1
|
Holoubek J, Salát J, Kotouček J, Kastl T, Vancová M, Huvarová I, Bednář P, Bednářová K, Růžek D, Renčiuk D, Eyer L. Antiviral activity of porphyrins and porphyrin-like compounds against tick-borne encephalitis virus: Blockage of the viral entry/fusion machinery by photosensitization-mediated destruction of the viral envelope. Antiviral Res 2024; 221:105767. [PMID: 38040199 DOI: 10.1016/j.antiviral.2023.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Tick-borne encephalitis virus (TBEV), the causative agent of tick-borne encephalitis (TBE), is a medically important flavivirus endemic to the European-Asian continent. Although more than 12,000 clinical cases are reported annually worldwide, there is no anti-TBEV therapy available to treat patients with TBE. Porphyrins are macrocyclic molecules consisting of a planar tetrapyrrolic ring that can coordinate a metal cation. In this study, we investigated the cytotoxicity and anti-TBEV activity of a large series of alkyl- or (het)aryl-substituted porphyrins, metalloporphyrins, and chlorins and characterized their molecular interactions with the viral envelope in detail. Our structure-activity relationship study showed that the tetrapyrrole ring is an essential structural element for anti-TBEV activity, but that the presence of different structurally distinct side chains with different lengths, charges, and rigidity or metal cation coordination can significantly alter the antiviral potency of porphyrin scaffolds. Porphyrins were demonstrated to interact with the TBEV lipid membrane and envelope protein E, disrupt the TBEV envelope and inhibit the TBEV entry/fusion machinery. The crucial mechanism of the anti-TBEV activity of porphyrins is based on photosensitization and the formation of highly reactive singlet oxygen. In addition to blocking viral entry and fusion, porphyrins were also observed to interact with RNA oligonucleotides derived from TBEV genomic RNA, indicating that these compounds could target multiple viral/cellular structures. Furthermore, immunization of mice with porphyrin-inactivated TBEV resulted in the formation of TBEV-neutralizing antibodies and protected the mice from TBEV infection. Porphyrins can thus be used to inactivate TBEV while retaining the immunogenic properties of the virus and could be useful for producing new inactivated TBEV vaccines.
Collapse
Affiliation(s)
- Jiří Holoubek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, CZ-62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic
| | - Jiří Salát
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, CZ-62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic
| | - Jan Kotouček
- Department of Pharmacology and Toxicology, Veterinary Research Institute, CZ-62100, Brno, Czech Republic
| | - Tomáš Kastl
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, CZ-62100, Brno, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005, Ceske Budejovice, Czech Republic
| | - Ivana Huvarová
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, CZ-62100, Brno, Czech Republic
| | - Petr Bednář
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, CZ-62100, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005, Ceske Budejovice, Czech Republic
| | - Klára Bednářová
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, CZ-61200, Brno, Czech Republic
| | - Daniel Růžek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, CZ-62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic
| | - Daniel Renčiuk
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, CZ-61200, Brno, Czech Republic
| | - Luděk Eyer
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, CZ-62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
2
|
Razlog R, Kruger CA, Abrahamse H. Cytotoxic Effects of Combinative ZnPcS 4 Photosensitizer Photodynamic Therapy (PDT) and Cannabidiol (CBD) on a Cervical Cancer Cell Line. Int J Mol Sci 2023; 24:ijms24076151. [PMID: 37047123 PMCID: PMC10094677 DOI: 10.3390/ijms24076151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The most prevalent type of gynecological malignancy globally is cervical cancer (CC). Complicated by tumor resistance and metastasis, it remains the leading cause of cancer deaths in women in South Africa. Early CC is managed by hysterectomy, chemotherapy, radiation, and more recently, immunotherapy. Although these treatments provide clinical benefits, many patients experience adverse effects and secondary CC spread. To minimize this, novel and innovative treatment methods need to be investigated. Photodynamic therapy (PDT) is an advantageous treatment modality that is non-invasive, with limited side effects. The Cannabis sativa L. plant isolate, cannabidiol (CBD), has anti-cancer effects, which inhibit tumor growth and spread. This study investigated the cytotoxic combinative effect of PDT and CBD on CC HeLa cells. The effects were assessed by exposing in vitro HeLa CC-cultured cells to varying doses of ZnPcS4 photosensitizer (PS) PDT and CBD, with a fluency of 10 J/cm2 and 673 nm irradiation. HeLa CC cells, which received the predetermined lowest dose concentrations (ICD50) of 0.125 µM ZnPcS4 PS plus 0.5 µM CBD to yield 50% cytotoxicity post-laser irradiation, reported highly significant and advantageous forms of cell death. Flow cytometry cell death pathway quantitative analysis showed that only 13% of HeLa cells were found to be viable, 7% were in early apoptosis and 64% were in late favorable forms of apoptotic cell death, with a minor 16% of necrosis post-PDT. Findings suggest that this combined treatment approach can possibly induce primary cellular destruction, as well as limit CC metastatic spread, and so warrants further investigation.
Collapse
Affiliation(s)
- Radmila Razlog
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
3
|
Firsov AM, Franco MSF, Chistyakov DV, Goriainov SV, Sergeeva MG, Kotova EA, Fomich MA, Bekish AV, Sharko OL, Shmanai VV, Itri R, Baptista MS, Antonenko YN, Shchepinov MS. Deuterated polyunsaturated fatty acids inhibit photoirradiation-induced lipid peroxidation in lipid bilayers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112425. [PMID: 35276579 DOI: 10.1016/j.jphotobiol.2022.112425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022]
Abstract
Lipid peroxidation (LPO) plays a key role in many age-related neurodegenerative conditions and other disorders. Light irradiation can initiate LPO through various mechanisms and is of importance in retinal and dermatological pathologies. The introduction of deuterated polyunsaturated fatty acids (D-PUFA) into membrane lipids is a promising approach for protection against LPO. Here, we report the protective effects of D-PUFA against the photodynamically induced LPO, using illumination in the presence of the photosensitizer trisulfonated aluminum phthalocyanine (AlPcS3) in liposomes and giant unilamellar vesicles (GUV), as assessed in four experimental models: 1) sulforhodamine B leakage from liposomes, detected with fluorescence correlation spectroscopy (FCS); 2) formation of diene conjugates in liposomal membranes, measured by absorbance at 234 nm; 3) membrane leakage in GUV assessed by optical phase-contrast intensity observations; 4) UPLC-MS/MS method to detect oxidized linoleic acid (Lin)-derived metabolites. Specifically, in liposomes or GUV containing H-PUFA (dilinoleyl-sn-glycero-3-phosphatidylcholine), light irradiation led to an extensive oxidative damage to bilayers. By contrast, no damage was observed in lipid bilayers containing 20% or more D-PUFA (D2-Lin or D10-docosahexanenoic acid). Remarkably, addition of tocopherol increased the dye leakage from liposomes in H-PUFA bilayers compared to photoirradiation alone, signifying tocopherol's pro-oxidant properties. However, in the presence of D-PUFA the opposite effect was observed, whereby adding tocopherol increased the resistance to LPO. These findings suggest a method to augment the protective effects of D-PUFA, which are currently undergoing clinical trials in several neurological and retinal diseases that involve LPO.
Collapse
Affiliation(s)
- A M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - M S F Franco
- Biochemistry Department, Institute of Chemistry, University of São Paulo (IQUSP), AV. Professor Lineu Prestes avenue, 748, USP, CEP: 05508-000 São Paulo, Brazil
| | - D V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - S V Goriainov
- SREC PFUR Peoples' Friendship University of Russia, Moscow, Russia
| | - M G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - E A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - M A Fomich
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - A V Bekish
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - O L Sharko
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - V V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - R Itri
- Applied Physics Department, Institute of Physics, University of São Paulo, Rua do Matão, 1371 (217-B.Jafet), Butantã, USP, 05508-090 São Paulo, Brazil
| | - M S Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo (IQUSP), AV. Professor Lineu Prestes avenue, 748, USP, CEP: 05508-000 São Paulo, Brazil.
| | - Y N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
4
|
Startseva OM, Pylina YI, Shadrin DM, Belykh ES, Shevchenko OG, Velegzhaninov IO, Belykh DV. Dimeric derivatives of chlorophyll a with fragments of oligoethylene glycols as spacers between macrocycles: Synthesis, dark and photoinduced cytotoxic activity. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present work, new dimeric derivatives of chlorophyll [Formula: see text] with oligoethylene glycol fragments as spacers between macrocycles were synthesized and their dark and photoinduced cytotoxic activities were studied in experiments in vitro. Dimeric derivatives were found to have a relatively low dark cytotoxic activity. It should be noted that most of the studied dimeric derivatives exhibited photoinduced cytotoxic activity at concentrations that were several times lower than those for dark cytotoxic activity. The photoinduced action of one of the most active compounds, a phorbin-chlorin dimer with the triethylene glycol fragment as a spacer between the macrocycles (13), was analysed in more detail in experiments in vitro. Compound (13) was shown to rapidly enter HeLa cells, however, its cytotoxic effect on these cells develops rather slowly. The results of the analysis of the activity of caspase-3 showed that Compound (13) does not cause apoptosis of HeLa cells. Analysis of the degree of hemolysis of mammalian erythrocytes as a result of exposure to Compound (13) showed that plasma membranes are a probable target of this substance.
Collapse
Affiliation(s)
- Olga M. Startseva
- Federal State Budgetary Educational Institution of Higher Education ≪Pitirim Sorokin Syktyvkar, State University≫, 55 October prospect, Syktyvkar, 167001, Russia
| | - Yana I. Pylina
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, 167982, Russia
| | - Dmitry M. Shadrin
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, 167982, Russia
| | - Elena S. Belykh
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, 167982, Russia
| | - Oksana G. Shevchenko
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, 167982, Russia
| | - Ilya O. Velegzhaninov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, 167982, Russia
| | - Dmitry V. Belykh
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 48 Pervomayskaya st., Syktyvkar, 167000, Russia
| |
Collapse
|
5
|
Pereira GF, Tasso TT. From cuvette to cells: How the central metal ion modulates the properties of phthalocyanines and porphyrazines as photosensitizers. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Jiménez-Munguía I, Fedorov AK, Abdulaeva IA, Birin KP, Ermakov YA, Batishchev OV, Gorbunova YG, Sokolov VS. Lipid Membrane Adsorption Determines Photodynamic Efficiency of β-Imidazolyl-Substituted Porphyrins. Biomolecules 2019; 9:E853. [PMID: 31835568 PMCID: PMC6995582 DOI: 10.3390/biom9120853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022] Open
Abstract
Photosensitizers (PSs) represent a group of molecules capable of generating reactive oxygen species (ROS), such as singlet oxygen (SO); thus, they are considered to be promising agents for anti-cancer therapy. The enhancement of the photodynamic efficiency of these compounds requires increasing the PS activity in the cancer cell milieu and exactly at the target cells. In the present work, we report the synthesis, lipid membrane binding and photodynamic activity of three novel cationic PSs based on β-imidazolyl-substituted porphyrin and its Zn(II) and In(III) complexes (1H2, 1Zn and 1In). Comparison of the behavior of the investigated porphyrins at the bilayer lipid membrane (BLM) demonstrated the highest adsorption for the 1In complex and the lowest one for 1Zn. The photodynamic efficiency of these porphyrins was evaluated by determining the oxidation rate of the styryl dye, di-4-ANEPPS, incorporated into the lipid membrane. These rates were proportional to the surface density (SD) of the porphyrin molecules at the BLM and were roughly the same for all three porphyrins. This indicates that the adsorption of these porphyrins at the BLM determines their photodynamic efficiency rather than the extinction or quantum yield of singlet oxygen.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- National University of Science and Technology “MISiS”, 4 Leninskiy pr. 119049 Moscow, Russia
| | - Arseniy K. Fedorov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Inna A. Abdulaeva
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Kirill P. Birin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Yury A. Ermakov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| | - Oleg V. Batishchev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
- Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudniy, 141700 Moscow Region, Russia
| | - Yulia G. Gorbunova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskiy pr. 119119 Moscow, Russia
| | - Valerij S. Sokolov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr. 119071 Moscow, Russia; (A.K.F.); (I.A.A.); (K.P.B.); (Y.A.E.); (O.V.B.); (V.S.S.)
| |
Collapse
|
7
|
Popova LB, Kamysheva AL, Rokitskaya TI, Korshunova GA, Kirsanov RS, Kotova EA, Antonenko YN. Protonophoric and Photodynamic Effects of Fluorescein Decyl(triphenyl)phosphonium Ester on the Electrical Activity of Pond Snail Neurons. BIOCHEMISTRY (MOSCOW) 2019; 84:1151-1165. [DOI: 10.1134/s0006297919100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Photodynamic damage to erythrocytes and liposomes sensitized by chlorophyll a derivatives. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2249-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Konstantinova AN, Sokolov VS, Jiménez-Munguía I, Finogenova OA, Ermakov YA, Gorbunova YG. Adsorption and photodynamic efficiency of meso-tetrakis(p-sulfonatophenyl)porphyrin on the surface of bilayer lipid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:74-80. [PMID: 30316028 DOI: 10.1016/j.jphotobiol.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
The adsorption and photodynamic efficiency of 5,10,15,20-tetrakis(p-sulfonatophenyl)porphyrin (H2TPPS4) on bilayer lipid membranes (BLM) have been studied. The adsorption of H2TPPS4 on BLM leads to rising of the potential drop on the membrane/water interface which has been detected either by the intramembrane field compensation (IFC) method, or as ζ-potential of liposomes measured by the dynamic light scattering method. The dependence of this potential on the concentration of H2TPPS4 and KCl in the solution can be described in the frame of Gouy-Chapman model of diffuse double layer assuming that the molecules of H2TPPS4 adsorb on the surface of BLM as an anions with four charged groups. The potential disappeared when the pH of solution decreased from 6 to 3 allowing the conclusion that the protonated forms of H2TPPS4 can not adsorb on the BLM probably due to change of conformation or aggregation of the molecules. The photodynamic efficiency of H2TPPS4 was evaluated by measuring the rate of damage of the targets - molecules of styryl dye (di-4-ANEPPS) by singlet oxygen generated under illumination on the surface of BLM. This rate was proportional to the surface density of H2TPPS4 molecules on the membrane which was determined from the change of surface charge of the membrane due to adsorption of the H2TPPS4. These results indicate that the di-4-ANEPPS molecules are damaged by singlet oxygen generated by monomers of H2TPPS4 molecules adsorbed on the membrane. The rate of oxidation of di-4-ANEPPS molecules adsorbed on the same (cis) side of the membrane together with the H2TPPS4 molecules was either the same or higher than that when di-4-ANEPPS molecules were adsorbed on opposite (trans) side. It indicates that the quenching of singlet oxygen by the di-4-ANEPPS molecules at cis side of the membrane was negligible, in contrast to our earlier study when singlet oxygen was generated by aluminum(III) phthalocyanines with one or two peripheral sulfo groups. The difference between these phthalocyanines and H2TPPS4 was explained by their different adsorption depth in the membrane.
Collapse
Affiliation(s)
- A N Konstantinova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia
| | - V S Sokolov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia.
| | - I Jiménez-Munguía
- National University of Science and Technology MISiS, Leninskiy pr., 4, Moscow 119049, Russia
| | - O A Finogenova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia
| | - Yu A Ermakov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia
| | - Yu G Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy pr., 31, bldg.4, Moscow 119071, Russia; N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Leninskiy pr., 31, Moscow 119991, Russia
| |
Collapse
|
10
|
Abdel Fadeel D, Al-Toukhy GM, Elsharif AM, Al-Jameel SS, Mohamed HH, Youssef TE. Improved photodynamic efficacy of thiophenyl sulfonated zinc phthalocyanine loaded in lipid nano-carriers for hepatocellular carcinoma cancer cells. Photodiagnosis Photodyn Ther 2018; 23:25-31. [PMID: 29870793 DOI: 10.1016/j.pdpdt.2018.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND The aim of the present study was to modify the structural activity of zinc(II)phthalocyanine by combining it with thiophenyl groups then loaded in lipid nano-carriers and evaluate its parameters required for the structure-activity relationship (SAR) for photodynamic therapy (PDT) of cancer. METHODS Tetra (4-Thiophenyl) sulfonated phthalocyaninatozinc(II) (PhS·SO3Na)4ZnPc 5 was synthesized and characterized by various spectroscopic methods as a test compound. Liver hepatocellular carcinoma (HepG2) cells were treated with the synthesized (PhS·SO3Na)4ZnPc 5 derivative loaded in lipid nano carriers to understand the effect of combined compound on liver cancer cells. Furthermore, HepG2 cells were irradiated by visible red light at 60 mW/cm2 for 20 min. The phototoxicity of (PhS·SO3Na)4ZnPc 5 after being formulated in both (L) and transfersomes (T) was investigated. RESULTS Overall, the results indicate that combination of thiophenyl groups substitution, in particular in the structure of sulfonated zinc phthalocyanine is able to improve the photodynamic properties of ZnPc, and (PhS·SO3Na)4ZnPc 5 loaded in lipid nano-carriers can be a promising combined PDT treatment strategy for Liver hepatocellular carcinoma (HepG2) cells. CONCLUSIONS The new formulation ZnPc-lipid nano-carriers will be beneficial in the upcoming clinical trials and would enhance the inhibition of tumor growth.
Collapse
Affiliation(s)
- Doaa Abdel Fadeel
- Pharmaceutical Technology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Ghada M Al-Toukhy
- Virology, Immunology and Cell Culture Lab, Clinical Pathology Department, Children Cancer Hospital, 57357, Egypt
| | - Asma M Elsharif
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Suhailah S Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Hanan H Mohamed
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Tamer E Youssef
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
11
|
Sokolov VS, Shcherbakov AA, Tashkin VY, Gavril’chik AN, Chizmadzhev YA, Pohl P. Oxidation and lateral diffusion of styryl dyes on the surface of a bilayer lipid membrane. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517090130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Sokolov VS, Gavrilchik AN, Kulagina AO, Meshkov IN, Pohl P, Gorbunova YG. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:162-9. [PMID: 27236238 DOI: 10.1016/j.jphotobiol.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022]
Abstract
Photosensitizers are widely used as photodynamic therapeutic agents killing cancer cells by photooxidation of their components. Development of new effective photosensitive molecules requires profound knowledge of possible targets for reactive oxygen species, especially for its singlet form. Here we studied photooxidation of voltage-sensitive styryl dyes (di-4-ANEPPS, di-8-ANEPPS, RH-421 and RH-237) by singlet oxygen on the surface of bilayer lipid membranes commonly used as cell membrane models. Oxidation was induced by irradiation of a photosensitizer (aluminum phthalocyanine tetrasulfonate) and monitored by the change of dipole potential on the surface of the membrane. We studied the drop of the dipole potential both in the case when the dye molecules were adsorbed on the same side of the lipid bilayer as the photosensitizer (cis-configuration) and in the case when they were adsorbed on the opposite side (trans-configuration). Based on a simple model, we determined the rate of oxidation of the dyes from the kinetics of change of the potential during and after irradiation. This rate is proportional to steady-state concentration of singlet oxygen in the membrane under irradiation. Comparison of the oxidation rates of various dyes reveals that compounds of ANEPPS series are more sensitive to singlet oxygen than RH type dyes, indicating that naphthalene group is primarily responsible for their oxidation.
Collapse
Affiliation(s)
- V S Sokolov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia.
| | - A N Gavrilchik
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - A O Kulagina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - I N Meshkov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - P Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Austria
| | - Yu G Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia; N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
13
|
Pavani C, Francisco CML, Gobo NRS, de Oliveira KT, Baptista MS. Improved photodynamic activity of a dual phthalocyanine–ALA photosensitiser. NEW J CHEM 2016. [DOI: 10.1039/c6nj02073a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The higher efficiency of the dual photosensitiser is a consequence of the generation of two photosensitisers inside the cell, which are activated concomitantly.
Collapse
Affiliation(s)
- Christiane Pavani
- Programa de Pós-graduação em Biofotônica Aplicada às Ciências da Saúde
- Universidade Nove de Julho (UNINOVE)
- São Paulo
- Brazil
| | - Cláudia M. L. Francisco
- Programa de Pós-graduação em Biofotônica Aplicada às Ciências da Saúde
- Universidade Nove de Julho (UNINOVE)
- São Paulo
- Brazil
| | - Nicholas R. S. Gobo
- Departamento de Química
- Centro de Ciências Exatas e de Tecnologia - Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - Kleber T. de Oliveira
- Departamento de Química
- Centro de Ciências Exatas e de Tecnologia - Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - Mauricio S. Baptista
- Departamento de Bioquímica
- Instituto de Química – Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
14
|
Dąbrowski JM, Pucelik B, Pereira MM, Arnaut LG, Stochel G. Towards tuning PDT relevant photosensitizer properties: comparative study for the free and Zn2+ coordinated meso-tetrakis[2,6-difluoro-5-(N-methylsulfamylo)phenyl]porphyrin. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1073723] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | - Luis G. Arnaut
- Chemistry Department, University of Coimbra, Coimbra, Portugal
- Luzitin SA, Coimbra, Portugal
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Rokitskaya TI, Firsov AM, Kotova EA, Antonenko YN. Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: Protective efficacy of singlet oxygen quenchers depends on photosensitizer location. BIOCHEMISTRY (MOSCOW) 2015; 80:745-51. [DOI: 10.1134/s0006297915060097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Rokitskaya TI, Kotova EA, Agapov II, Moisenovich MM, Antonenko YN. Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen. FEBS Lett 2014; 588:1590-5. [PMID: 24613917 DOI: 10.1016/j.febslet.2014.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
In contrast to expectations that unsaturated fatty acids contribute to oxidative stress by providing a source of lipid peroxides, we demonstrated the protective effect of double bonds in lipids on oxidative damage to membrane proteins. Photodynamic inactivation of gramicidin channels was decreased in unsaturated lipid compared to saturated lipid bilayers. By estimating photosensitizer (boronated chlorine e6 amide) binding to the membrane with the current relaxation technique, the decrease in gramicidin photoinactivation was attributed to singlet oxygen scavenging by double bonds in lipids rather than to the reduction in photosensitizer binding. Gramicidin protection by unsaturated lipids was also observed upon induction of oxidative stress with tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Igor I Agapov
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation; Academician V.I.Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Mikhail M Moisenovich
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
17
|
Antonenko YN, Kotova EA, Omarova EO, Rokitskaya TI, Ol'shevskaya VA, Kalinin VN, Nikitina RG, Osipchuk JS, Kaplan MA, Ramonova AA, Moisenovich MM, Agapov II, Kirpichnikov MP. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:793-801. [DOI: 10.1016/j.bbamem.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
|
18
|
Interaction of meso-tetrakis (4-N-methylpyridyl) porphyrin in its free base and as a Zn(II) derivative with large unilamellar phospholipid vesicles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:267-79. [DOI: 10.1007/s00249-012-0872-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 11/10/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
|
19
|
Rokitskaya TI, Macrae MX, Blake S, Egorova NS, Kotova EA, Yang J, Antonenko YN. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454118. [PMID: 21339605 DOI: 10.1088/0953-8984/22/45/454118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| | | | | | | | | | | | | |
Collapse
|
20
|
Porphyrin–phospholipid interaction and ring metallation depending on the phospholipid polar head type. J Colloid Interface Sci 2010; 350:148-54. [DOI: 10.1016/j.jcis.2010.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 11/18/2022]
|
21
|
Pashkovskaya A, Kotova E, Zorlu Y, Dumoulin F, Ahsen V, Agapov I, Antonenko Y. Light-triggered liposomal release: membrane permeabilization by photodynamic action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5726-5733. [PMID: 20000430 DOI: 10.1021/la903867a] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photosensitized damage to liposome membranes was studied by using different dye-leakage assays based on fluorescence dequenching of a series of dyes upon their release from liposomes. Irradiation of liposomes with red light in the presence of a photosensitizer, trisulfonated aluminum phthalocyanine (AlPcS(3)), resulted in the pronounced leakage of carboxyfluorescein, but rather weak leakage of sulforhodamine B and almost negligible leakage of calcein from the corresponding dye-loaded liposomes. The same series of selectivity of liposome leakage was obtained with chlorin e6 that appeared to be more potent than AlPcS(3) in bringing about the photosensitized liposome leakage. Electrically neutral zinc phthalocyanine tetrasubstituted with a glycerol moiety (ZnPcGlyc(4)) was less effective than negatively charged AlPcS(3) in provoking the light-induced liposome permeabilization. On the contrary, both ZnPcGlyc(4) and AlPcS(3) were much more effective than chlorin e6 in sensitizing gramicidin channel inactivation in planar bilayer lipid membranes, thus showing that relative photodynamic efficacy of sensitizers can differ substantially for damaging different membrane targets. The photosensitized liposome permeabilization was apparently associated with oxidation of lipid double bonds by singlet oxygen as evidenced by the mandatory presence of unsaturated lipids in the membrane composition for the photosensitized liposome leakage to occur and the sensitivity of the latter to sodium azide. The fluorescence correlation spectroscopy measurements revealed marked permeability of photodynamically induced pores in liposome membranes for such photosensitizer as AlPcS(3).
Collapse
Affiliation(s)
- Alina Pashkovskaya
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | | | | | | | | | | | | |
Collapse
|
22
|
Strakhovskaya MG, Antonenko YN, Pashkovskaya AA, Kotova EA, Kireev V, Zhukhovitsky VG, Kuznetsova NA, Yuzhakova OA, Negrimovsky VM, Rubin AB. Electrostatic binding of substituted metal phthalocyanines to enterobacterial cells: its role in photodynamic inactivation. BIOCHEMISTRY (MOSCOW) 2010; 74:1305-14. [PMID: 19961410 DOI: 10.1134/s0006297909120025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of ionic substituents in zinc and aluminum phthalocyanine molecules and of membrane surface charge on the interaction of dyes with artificial membranes and enterobacterial cells, as well as on photosensitization efficiency was studied. It has been shown that increasing the number of positively charged substituents enhances the extent of phthalocyanine binding to Escherichia coli cells. This, along with the high quantum yield of singlet oxygen generation, determines efficient photodynamic inactivation of Gram-negative bacteria by zinc and aluminum octacationic phthalocyanines. The effect of Ca2+ and Mg2+ cations and pH on photodynamic inactivation of enterobacteria in the presence of octacationic zinc phthalocyanine has been studied. It has been shown that effects resulting in lowering negative charge on outer membrane protect bacteria against photoinactivation, which confirms the crucial role in this process of the electrostatic interaction of the photosensitizer with the cell wall. Electrostatic nature of binding is consistent with mainly electrostatic character of dye interactions with artificial membranes of different composition. Lower sensitivity of Proteus mirabilis to photodynamic inactivation, compared to that of E. coli and Salmonella enteritidis, due to low affinity of the cationic dye to the cells of this species, was found.
Collapse
Affiliation(s)
- M G Strakhovskaya
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pashkovskaya AA, Perevoshchikova IV, Maizlish VE, Shaposhnikov GP, Kotova EA, Antonenko YN. Interaction of tetrasubstituted cationic aluminum phthalocyanine with artificial and natural membranes. BIOCHEMISTRY (MOSCOW) 2009; 74:1021-6. [DOI: 10.1134/s0006297909090107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Pavani C, Uchoa AF, Oliveira CS, Iamamoto Y, Baptista MS. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers. Photochem Photobiol Sci 2008; 8:233-40. [PMID: 19247516 DOI: 10.1039/b810313e] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized in order to study the role of amphiphilicity and zinc insertion in photodynamic therapy (PDT) efficacy. Several properties of the PS were evaluated and compared within the series including photophysical properties (absorption spectra, fluorescence quantum yield Phif, and singlet oxygen quantum yield PhiDelta), uptake by vesicles, mitochondria and HeLa cells, dark and phototoxicity in HeLa cells. The photophysical properties of all compounds are quite similar (Phif<or=0.02; PhiDelta approximately 0.8). An increase in lipophilicity and the presence of zinc in the porphyrin ring result in higher vesicle and cell uptake. Binding in mitochondria is dependent on the PS lipophilicity and on the electrochemical membrane potential, i.e., in uncoupled mitochondria PS binding decreases by up to 53%. The porphyrin substituted with octyl groups (TC8PyP) is the compound that is most enriched in mitochondria, and its zinc derivative (ZnTC8PyP) has the highest global uptake. The stronger membrane interaction of the zinc-substituted porphyrins is attributed to a complexing effect with phosphate groups of the phospholipids. Zinc insertion was also shown to decrease the interaction with isolated mitochondria and with the mitochondria of HeLa cells, an effect that has been explained by the particular characteristics of the mitochondrial internal membrane. Phototoxicity was shown to increase proportionally with membrane binding efficiency, which is attributed to favorable membrane interactions which allow more efficient membrane photooxidation. For this series of compounds, photodynamic efficiency is directly proportional to the membrane binding and cell uptake, but it is not totally related to mitochondrial targeting.
Collapse
Affiliation(s)
- Christiane Pavani
- Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
25
|
Pashkovskaya A, Maizlish V, Shaposhnikov G, Kotova E, Antonenko Y. Role of electrostatics in the binding of charged metallophthalocyanines to neutral and charged phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:541-8. [DOI: 10.1016/j.bbamem.2007.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/04/2007] [Accepted: 10/29/2007] [Indexed: 11/27/2022]
|