholipases A2 (PLA2s) and PLA2-like proteins play a fundamental role in skeletal muscle necrosis, which can result in permanent sequelae and disability. This leads to economic and social problems, especially in developing countries. In this work, we performed structural and functional studies with Piratoxin-I, a Lys49-PLA2 from Bothropspirajai venom, complexed with two compounds present in several plants used in folk medicine against snakebites. These ligands partially neutralized the myotoxic activity of PrTX-I towards binding on the two independent sites of interaction between Lys49-PLA2 and muscle membrane. Our results corroborate the previously proposed mechanism of action of PLA2s-like and provide insights for the design of structure-based inhibitors that could prevent the permanent injuries caused by these proteins in snakebite victims.
Collapse
Affiliation(s)
- Carlos A. H. Fernandes
- Dep. de Física e Biofísica, Instituto de Biociências, UNESP–Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, São Paulo, São Paulo, Brazil
| | - Fábio Florença Cardoso
- Dep. de Física e Biofísica, Instituto de Biociências, UNESP–Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, São Paulo, São Paulo, Brazil
- Dep. de Farmacologia, Instituto de Biociências, UNESP–Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Walter G. L. Cavalcante
- Dep. de Física e Biofísica, Instituto de Biociências, UNESP–Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, São Paulo, São Paulo, Brazil
- Dep. de Farmacologia, Instituto de Biociências, UNESP–Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Andreimar M. Soares
- Fundação Oswaldo Cruz (FIOCRUZ), Porto Velho, Rondônia, Brazil
- Centro de Estudos de Biomoléculas Aplicadas, Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Maeli Dal-Pai
- Dep. de Morfologia, Instituto de Biociências, UNESP–Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marcia Gallacci
- Dep. de Farmacologia, Instituto de Biociências, UNESP–Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marcos R. M. Fontes
- Dep. de Física e Biofísica, Instituto de Biociências, UNESP–Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Santos-Filho NA, Lorenzon EN, Ramos MAS, Santos CT, Piccoli JP, Bauab TM, Fusco-Almeida AM, Cilli EM. Synthesis and characterization of an antibacterial and non-toxic dimeric peptide derived from the C-terminal region of Bothropstoxin-I. Toxicon 2015; 103:160-8. [PMID: 26160494 DOI: 10.1016/j.toxicon.2015.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022]
Abstract
Infectious diseases are among the leading global causes of death, increasing the search for novel antibacterial agents. Among these, biologically active peptides are an excellent research tool. Using solid-phase peptide synthesis (SPPS), this work aimed to synthesize the peptide derived from the C-terminal region of Bothropstoxin-I (BthTX-I) (p-BthTX-I, sequence: KKYRYHLKPFCKK), and its disulfide-linked dimeric form, obtained via air oxidation (p-BthTX-I)2. Two other peptides were synthesized to evaluate the dimerization effect on antimicrobial activity. In both sequences, the cysteine (Cys) residue was replaced by the serine (Ser) residue, differing, however, in their C-terminus position. The antimicrobial activity of the peptides against gram-negative (Escherichia (E.) coli) and gram-positive (Staphylococcus (S.) aureus) bacteria and yeast (Candida (C.) albicans) was evaluated. Interestingly, only peptides containing the Cys residue showed antimicrobial activity, suggesting the importance of Cys residue and its dimerization for the observed activity. Apparently, p-BthTX-I and (p-BthTX-I)2 did not promote lysis or form pores and were not able to interact with membranes. Furthermore, they neither showed antifungal activity against C. albicans nor toxicity against erythrocytes, epithelial cells, or macrophages, indicating a potential specificity against prokaryotic cells.
Collapse
Affiliation(s)
| | - Esteban N Lorenzon
- Instituto de Química, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Matheus A S Ramos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Claudia T Santos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Julia P Piccoli
- Instituto de Química, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Tais M Bauab
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Eduardo M Cilli
- Instituto de Química, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil.
| |
Collapse
|
27
|
Fernandes CA, Borges RJ, Lomonte B, Fontes MR. A structure-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2265-76. [DOI: 10.1016/j.bbapap.2014.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023]
|
28
|
Fernandes CA, Comparetti EJ, Borges RJ, Huancahuire-Vega S, Ponce-Soto LA, Marangoni S, Soares AM, Fontes MR. Structural bases for a complete myotoxic mechanism: Crystal structures of two non-catalytic phospholipases A2-like from Bothrops brazili venom. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2772-81. [DOI: 10.1016/j.bbapap.2013.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 11/16/2022]
|
29
|
Linear B-cell epitopes in BthTX-1, BthTX-II and BthA-1, phospholipase A2's from Bothrops jararacussu snake venom, recognized by therapeutically neutralizing commercial horse antivenom. Toxicon 2013; 72:90-101. [DOI: 10.1016/j.toxicon.2013.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/22/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022]
|
30
|
Salvador GHM, Fernandes CAH, Magro AJ, Marchi-Salvador DP, Cavalcante WLG, Fernandez RM, Gallacci M, Soares AM, Oliveira CLP, Fontes MRM. Structural and phylogenetic studies with MjTX-I reveal a multi-oligomeric toxin--a novel feature in Lys49-PLA2s protein class. PLoS One 2013; 8:e60610. [PMID: 23573271 PMCID: PMC3616104 DOI: 10.1371/journal.pone.0060610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
The mortality caused by snakebites is more damaging than many tropical diseases, such as dengue haemorrhagic fever, cholera, leishmaniasis, schistosomiasis and Chagas disease. For this reason, snakebite envenoming adversely affects health services of tropical and subtropical countries and is recognized as a neglected disease by the World Health Organization. One of the main components of snake venoms is the Lys49-phospholipases A2, which is catalytically inactive but possesses other toxic and pharmacological activities. Preliminary studies with MjTX-I from Bothrops moojeni snake venom revealed intriguing new structural and functional characteristics compared to other bothropic Lys49-PLA2s. We present in this article a comprehensive study with MjTX-I using several techniques, including crystallography, small angle X-ray scattering, analytical size-exclusion chromatography, dynamic light scattering, myographic studies, bioinformatics and molecular phylogenetic analyses.Based in all these experiments we demonstrated that MjTX-I is probably a unique Lys49-PLA2, which may adopt different oligomeric forms depending on the physical-chemical environment. Furthermore, we showed that its myotoxic activity is dramatically low compared to other Lys49-PLA2s, probably due to the novel oligomeric conformations and important mutations in the C-terminal region of the protein. The phylogenetic analysis also showed that this toxin is clearly distinct from other bothropic Lys49-PLA2s, in conformity with the peculiar oligomeric characteristics of MjTX-I and possible emergence of new functionalities inresponse to environmental changes and adaptation to new preys.
Collapse
Affiliation(s)
- Guilherme H. M. Salvador
- Depto. de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista–UNESP, Botucatu, SP, Brazil
| | - Carlos A. H. Fernandes
- Depto. de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista–UNESP, Botucatu, SP, Brazil
| | - Angelo J. Magro
- Depto. de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista–UNESP, Botucatu, SP, Brazil
| | - Daniela P. Marchi-Salvador
- Depto. de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista–UNESP, Botucatu, SP, Brazil
| | - Walter L. G. Cavalcante
- Depto. de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista–UNESP, Botucatu, SP, Brazil
- Depto. de Farmacologia, Universidade Estadual Paulista – UNESP, Botucatu, SP, Brazil
| | - Roberto M. Fernandez
- Depto. de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista–UNESP, Botucatu, SP, Brazil
| | - Márcia Gallacci
- Depto. de Farmacologia, Universidade Estadual Paulista – UNESP, Botucatu, SP, Brazil
| | - Andreimar M. Soares
- Fundação Oswaldo Cruz – FIOCRUZ Rondônia and Centro de Estudos de Biomoléculas Aplicadas – CEBio, Universidade Federal de Rondônia – UNIR, Porto Velho, RO, Brazil
| | - Cristiano L. P. Oliveira
- Depto. de Física Experimental, Instituto de Física, Universidade de São Paulo – USP, São Paulo, SP, Brazil
| | - Marcos R. M. Fontes
- Depto. de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista–UNESP, Botucatu, SP, Brazil
- * E-mail:
| |
Collapse
|
31
|
A Lys49 phospholipase A2, isolated from Bothrops asper snake venom, induces lipid droplet formation in macrophages which depends on distinct signaling pathways and the C-terminal region. BIOMED RESEARCH INTERNATIONAL 2012; 2013:807982. [PMID: 23509782 PMCID: PMC3591195 DOI: 10.1155/2013/807982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
MT-II, a Lys49PLA2 homologue devoid of catalytic activity from B. asper venom, stimulates inflammatory events in macrophages. We investigated the ability of MT-II to induce formation of lipid droplets (LDs), key elements of inflammatory responses, in isolated macrophages and participation of protein kinases and intracellular PLA2s in this effect. Influence of MT-II on PLIN2 recruitment and expression was assessed, and the effects of some synthetic peptides on LD formation were further evaluated. At noncytotoxic concentrations, MT-II directly activated macrophages to form LDs. This effect was reproduced by a synthetic peptide corresponding to the C-terminal sequence 115–129 of MT-II, evidencing the critical role of C-terminus for MT-II-induced effect. Moreover, MT-II induced expression and recruitment of PLIN2. Pharmacological interventions with specific inhibitors showed that PKC, PI3K, ERK1/2, and iPLA2, but not P38MAPK or cPLA2, signaling pathways are involved in LD formation induced by MT-II. This sPLA2 homologue also induced synthesis of PGE2 that colocalized to LDs. In conclusion, MT-II is able to induce formation of LDs committed to PGE2 formation in a process dependent on C-terminal loop engagement and regulated by distinct protein kinases and iPLA2. LDs may constitute an important inflammatory mechanism triggered by MT-II in macrophages.
Collapse
|
32
|
Lomonte B, Rangel J. Snake venom Lys49 myotoxins: From phospholipases A2 to non-enzymatic membrane disruptors. Toxicon 2012; 60:520-30. [DOI: 10.1016/j.toxicon.2012.02.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
33
|
Fernandes CAH, Gartuzo ECG, Pagotto I, Comparetti EJ, Huancahuire-Vega S, Ponce-Soto LA, Costa TR, Marangoni S, Soares AM, Fontes MRM. Crystallization and preliminary X-ray diffraction analysis of three myotoxic phospholipases A2 from Bothrops brazili venom. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:935-8. [PMID: 22869126 PMCID: PMC3412777 DOI: 10.1107/s1744309112026073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/08/2012] [Indexed: 11/10/2022]
Abstract
Two myotoxic and noncatalytic Lys49-phospholipases A(2) (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A(2) (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.56-2.05 Å and belonged to space groups P3(1)21 (braziliantoxin-II), P6(5)22 (braziliantoxin-III) and P2(1) (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A(2) (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A(2) braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A(2).
Collapse
Affiliation(s)
- Carlos A. H. Fernandes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| | - Elaine C. G. Gartuzo
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| | - Ivan Pagotto
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| | - Edson J. Comparetti
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| | - Salomón Huancahuire-Vega
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Luis Alberto Ponce-Soto
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP, Brazil
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Tássia R. Costa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, FCFRP, USP, Ribeirão Preto-SP, Brazil
| | - Sergio Marangoni
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Andreimar M. Soares
- Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Centro de Estudos de Biomoléculas Aplicadas, Universidade Federal de Rondônia, Porto Velho-RO, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| |
Collapse
|
34
|
Fonseca-Maldonado R, Ferreira TL, Ward RJ. The bactericidal effect of human secreted group IID phospholipase A2 results from both hydrolytic and non-hydrolytic activities. Biochimie 2012; 94:1437-40. [PMID: 22490726 DOI: 10.1016/j.biochi.2012.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/25/2012] [Indexed: 10/28/2022]
Abstract
The Human Secreted Group IID Phospholipase A(2) (hsPLA2GIID) may be involved in the human acute immune response. Here we have demonstrated that the hsPLA2GIID presents bactericidal and Ca(2+)-independent liposome membrane-damaging activities and we have compared these effects with the catalytic activity of active-site mutants of the protein. All mutants showed reduced hydrolytic activity against DOPC:DOPG liposome membranes, however bactericidal effects against Escherichia coli and Micrococcus luteus were less affected, with the D49K mutant retaining 30% killing of the Gram-negative bacteria at a concentration of 10μg/mL despite the absence of catalytic activity. The H48Q mutant maintained Ca(2+)-independent membrane-damaging activity whereas the G30S and D49K mutants were approximately 50% of the wild-type protein, demonstrating that phospholipid bilayer permeabilization by the hsPLA2GIID is independent of catalytic activity. We suggest that this Ca(2+)-independent damaging activity may play a role in the bactericidal function of the protein.
Collapse
|
35
|
dos Santos JI, Cardoso FF, Soares AM, dal Pai Silva M, Gallacci M, Fontes MRM. Structural and functional studies of a bothropic myotoxin complexed to rosmarinic acid: new insights into Lys49-PLA₂ inhibition. PLoS One 2011; 6:e28521. [PMID: 22205953 PMCID: PMC3244394 DOI: 10.1371/journal.pone.0028521] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/09/2011] [Indexed: 11/18/2022] Open
Abstract
Snakebite envenoming is an important public health problem in many tropical and subtropical countries, and is considered a neglected tropical disease by the World Health Organization. Most severe cases are inflicted by species of the families Elapidae and Viperidae, and lead to a number of systemic and local effects in the victim. One of the main problems regarding viperidic accidents is prominent local tissue damage whose pathogenesis is complex and involves the combined actions of a variety of venom components. Phospholipases A₂ (PLA₂s) are the most abundant muscle-damaging components of these venoms. Herein, we report functional and structural studies of PrTX-I, a Lys49-PLA₂ from Bothops pirajai snake venom, and the influence of rosmarinic acid (RA) upon this toxin's activities. RA is a known active component of some plant extracts and has been reported as presenting anti-myotoxic properties related to bothopic envenomation. The myotoxic activity of Lys49-PLA₂s is well established in the literature and although no in vivo neurotoxicity has been observed among these toxins, in vitro neuromuscular blockade has been reported for some of these proteins. Our in vitro studies show that RA drastically reduces both the muscle damage and the neuromuscular blockade exerted by PrTX-I on mice neuromuscular preparations (by ∼80% and ∼90%, respectively). These results support the hypothesis that the two effects are closely related and lead us to suggest that they are consequences of the muscle membrane-destabilizing activity of the Lys49-PLA₂. Although the C-terminal region of these proteins has been reported to comprise the myotoxic site, we demonstrate by X-ray crystallographic studies that RA interacts with PrTX-I in a different region. Consequently, a new mode of Lys49-PLA₂ inhibition is proposed. Comparison of our results with others in the literature suggests possible new ways to inhibit bothropic snake venom myotoxins and improve serum therapy.
Collapse
Affiliation(s)
- Juliana I. dos Santos
- Departamento de Física e Biofísica, Instituto de Biociências, University Estadual Paulista, Botucatu/Sao Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Toxinas, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Botucatu/Sao Paulo, Brazil
| | - Fábio F. Cardoso
- Departamento de Farmacologia, Instituto de Biociências, University Estadual Paulista, Botucatu/Sao Paulo, Brazil
| | - Andreimar M. Soares
- Fundação Oswaldo Cruz - Rondônia and Centro de Estudos de Biomoléculas Aplicadas, Universidade Federal de Rondônia, Porto Velho/Rondonia, Brazil
| | - Maeli dal Pai Silva
- Departamento de Morfologia, Instituto de Biociências, University Estadual Paulista, Botucatu/Sao Paulo, Brazil
| | - Márcia Gallacci
- Departamento de Farmacologia, Instituto de Biociências, University Estadual Paulista, Botucatu/Sao Paulo, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, University Estadual Paulista, Botucatu/Sao Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Toxinas, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Botucatu/Sao Paulo, Brazil
| |
Collapse
|
36
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 820] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
37
|
Active site mutants of human secreted Group IIA Phospholipase A2 lacking hydrolytic activity retain their bactericidal effect. Biochimie 2011; 94:132-6. [PMID: 21986368 DOI: 10.1016/j.biochi.2011.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022]
Abstract
The Human Secreted Group IIA Phospholipase A(2) (hsPLA2GIIA) presents potent bactericidal activity, and is considered to contribute to the acute-phase immune response. Hydrolysis of inner membrane phospholipids is suggested to underlie the bactericidal activity, and we have evaluated this proposal by comparing catalytic activity with bactericidal and liposome membrane damaging effects of the G30S, H48Q and D49K hsPLA2GIIA mutants. All mutants showed severely impaired hydrolytic activities against mixed DOPC:DOPG liposome membranes, however the bactericidal effect against Micrococcus luteus was less affected, with 50% killing at concentrations of 1, 3, 7 and 9 μg/mL for the wild-type, D49K, H48Q and G30S mutants respectively. Furthermore, all proteins showed Ca(2+)-independent damaging activity against liposome membranes demonstrating that in addition to the hydrolysis-dependent membrane damage, the hsPLA2GIIA presents a mechanism for permeabilization of phospholipid bilayers that is independent of catalytic activity, which may play a role in the bactericidal function of the protein.
Collapse
|
38
|
Toyama DDO, Diz Filho EBDS, Cavada BS, da Rocha BAM, de Oliveira SCB, Cotrim CA, Soares VCG, Delatorre P, Marangoni S, Toyama MH. Umbelliferone induces changes in the structure and pharmacological activities of Bn IV, a phospholipase A2 isoform isolated from Bothrops neuwiedi. Toxicon 2011; 57:851-60. [DOI: 10.1016/j.toxicon.2011.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/20/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
39
|
Shimabuku PS, Fernandes CAH, Magro AJ, Costa TR, Soares AM, Fontes MRM. Crystallization and preliminary X-ray diffraction analysis of a Lys49-phospholipase A2 complexed with caffeic acid, a molecule with inhibitory properties against snake venoms. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:249-52. [PMID: 21301098 DOI: 10.1107/s1744309110051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/07/2010] [Indexed: 11/10/2022]
Abstract
Phospholipases A(2) (PLA(2)s) are one of the main components of bothropic venoms; in addition to their phospholipid hydrolysis action, they are involved in a wide spectrum of pharmacological activities, including neurotoxicity, myotoxicity and cardiotoxicity. Caffeic acid is an inhibitor that is present in several plants and is employed for the treatment of ophidian envenomations in the folk medicine of many developing countries; as bothropic snake bites are not efficiently neutralized by conventional serum therapy, it may be useful as an antivenom. In this work, the cocrystallization and preliminary X-ray diffraction analysis of the Lys49-PLA(2) piratoxin I from Bothrops pirajai venom in the presence of the inhibitor caffeic acid (CA) are reported. The crystals diffracted X-rays to 1.65 Å resolution and the structure was solved by molecular-replacement techniques. The electron-density map unambiguously indicated the presence of three CA molecules that interact with the C-terminus of the protein. This is the first time a ligand has been observed bound to this region and is in agreement with various experiments previously reported in the literature.
Collapse
Affiliation(s)
- Patrícia S Shimabuku
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Botucatu-SP, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
dos Santos JI, Cintra-Francischinelli M, Borges RJ, Fernandes CAH, Pizzo P, Cintra ACO, Braz ASK, Soares AM, Fontes MRM. Structural, functional, and bioinformatics studies reveal a new snake venom homologue phospholipase A2class. Proteins 2010; 79:61-78. [DOI: 10.1002/prot.22858] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/22/2010] [Accepted: 08/13/2010] [Indexed: 11/09/2022]
|
41
|
Comparison between apo and complexed structures of bothropstoxin-I reveals the role of Lys122 and Ca2+-binding loop region for the catalytically inactive Lys49-PLA2s. J Struct Biol 2010; 171:31-43. [DOI: 10.1016/j.jsb.2010.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/23/2010] [Accepted: 03/31/2010] [Indexed: 11/22/2022]
|
42
|
dos Santos JI, Santos-Filho NA, Soares AM, Fontes MRM. Crystallization and preliminary X-ray crystallographic studies of a Lys49-phospholipase A2 homologue from Bothrops pirajai venom complexed with rosmarinic acid. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:699-701. [PMID: 20516603 PMCID: PMC2882773 DOI: 10.1107/s1744309110013709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/13/2010] [Indexed: 05/15/2023]
Abstract
PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A(2) from Bothrops pirajai venom, was crystallized in the presence of the inhibitor rosmarinic acid (RA). This is the active compound in the methanolic extract of Cordia verbenacea, a plant that is largely used in Brazilian folk medicine. The crystals diffracted X-rays to 1.8 A resolution and the structure was solved by molecular-replacement techniques, showing electron density that corresponds to RA molecules at the entrance to the hydrophobic channel. The crystals belong to space group P2(1)2(1)2(1), indicating conformational changes in the structure after ligand binding: the crystals of all apo Lys49-phospholipase A(2) structures belong to space group P3(1)21, while the crystals of complexed structures belong to space groups P2(1) or P2(1)2(1)2(1).
Collapse
Affiliation(s)
- Juliana I. dos Santos
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| | - Norival A. Santos-Filho
- Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
- Departamento de Análizes Clínicas, Toxicológicas e Bromatológicas, FCFRP, USP, Ribeirão Preto-SP, Brazil
| | - Andreimar M. Soares
- Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
- Departamento de Análizes Clínicas, Toxicológicas e Bromatológicas, FCFRP, USP, Ribeirão Preto-SP, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| |
Collapse
|
43
|
Shared structural determinants for the calcium-independent liposome membrane permeabilization and sarcolemma depolarization in Bothropstoxin-I, a LYS49-PLA2 from the venom of Bothrops jararacussu. Int J Biochem Cell Biol 2009; 41:2588-93. [DOI: 10.1016/j.biocel.2009.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/29/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
|
44
|
Neutralization of Bothrops asper venom by antibodies, natural products and synthetic drugs: Contributions to understanding snakebite envenomings and their treatment. Toxicon 2009; 54:1012-28. [DOI: 10.1016/j.toxicon.2009.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
|
45
|
Marchi-Salvador DP, Fernandes CA, Silveira LB, Soares AM, Fontes MR. Crystal structure of a phospholipase A2 homolog complexed with p-bromophenacyl bromide reveals important structural changes associated with the inhibition of myotoxic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1583-90. [DOI: 10.1016/j.bbapap.2009.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
|
46
|
Reduced pH induces an inactive non-native conformation of the monomeric bothropstoxin-I (Lys49-PLA2). Toxicon 2009; 54:373-8. [DOI: 10.1016/j.toxicon.2009.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 11/23/2022]
|
47
|
The interaction of bothropstoxin-I (Lys49-PLA2) with liposome membranes. Toxicon 2009; 54:525-30. [DOI: 10.1016/j.toxicon.2009.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/23/2009] [Accepted: 05/26/2009] [Indexed: 11/23/2022]
|
48
|
dos Santos JI, Soares AM, Fontes MR. Comparative structural studies on Lys49-phospholipases A2 from Bothrops genus reveal their myotoxic site. J Struct Biol 2009; 167:106-16. [DOI: 10.1016/j.jsb.2009.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 03/26/2009] [Accepted: 04/17/2009] [Indexed: 11/25/2022]
|
49
|
Lambeau G, Gelb MH. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 2008; 77:495-520. [PMID: 18405237 DOI: 10.1146/annurev.biochem.76.062405.154007] [Citation(s) in RCA: 406] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipases A(2) (PLA2s) are esterases that hydrolyze the sn-2 ester of glycerophospholipids and constitute one of the largest families of lipid hydrolyzing enzymes. The mammalian genome contains 10 enzymatically active secreted PLA2s (sPLA2s) and two sPLA2-related proteins devoid of lipolytic enzymatic activity. In addition to the well-established functions of one of these enzymes in digestion of dietary phospholipids and another in host defense against bacterial infections, accumulating evidence shows that some of these sPLA2s are involved in arachidonic acid release from cellular phospholipids for the biosynthesis of eicosanoids, especially during inflammation. More speculative results suggest the involvement of one or more sPLA2s in promoting atherosclerosis and cancer. In addition, the mammalian genome encodes several types of sPLA2-binding proteins, and mounting evidence shows that sPLA2s may have functions related to binding to cellular target proteins in a manner independent of their lipolytic enzymatic activity.
Collapse
Affiliation(s)
- Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Nice-Sophia-Antipolis, 06560 Valbonne, France.
| | | |
Collapse
|
50
|
Ferreira TL, Ruller R, Chioato L, Ward RJ. Insights on calcium-independent phospholipid membrane damage by Lys49-PLA2 using tryptophan scanning mutagenesis of bothropstoxin-I from Bothrops jararacussu. Biochimie 2008; 90:1397-406. [DOI: 10.1016/j.biochi.2007.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
|