1
|
Abtahi MS, Fotouhi A, Rezaei N, Akalin H, Ozkul Y, Hossein-Khannazer N, Vosough M. Nano-based drug delivery systems in hepatocellular carcinoma. J Drug Target 2024; 32:977-995. [PMID: 38847573 DOI: 10.1080/1061186x.2024.2365937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024]
Abstract
The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems (DDSs), in all active, passive and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumour site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment and monitoring of cancer cells. In this review, the specific design of DDSs based on the different nano-particles and their surface engineering is discussed. In addition, the innovative clinical studies in which nano-based DDS was used in the treatment of HCC were highlighted.
Collapse
Affiliation(s)
- Maryam Sadat Abtahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Yang S, Youn W, Rheem HB, Han SY, Kim N, Han S, Schattling P, Städler B, Choi IS. Construction of Liposome-Based Extracellular Artificial Organelles on Individual Living Cells. Angew Chem Int Ed Engl 2024:e202415823. [PMID: 39233597 DOI: 10.1002/anie.202415823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Integration of living cells with extrinsic functional entities gives rise to bioaugmented nanobiohybrids, which hold tremendous potential across diverse fields such as cell therapy, biocatalysis, and cell robotics. This study presents a biocompatible method for incorporating multilayered functional liposomes onto the cell surface, creating extracellular artificial organelles or exorganelles. The introduction of various extrinsic functionalities to cells is achieved without comprising their viabilities. The integration of extrinsic enzymatic reactions is exemplified through the cascade reaction involving glucose oxidase and horseradish peroxidase. Furthermore, our protocol offers the design flexibility to customize liposome compositions, thereby providing effective cell modification. The versatility of the liposome-based exorganelle approach establishes an advanced chemical tool, empowering cells with novel functionalities that surpass or are complementary to their innate capabilities.
Collapse
Affiliation(s)
- Seoin Yang
- Department of Chemistry, KAIST, 34141, Daejeon, South Korea
| | - Wongu Youn
- Department of Chemistry, KAIST, 34141, Daejeon, South Korea
| | | | - Sang Yeong Han
- Department of Chemistry, KAIST, 34141, Daejeon, South Korea
| | - Nayoung Kim
- Department of Chemistry, KAIST, 34141, Daejeon, South Korea
| | - Sol Han
- Department of Chemistry, KAIST, 34141, Daejeon, South Korea
| | - Philipp Schattling
- Interdisciplinary Nanoscience Center, iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center, iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Insung S Choi
- Department of Chemistry, KAIST, 34141, Daejeon, South Korea
| |
Collapse
|
3
|
Aloss K, Hamar P. Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor. Biochim Biophys Acta Rev Cancer 2024; 1879:189109. [PMID: 38750699 DOI: 10.1016/j.bbcan.2024.189109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of the nanoparticle (NP)-based anticancer therapies is still unsatisfactory due to the heterogeneity of the enhanced permeability and retention (EPR) effect. Despite the promising preclinical outcome of the pharmacological EPR enhancers, their systemic toxicity can limit their clinical application. Hyperthermia (HT) presents an efficient tool to augment the EPR by improving tumor blood flow (TBF) and vascular permeability, lowering interstitial fluid pressure (IFP), and disrupting the structure of the extracellular matrix (ECM). Furthermore, the HT-triggered intravascular release approach can overcome the EPR effect. In contrast to pharmacological approaches, HT is safe and can be focused to cancer tissues. Moreover, HT conveys direct anti-cancer effects, which improve the efficacy of the anti-cancer agents encapsulated in NPs. However, the clinical application of HT is challenging due to the heterogeneous distribution of temperature within the tumor, the length of the treatment and the complexity of monitoring.
Collapse
Affiliation(s)
- Kenan Aloss
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary.
| |
Collapse
|
4
|
Rysin A, Lokerse WJM, Paal M, Habler K, Wedmann B, Hossann M, Winter G, Lindner LH. Heat-Triggered Release of Dexamethasone from Thermosensitive Liposomes Using Prodrugs or Excipients. J Pharm Sci 2023; 112:1947-1956. [PMID: 37030437 DOI: 10.1016/j.xphs.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/02/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Dexamethasone (DXM) is a potent glucocorticoid with an anti-inflammatory and anti-angiogenic activity which is widely clinically used. Systemic side effects limit the long-term use of DXM in patients requiring formulations which deliver and selectively release the drug to the diseased tissues. This in vitro study compares the suitability of DXM and commonly used prodrugs dexamethasone-21-phosphate (DXMP) and dexamethasone-21-palmitate (DP) as well as DXM complexed by 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) for the use in thermosensitive liposomes (TSL). DXM showed a poor retention and a low final drug:lipid ratio in a 1,2-dipalmitoyl-sn‑glycero-3-phosphodiglycerol-based TSL (DPPG2-TSL) and a low-temperature sensitive liposome (LTSL). In contrast to DXM, DXMP and DP were stably retained at 37 °C in TSL in serum and could be encapsulated with high drug:lipid ratios in DPPG2-TSL and LTSL. DXMP showed a rapid release at mild hyperthermia (HT) from both TSL in serum, whereas DP remained incorporated in the TSL bilayer. According to release experiments with carboxyfluorescein (CF), HP-γ-CD and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) are suitable vehicles for the loading of DXM into DPPG2-TSL and LTSL. Complexation of DXM with HP-γ-CD increased the aqueous solubility of the drug leading to approx. ten times higher DXM:lipid ratio in DPPG2-TSL and LTSL in comparison to un-complexed DXM. Both DXM and HP-γ-CD showed increased release at HT in comparison to 37 °C in serum. In conclusion, DXMP and DXM complexed by HP-γ-CD represent promising candidates for TSL delivery.
Collapse
Affiliation(s)
- Alexander Rysin
- Department of Medicine III, University Hospital, LMU Munich, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, LMU Munich, Germany.
| | | | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Katharina Habler
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | | | | | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, LMU Munich, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital, LMU Munich, Germany
| |
Collapse
|
5
|
Mavroidi B, Kaminari A, Sakellis E, Sideratou Z, Tsiourvas D. Carbon Dots-Biomembrane Interactions and Their Implications for Cellular Drug Delivery. Pharmaceuticals (Basel) 2023; 16:833. [PMID: 37375780 DOI: 10.3390/ph16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The effect of carbon dots (CDs) on a model blayer membrane was studied as a means of comprehending their ability to affect cell membranes. Initially, the interaction of N-doped carbon dots with a biophysical liposomal cell membrane model was investigated by dynamic light scattering, z-potential, temperature-modulated differential scanning calorimetry, and membrane permeability. CDs with a slightly positive charge interacted with the surface of the negative-charged liposomes and evidence indicated that the association of CDs with the membrane affects the structural and thermodynamic properties of the bilayer; most importantly, it enhances the bilayer's permeability against doxorubicin, a well-known anticancer drug. The results, like those of similar studies that surveyed the interaction of proteins with lipid membranes, suggest that carbon dots are partially embedded in the bilayer. In vitro experiments employing breast cancer cell lines and human healthy dermal cells corroborated the findings, as it was shown that the presence of CDs in the culture medium selectively enhanced cell internalization of doxorubicin and, subsequently, increased its cytotoxicity, acting as a drug sensitizer.
Collapse
Affiliation(s)
- Barbara Mavroidi
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Greece
| | - Archontia Kaminari
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Greece
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Greece
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi, Greece
| |
Collapse
|
6
|
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023; 244:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
High intensity focused ultrasound (HIFU) is a non-invasive and non-ionizing sonic energy-based therapeutic technology for inducing thermal and non-thermal effects in tissues. Depending on the parameters, HIFU can ablate tissues by heating them to >55 °C to induce denaturation and coagulative necrosis, improve radio- and chemo-sensitizations and local drug delivery from nanoparticles at moderate hyperthermia (~41-43 °C), and mechanically fragment cells using acoustic cavitation (also known as histotripsy). HIFU has already emerged as an attractive modality for treating human prostate cancer, veterinary cancers, and neuromodulation. Herein, we comprehensively review the role of HIFU in enhancing drug delivery and immunotherapy in soft and calcified tissues. Specifically, the ability of HIFU to improve adjuvant treatments from various classes of drugs is described. These crucial insights highlight the opportunities and challenges of HIFU technology and its potential to support new clinical trials and translation to patients.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
7
|
Recent Preclinical and Clinical Progress in Liposomal Doxorubicin. Pharmaceutics 2023; 15:pharmaceutics15030893. [PMID: 36986754 PMCID: PMC10054554 DOI: 10.3390/pharmaceutics15030893] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Doxorubicin (DOX) is a potent anti-cancer agent that has garnered great interest in research due to its high efficacy despite dose-limiting toxicities. Several strategies have been exploited to enhance the efficacy and safety profile of DOX. Liposomes are the most established approach. Despite the improvement in safety properties of liposomal encapsulated DOX (in Doxil and Myocet), the efficacy is not superior to conventional DOX. Functionalized (targeted) liposomes present a more effective system to deliver DOX to the tumor. Moreover, encapsulation of DOX in pH-sensitive liposomes (PSLs) or thermo-sensitive liposomes (TSLs) combined with local heating has improved DOX accumulation in the tumor. Lyso-thermosensitive liposomal DOX (LTLD), MM-302, and C225-immunoliposomal(IL)-DOX have reached clinical trials. Further functionalized PEGylated liposomal DOX (PLD), TSLs, and PSLs have been developed and evaluated in preclinical models. Most of these formulations improved the anti-tumor activity compared to the currently available liposomal DOX. However, the fast clearance, the optimization of ligand density, stability, and release rate need more investigations. Therefore, we reviewed the latest approaches applied to deliver DOX more efficiently to the tumor, preserving the benefits obtained from FDA-approved liposomes.
Collapse
|
8
|
Haemmerich D, Ramajayam KK, Newton DA. Review of the Delivery Kinetics of Thermosensitive Liposomes. Cancers (Basel) 2023; 15:cancers15020398. [PMID: 36672347 PMCID: PMC9856714 DOI: 10.3390/cancers15020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-regional drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are based on intravascular triggered release, where drug release occurs within the microvasculature. Thus, this delivery strategy does not require enhanced permeability and retention (EPR). Compared to traditional nanoparticle drug delivery systems based on EPR with passive or active tumor targeting (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor). Numerous TSL formulations have been combined with various drugs and hyperthermia devices in preclinical and clinical studies over the last four decades. Here, we review how the properties of TSL dictate delivery and discuss the advantages of rapid drug release from TSL. We show the benefits of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore, the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method. Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems.
Collapse
Affiliation(s)
- Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Correspondence:
| | - Krishna K. Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danforth A. Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
9
|
Gispert I, Hindley JW, Pilkington CP, Shree H, Barter LMC, Ces O, Elani Y. Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation. Proc Natl Acad Sci U S A 2022; 119:e2206563119. [PMID: 36223394 PMCID: PMC9586261 DOI: 10.1073/pnas.2206563119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.
Collapse
Affiliation(s)
- Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - James W. Hindley
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Colin P. Pilkington
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Hansa Shree
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Laura M. C. Barter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Oscar Ces
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| |
Collapse
|
10
|
Abuwatfa WH, Awad NS, Pitt WG, Husseini GA. Thermosensitive Polymers and Thermo-Responsive Liposomal Drug Delivery Systems. Polymers (Basel) 2022; 14:925. [PMID: 35267747 PMCID: PMC8912701 DOI: 10.3390/polym14050925] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Temperature excursions within a biological milieu can be effectively used to induce drug release from thermosensitive drug-encapsulating nanoparticles. Oncological hyperthermia is of particular interest, as it is proven to synergistically act to arrest tumor growth when combined with optimally-designed smart drug delivery systems (DDSs). Thermoresponsive DDSs aid in making the drugs more bioavailable, enhance the therapeutic index and pharmacokinetic trends, and provide the spatial placement and temporal delivery of the drug into localized anatomical sites. This paper reviews the fundamentals of thermosensitive polymers, with a particular focus on thermoresponsive liposomal-based drug delivery systems.
Collapse
Affiliation(s)
- Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (W.H.A.); (N.S.A.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Nahid S. Awad
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (W.H.A.); (N.S.A.)
| | - William G. Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA;
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (W.H.A.); (N.S.A.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
11
|
Preparation and characterization of gadolinium-based thermosensitive liposomes: A potential nanosystem for selective drug delivery to cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Evaluation of release and pharmacokinetics of hexadecylphosphocholine (miltefosine) in phosphatidyldiglycerol-based thermosensitive liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183698. [PMID: 34283999 DOI: 10.1016/j.bbamem.2021.183698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Hexadecylphosphocholine (HePC, Miltefosine) is a drug from the class of alkylphosphocholines with an antineoplastic and antiprotozoal activity. We previously reported that HePC uptake from thermosensitive liposomes (TSL) containing 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) into cancer cells is accelerated at mild hyperthermia (HT) resulting in increased cytotoxicity. In this study, we compared HePC release of different TSL formulations in serum. HePC showed rapid but incomplete release below the transition temperature (Tm) of investigated TSL formulations in serum. Short heating (5 min) to 42 °C increased HePC release from DPPG2-TSL (Tm = 41 °C) by a factor of two in comparison to body temperature (37 °C). Bovine serum albumin (BSA) induced HePC release from DPPG2-TSL comparable to serum. Furthermore, multilamellar vesicles (MLV) were capable to extract HePC from DPPG2-TSL in a concentration- and temperature-dependent manner. Repetitive exposure of DPPG2-TSL to MLV at 37 °C led to a fast initial release of HePC which slowed down after subsequent extraction cycles finally reaching approx. 50% HePC release. A pharmacokinetic study in rats revealed a biphasic pattern with an immediate clearance of approx. 50% HePC whereas the remaining 50% HePC showed a prolonged circulation time. We speculate that HePC located in the external leaflet of DPPG2-TSL is rapidly released upon contact with suitable biological acceptors. As demonstrated by MLV transfer experiments, asymmetric incorporation of HePC into the internal leaflet of DPPG2-TSL might improve HePC retention in presence of complex biological media and still give rise to HT-induced HePC release.
Collapse
|
13
|
Petrini M, Lokerse WJM, Mach A, Hossann M, Merkel OM, Lindner LH. Effects of Surface Charge, PEGylation and Functionalization with Dipalmitoylphosphatidyldiglycerol on Liposome-Cell Interactions and Local Drug Delivery to Solid Tumors via Thermosensitive Liposomes. Int J Nanomedicine 2021; 16:4045-4061. [PMID: 34163158 PMCID: PMC8214027 DOI: 10.2147/ijn.s305106] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Previous studies demonstrated the possibility of targeting tumor-angiogenic endothelial cells with positively charged nanocarriers, such as cationic liposomes. We investigated the active targeting potential of positively charged nanoparticles in combination with the heat-induced drug release function of thermosensitive liposomes (TSL). This novel dual-targeted approach via cationic TSL (CTSL) was thoroughly explored using either a novel synthetic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) or a conventional polyethylene glycol (PEG) surface modification. Anionic particles containing either DPPG2 or PEG were also included in the study to highlight difference in tumor enrichment driven by surface charge. With this study, we aim to provide a deep insight into the main differences between DPPG2- and PEG-functionalized liposomes, focusing on the delivery of a well-known cytotoxic drug (doxorubicin; DOX) in combination with local hyperthermia (HT, 41–43°C). Materials and Methods DPPG2- and PEG-based cationic TSLs (PG2-CTSL/PEG-CTSL) were thoroughly analyzed for size, surface charge, and heat-triggered DOX release. Cancer cell targeting and DOX delivery was evaluated by FACS, fluorescence imaging, and HPLC. In vivo particle behavior was analyzed by assessing DOX biodistribution with local HT application in tumor-bearing animals. Results The absence of PEG in PG2-CTSL promoted more efficient liposome–cell interactions, resulting in a higher DOX delivery and cancer cell toxicity compared with PEG-CTSL. By exploiting the dual-targeting function of CTSLs, we were able to selectively trigger DOX release in the intracellular compartment by HT. When tested in vivo, local HT promoted an increase in intratumoral DOX levels for all (C)TSLs tested, with DOX enrichment factors ranging from 3 to 14-fold depending on the type of formulation. Conclusion Cationic particles showed lower hemocompatibility than their anionic counterparts, which was partially mitigated when PEG was grafted on the liposome surface. DPPG2-based anionic TSL showed optimal local drug delivery compared to all other formulations tested, demonstrating the potential advantages of using DPPG2 lipid in designing liposomes for tumor-targeted applications.
Collapse
Affiliation(s)
- Matteo Petrini
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilian University, Munich, Germany
| | - Wouter J M Lokerse
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Agnieszka Mach
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany
| | | | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilian University, Munich, Germany
| | - Lars H Lindner
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
14
|
Reactive Deep Eutectic Solvents (RDESs): A New Tool for Phospholipase D-Catalyzed Preparation of Phospholipids. Catalysts 2021. [DOI: 10.3390/catal11060655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of Reactive Deep Eutectic Solvents (RDESs) in the preparation of polar head modified phospholipids (PLs) with phospholipase D (PLD)-catalyzed biotransformations has been investigated. Natural phosphatidylcholine (PC) has been submitted to PLD-catalyzed transphosphatidylations using a new reaction medium composed by a mixture of RDES/buffer. Instead of exploiting deep eutectic solvents conventionally, just as the reaction media, these solvents have been designed here in order to contribute actively to the synthetic processes by participating as reagents. RDESs were prepared using choline chloride or trimethyl glycine as hydrogen-bond acceptors and glycerol or ethylene glycol, as hydrogen-bond donors as well as nucleophiles for choline substitution. Specifically designed RDES/buffer reaction media allowed the obtainment of PLs with optimized yields in the perspective of a sustainable process implementation.
Collapse
|
15
|
Mechanistic investigation of thermosensitive liposome immunogenicity and understanding the drivers for circulation half-life: A polyethylene glycol versus 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol study. J Control Release 2021; 333:1-15. [DOI: 10.1016/j.jconrel.2021.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
|
16
|
Choi JS, Park JW, Seu YB, Doh KO. Enhanced efficacy of folate-incorporated cholesteryl doxorubicin liposome in folate receptor abundant cancer cell. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Amin M, Huang W, Seynhaeve ALB, ten Hagen TLM. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics 2020; 12:E1007. [PMID: 33105816 PMCID: PMC7690578 DOI: 10.3390/pharmaceutics12111007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology has great capability in formulation, reduction of side effects, and enhancing pharmacokinetics of chemotherapeutics by designing stable or long circulating nano-carriers. However, effective drug delivery at the cellular level by means of such carriers is still unsatisfactory. One promising approach is using spatiotemporal drug release by means of nanoparticles with the capacity for content release triggered by internal or external stimuli. Among different stimuli, interests for application of external heat, hyperthermia, is growing. Advanced technology, ease of application and most importantly high level of control over applied heat, and as a result triggered release, and the adjuvant effect of hyperthermia in enhancing therapeutic response of chemotherapeutics, i.e., thermochemotherapy, make hyperthermia a great stimulus for triggered drug release. Therefore, a variety of temperature sensitive nano-carriers, lipid or/and polymeric based, have been fabricated and studied. Importantly, in order to achieve an efficient therapeutic outcome, and taking the advantages of thermochemotherapy into consideration, release characteristics from nano-carriers should fit with applicable clinical thermal setting. Here we introduce and discuss the application of the three most studied temperature sensitive nanoparticles with emphasis on release behavior and its importance regarding applicability and therapeutic potentials.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Wenqiu Huang
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Ann L. B. Seynhaeve
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
18
|
Polar Head Modified Phospholipids by Phospholipase D-Catalyzed Transformations of Natural Phosphatidylcholine for Targeted Applications: An Overview. Catalysts 2020. [DOI: 10.3390/catal10090997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review describes the use of phospholipase D (PLD) to perform the transphosphatidylation of the most common natural phospholipid (PL), phosphatidylcholine (PC) to obtain polar head modified phospholipids with real targeted applications. The introduction of different polar heads with distinctive physical and chemical properties such as charge, polarity and dimensions allows the obtainment of very different PLs, which can be exploited in very diverse fields of application. Moreover, the inclusions of a bioactive moiety in the PL polar head constitutes a powerful tool for the stabilization and administration of active ingredients. The use of this biocatalytic approach allows the preparation of compounds which cannot be easily obtained by classical chemical methods, by using mild and green reaction conditions. PLD is a very versatile enzyme, able to catalyze both the hydrolysis of PC to choline and phosphatidic acid (PA), and the transphosphatidylation reaction in the presence of an appropriate alcohol. The yield of production of the desired product and the ratio with the collateral PA formation is highly dependent on parameters such as the nature and concentration of the alcohol and the enzymatic source. The application of PLD catalyzed transformations for the production of a great number of PLs with important uses in medical, nutraceutical and cosmetic sectors will be discussed in this work.
Collapse
|
19
|
Lu T, Ten Hagen TLM. A novel kinetic model to describe the ultra-fast triggered release of thermosensitive liposomal drug delivery systems. J Control Release 2020; 324:669-678. [PMID: 32512013 DOI: 10.1016/j.jconrel.2020.05.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/21/2020] [Accepted: 05/31/2020] [Indexed: 12/20/2022]
Abstract
Thermosensitive liposomes, as one of the stimuli-responsive drug delivery systems, receive growing attention, due to their ability to generate rapid and massive drug release in the heated area, and marginal release of contents in non-heated parts of the body. This typical triggered release behavior cannot be fitted adequately by most of the current mathematical kinetic models. The aim of this study was to establish the proper kinetic equation to describe the rapid release of drugs from trigger-sensitive drug delivery systems. We summarized all commonly used kinetic models mentioned in the literature and fitted the release data with these models, finding that only the Korsmeyer-Peppas and the Weibull models show acceptable fitting results. To better describe the release from thermosensitive liposomes with a size below 100 nm, we took Laplace pressure as a release-driving force and proposed a new equation that demonstrates improved fitting in liposomes ranging down to a size of 70 nm. Our new kinetic model shows desirable fitting, not only at the optimal temperature but also of releases within the whole release-temperature range, providing a useful kinetic model to describe release profiles of smaller nano-sized stimuli-responsive drug delivery systems.
Collapse
Affiliation(s)
- Tao Lu
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Seynhaeve A, Amin M, Haemmerich D, van Rhoon G, ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164:125-144. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is a cornerstone of cancer therapy. Irrespective of the administered drug, it is crucial that adequate drug amounts reach all cancer cells. To achieve this, drugs first need to be absorbed, then enter the blood circulation, diffuse into the tumor interstitial space and finally reach the tumor cells. Next to chemoresistance, one of the most important factors for effective chemotherapy is adequate tumor drug uptake and penetration. Unfortunately, most chemotherapeutic agents do not have favorable properties. These compounds are cleared rapidly, distribute throughout all tissues in the body, with only low tumor drug uptake that is heterogeneously distributed within the tumor. Moreover, the typical microenvironment of solid cancers provides additional hurdles for drug delivery, such as heterogeneous vascular density and perfusion, high interstitial fluid pressure, and abundant stroma. The hope was that nanotechnology will solve most, if not all, of these drug delivery barriers. However, in spite of advances and decades of nanoparticle development, results are unsatisfactory. One promising recent development are nanoparticles which can be steered, and release content triggered by internal or external signals. Here we discuss these so-called smart drug delivery systems in cancer therapy with emphasis on mild hyperthermia as a trigger signal for drug delivery.
Collapse
|
21
|
Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev 2020; 163-164:98-124. [PMID: 32681862 DOI: 10.1016/j.addr.2020.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hyperthermia has demonstrated clinical success in improving the efficacy of both chemo- and radio-therapy in solid tumors. Pre-clinical and clinical research studies have demonstrated that targeted hyperthermia can increase tumor blood flow and increase the perfused fraction of the tumor in a temperature and time dependent manner. Changes in tumor blood circulation can produce significant physiological changes including enhanced vascular permeability, increased oxygenation, decreased interstitial fluid pressure, and reestablishment of normal physiological pH conditions. These alterations in tumor physiology can positively impact both small molecule and nanomedicine chemotherapy accumulation and distribution within the tumor, as well as the fraction of the tumor susceptible to radiation therapy. Hyperthermia can trigger drug release from thermosensitive formulations and further improve the accumulation, distribution, and efficacy of chemotherapy.
Collapse
|
22
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
23
|
Rubio-Camacho M, Alacid Y, Mallavia R, Martínez-Tomé MJ, Mateo CR. Polyfluorene-Based Multicolor Fluorescent Nanoparticles Activated by Temperature for Bioimaging and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1485. [PMID: 31635330 PMCID: PMC6835524 DOI: 10.3390/nano9101485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Multifunctional nanoparticles have been attracting growing attention in recent years because of their capability to integrate materials with different features in one entity, which leads them to be considered as the next generation of nanomedicine. In this work, we have taken advantage of the interesting properties of conjugated polyelectrolytes to develop multicolor fluorescent nanoparticles with integrating imaging and therapeutic functionalities. With this end, thermosensitive liposomes were coated with three recently synthesized polyfluorenes: copoly-((9,9-bis(6'-N,N,N-trimethylammonium)hexyl)-2,7-(fluorene)-alt-1,4-(phenylene)) bromide (HTMA-PFP), copoly-((9,9-bis(6'-N,N,N-trimethylammonium)hexyl)-2,7-(fluorene)-alt-4,7-(2- (phenyl)benzo(d) (1,2,3) triazole)) bromide (HTMA-PFBT) and copoly-((9,9-bis(6'-N,N,N- trimethylammonium)hexyl)-2,7-(fluorene)-alt-1,4-(naphtho(2,3c)-1,2,5-thiadiazole)) bromide (HTMA-PFNT), in order to obtain blue, green and red fluorescent drug carriers, respectively. The stability, size and morphology of the nanoparticles, as well as their thermotropic behavior and photophysical properties, have been characterized by Dynamic Light Scattering (DLS), Zeta Potential, transmission electron microscope (TEM) analysis and fluorescence spectroscopy. In addition, the suitability of the nanostructures to carry and release their contents when triggered by hyperthermia has been explored by using carboxyfluorescein as a hydrophilic drug model. Finally, preliminary experiments with mammalian cells demonstrate the capability of the nanoparticles to mark and visualize cells with different colors, evidencing their potential use for imaging and therapeutic applications.
Collapse
Affiliation(s)
- Marta Rubio-Camacho
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - Yolanda Alacid
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - Ricardo Mallavia
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - María José Martínez-Tomé
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - C Reyes Mateo
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| |
Collapse
|
24
|
Abstract
Liposomes have been employed as cancer therapy clinically since the 1990s, with the primary benefit of reduced toxicity but no appreciable efficacy improvement. Thermosensitive liposomes (TSLs) are specifically formulated such that they release the encapsulated drug when exposed to hyperthermic temperatures in the fever range (~40-42°C) and have been investigated as cancer therapy for several decades, with first clinical trials initiated in the last decade. Combined with localized hyperthermia, TSLs allow precise drug delivery to a targeted region. Typically, the targeted tissue is exposed to localized hyperthermia facilitated by an image-guided hyperthermia device. Thus, TSLs enable image-guided drug delivery where drug is delivered to a tissue region identified by medical imaging. Recent TSL formulations are based on the more recent paradigm of intravascular triggered release, where drug is released rapidly (within seconds) while TSLs pass through the vasculature of the heated tissue region. The drug released within the blood then extravasates and is taken up by cancer cells. These TSLs enable up to 20-30 times higher tumor drug uptake compared to infusion of unencapsulated drug, and the dose locally delivered to the heated region can be modulated based on heating duration. This chapter reviews various TSL formulations, the different anticancer agents that have been encapsulated, as well as targeted cancer types. Further, the various hyperthermia devices that have been used for image-guided hyperthermia are reviewed, focusing on those that have been employed in human patients.
Collapse
Affiliation(s)
- Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.
| | - Anjan Motamarry
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States; Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
25
|
Characterization of Thermo-sensitive ELP-liposome Complexes According to the Conjugation Manner. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0117-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Bi H, Xue J, Jiang H, Gao S, Yang D, Fang Y, Shi K. Current developments in drug delivery with thermosensitive liposomes. Asian J Pharm Sci 2019; 14:365-379. [PMID: 32104466 PMCID: PMC7032122 DOI: 10.1016/j.ajps.2018.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Thermosensitive liposomes (TSLs) have been an important research area in the field of tumor targeted chemotherapy. Since the first TSLs appeared that using 1,2-dipalmitoyl-sn-glyce-ro-3-phosphocholine (DPPC) as the primary liposomal lipid, many studies have been done using this type of liposome from basic and practical aspects. While TSLs composed of DPPC enhance the cargo release near the phase transition temperature, it has been shown that many factors affect their temperature sensitivity. Thus numerous attempts have been undertaken to develop new TSLs for improving their thermal response performance. The main objective of this review is to introduce the development and recent update of innovative TSLs formulations, including combination of radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), magnetic resonance imaging (MRI) and alternating magnetic field (AMF). In addition, various factors affecting the design of TSLs, such as lipid composition, surfactant, size and serum components are also discussed.
Collapse
Key Words
- (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine
- (DPPGOG), 1,2-dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol
- (DSPC), 1,2-distearoyl-sn-glycero-3-phosphocholine
- (DSPE-mPEG2000), 1,2-distearoyl-sn-glycero-3-phosphatiylethanol-amine-N-[methoxy(polyethyleneglycol)-2000]
- (LTSLs), lyso-lipid temperature sensitive liposomes
- (MPPC), 1-myristoyl-2-palmitoyl-sn-glycero-3-phosphatidylcholine
- (MSPC), 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine
- (P-lyso-PC), lysophosphatidylcholine
- (P188), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphatidylcholinex
- (P188), HO-(C2H4O)a-(C3H6O)b-(C2H4O)c-H, a=80, b=27, c=80
- Content release rate
- Drug delivery
- Hyperthermia
- Smart liposomes
- Thermosensitive liposomes
- Tumor chemotherapy
- fTSLs, fast release TSLs
- sTSLs, slow release TSLs
Collapse
Affiliation(s)
- Hongshu Bi
- Institute of New Drug Development, Liaoning Yaolian Pharmaceutical Co., Ltd., Benxi, Liaoning 117004, China
| | - Jianxiu Xue
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Hong Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Shan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Dongjuan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yan Fang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Kai Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| |
Collapse
|
27
|
Doi Y, Shimizu T, Ishima Y, Ishida T. Long-term storage of PEGylated liposomal oxaliplatin with improved stability and long circulation times in vivo. Int J Pharm 2019; 564:237-243. [PMID: 31002935 DOI: 10.1016/j.ijpharm.2019.04.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/01/2022]
Abstract
Liposomal anticancer drugs have been developed with improved clinical effects and reduced side effects. We have developed a PEGylated liposomal formulation of oxaliplatin that has anticancer effects in animal models of colorectal cancer with a favorable toxicity profile. To move this formulation into clinical development, a formulation that is stable during long term storage is needed, which has similar pharmacokinetics and therapeutic activity against solid tumors to the original formulation. In this study, we found that PEGylated liposomal oxaliplatin showed no changes in particle size after long term storage (12 months at 2-8 °C), but phospholipid degradation had occurred. Hence, the stored formulation had compromised membrane integrity, resulting in decreased in vivo circulation times of the liposomes. To improve the stability during long-term storage, a screening study to obtain an appropriate stabilizer was carried out. The buffer 2-morpholinoethansulfonic acid (MES) attenuated not only phospholipid degradation but also oxaliplatin degradation, unlike most other excipients. After 12 months storage at 2-8 °C in the presence of MES only slight degradation of phospholipids in PEGylated liposomal oxaliplatin occurred, resulting in similar in vivo pharmacokinetic profiles of the encapsulated oxaliplatin to the original formulation. Long term stability of PEGylated liposomal oxaliplatin was achieved by addition of MES, resulting in long circulation half-lives in vivo, a property which would be expected to lead to increased suppression of tumor growth and reduced side effects. Our formulation may now be suitable for clinical development.
Collapse
Affiliation(s)
- Yusuke Doi
- Formulation Research Laboratory, CMC Division, Taiho Pharmaceutical Co., Ltd., 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
28
|
Nigatu AS, Ashar H, Sethuraman SN, Wardlow R, Maples D, Malayer J, Ranjan A. Elastin-like polypeptide incorporated thermally sensitive liposome improve antibiotic therapy against musculoskeletal bacterial pathogens. Int J Hyperthermia 2019; 34:201-208. [PMID: 29278945 DOI: 10.1080/02656736.2017.1420249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Musculoskeletal infections caused by bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa in children and adults can lead to adverse outcomes including a need for extensive surgical debridement and limb amputation. To enable targeted antimicrobial release in infected tissues, the objective of this study was to design and investigate novel elastin-like polypeptide (ELP)-based thermally sensitive liposomes in vitro. ELP biopolymers can change their phase behaviour at higher temperatures. We hypothesised that ELP-TSL will improve therapeutic efficacy by releasing antimicrobial payloads locally at higher temperatures (≥39 °C). ELP-TSL library were formulated by varying cholesterol and phospholipid composition by the thin film and extrusion method. A broad-spectrum antimicrobial (Ciprofloxacin or Cipro) was encapsulated inside the liposomes by the ammonium sulphate gradient method. Cipro release from ELP-TSLs was assessed in physiological buffers containing ∼25% serum by fluorescence spectroscopy, and efficacy against Staphylococcus aureus and Pseudomonas aeruginosa was assessed by disc diffusion and planktonic assay. Active loading of Cipro achieved an encapsulation efficiency of 40-70% in the ELP-TSL depending upon composition. ELP-TSL Cipro release was near complete at ≥39 °C; however, the release rates could be delayed by cholesterol. Triggered release of Cipro from ELP-TSL at ∼42 °C induced significant killing of S. aureus and P. aeruginosa compared to 37 °C. Our in vitro data suggest that ELP-TSL may potentially improve bacterial wound therapy in patients.
Collapse
Affiliation(s)
- Adane S Nigatu
- a Center for Veterinary Health Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Harshini Ashar
- a Center for Veterinary Health Sciences , Oklahoma State University , Stillwater , OK , USA
| | | | - Rachel Wardlow
- a Center for Veterinary Health Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Danny Maples
- a Center for Veterinary Health Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Jerry Malayer
- a Center for Veterinary Health Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Ashish Ranjan
- a Center for Veterinary Health Sciences , Oklahoma State University , Stillwater , OK , USA
| |
Collapse
|
29
|
Thermo-Sensitive Vesicles in Controlled Drug Delivery for Chemotherapy. Pharmaceutics 2018; 10:pharmaceutics10030150. [PMID: 30189683 PMCID: PMC6161155 DOI: 10.3390/pharmaceutics10030150] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Thermo-sensitive vesicles are a promising tool for triggering the release of drugs to solid tumours when used in combination with mild hyperthermia. Responsivity to temperature makes them intelligent nanodevices able to provide a site-specific chemotherapy. Following a brief introduction concerning hyperthermia and its advantageous combination with vesicular systems, recent investigations on thermo-sensitive vesicles useful for controlled drug delivery in cancer treatment are reported in this review. In particular, the influence of bilayer composition on the in vitro and in vivo behaviour of thermo-sensitive formulations currently under investigation have been extensively explored.
Collapse
|
30
|
Mohammadi M, Alibolandi M, Abnous K, Salmasi Z, Jaafari MR, Ramezani M. Fabrication of hybrid scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of BMP-2 peptide for bone tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1987-1997. [PMID: 29933024 DOI: 10.1016/j.nano.2018.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
In the present study, we fabricated an efficient, simple biomimetic scaffold to stimulate osteogenic differentiation of mesenchymal stem cells (MSCs). Electrospun poly L-lactic acid nanofibers were employed to mimic the nanofibrillar structure of bone proteins and coated with hydroxyapatite nanoparticles to simulate bone minerals. Thereafter, we regulated the release pattern of BMP-2 peptide through covalent attachment of an optimized liposomal formulation to the scaffold. The fabricated platform provided a sustained release profile of BMP-2 peptide up to 21 days while supporting cellular attachment and proliferation without cytotoxicity. In-vitro results confirmed the superiority of the scaffold containing liposomes through enhancement of growth and differentiation of MSCs. Ectopic bone formation model exhibited significant localized initiation of bone formation of liposome incorporated scaffold. Consequently, these findings demonstrated that our designed platform with modified release properties of BMP-2 peptide considerably promoted osteogenic differentiation of MSCs making it a unique candidate for bone regeneration therapeutics.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Deng Y, Ling J, Li MH. Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. NANOSCALE 2018; 10:6781-6800. [PMID: 29616274 DOI: 10.1039/c8nr00923f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reviews liposomes with crystalline phase and polymersomes exhibiting crystalline and thermotropic liquid crystalline phases in the membrane. Intriguing morphologies of vesicles are described, including spherical, ellipsoidal and faceted vesicles, produced by a large variety of amphiphilic molecules and polymers with nematic phase, smectic phase or crystalline phase. It is highlighted how the phase transitions and the phase grain boundaries could be used ingeniously to destabilize the vesicular structure and to achieve cargo-release under the action of external stimulation. These liposomes and polymersomes are responsive to physical stimuli, such as temperature variation, shear stress, light illumination, and magnetic and electric fields. These stimuli-responsive properties make them promising candidates as new smart drug delivery systems.
Collapse
Affiliation(s)
- Yangwei Deng
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | | |
Collapse
|
32
|
Formation of protein corona in vivo affects drug release from temperature-sensitive liposomes. J Control Release 2018. [DOI: 10.1016/j.jconrel.2018.02.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Burke C, Dreher MR, Negussie AH, Mikhail AS, Yarmolenko P, Patel A, Skilskyj B, Wood BJ, Haemmerich D. Drug release kinetics of temperature sensitive liposomes measured at high-temporal resolution with a millifluidic device. Int J Hyperthermia 2017; 34:786-794. [PMID: 29284329 DOI: 10.1080/02656736.2017.1412504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Current release assays have inadequate temporal resolution ( ∼ 10 s) to characterise temperature sensitive liposomes (TSL) designed for intravascular triggered drug release, where release within the first few seconds is relevant for drug delivery. MATERIALS AND METHODS We developed a novel release assay based on a millifluidic device. A 500 µm capillary tube was heated by a temperature-controlled Peltier element. A TSL solution encapsulating a fluorescent compound was pumped through the tube, producing a fluorescence gradient along the tube due to TSL release. Release kinetics were measured by analysing fluorescence images of the tube. We measured three TSL formulations: traditional TSL (DPPC:DSPC:DSPE-PEF2000,80:15:5), MSPC-LTSL (DPPC:MSPC:DSPE-PEG2000,85:10:5) and MPPC-LTSL (DPPC:MMPC:PEF2000,86:10:4). TSL were loaded with either carboxyfluorescein (CF), Calcein, tetramethylrhodamine (TMR) or doxorubicin (Dox). TSL were diluted in one of the four buffers: phosphate buffered saline (PBS), 10% bovine serum albumin (BSA) solution, foetal bovine serum (FBS) or human plasma. Release was measured between 37-45 °C. RESULTS The millifluidic device allowed measurement of release kinetics within the first few seconds at ∼5 ms temporal resolution. Dox had the fastest release and highest release %, followed by CF, Calcein and TMR. Of the four buffers, release was fastest in human plasma, followed by FBS, BSA and PBS. CONCLUSIONS The millifluidic device allows measurement of TSL release at unprecedented temporal resolution, thus allowing adequate characterisation of TSL release at time scales relevant for intravascular triggered drug release. The type of buffer and encapsulated compound significantly affect release kinetics and need to be considered when designing and evaluating novel TSL-drug combinations.
Collapse
Affiliation(s)
- Caitlin Burke
- a Department of Bioengineering , George Mason University , Fairfax , VA , USA
| | | | - Ayele H Negussie
- c Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD , USA
| | - Andrew S Mikhail
- c Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD , USA
| | - Pavel Yarmolenko
- d Sheikh Zayed Institute, Children's National , Washington , DC , USA
| | - Aakash Patel
- d Sheikh Zayed Institute, Children's National , Washington , DC , USA.,e Department of Bioengineering , University of Maryland , College Park , MD , USA
| | - Brenden Skilskyj
- e Department of Bioengineering , University of Maryland , College Park , MD , USA
| | - Bradford J Wood
- c Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD , USA
| | - Dieter Haemmerich
- f Department of Pediatrics , Medical University of South Carolina , Charleston , SC , USA
| |
Collapse
|
34
|
Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes. Int J Pharm 2017; 548:778-782. [PMID: 29126907 DOI: 10.1016/j.ijpharm.2017.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Fast hyperthermia (i.e. 39-42 °C) triggered doxorubicin release from lysolipid-containing thermosensitive liposomes (LTSL) in the tumor vasculature has been demonstrated to result in considerable enhancement of bioavailable drug levels in heated tumor tissue in preclinical tumor models. However, there is also significant leakage of doxorubicin already at 37 °C in the bloodstream, making these LTSL less efficient and increasing the risk for systemic toxicity. In conventional liposomes, cholesterol is incorporated in the bilayer to increase the stability of the liposomes. Here, we investigate the effect of cholesterol inclusion on the doxorubicin release characteristics of LTSL at 37 °C and hyperthermic temperatures. For this purpose, three LTSL formulations with 0, 5 and 10 mol% cholesterol were prepared. Inclusion of cholesterol reduced the undesired doxorubicin leakage at 37 °C in Hepes-buffered saline (HBS) as well as in fetal bovine serum (FBS). The incorporation of cholesterol in the LTSL bilayers did not influence the hyperthermia-triggered release property of the LTSL. These results were supported by DSC measurements. Therefore, in conclusion, our data indicate that cholesterol inclusion in LTSL offers a simple solution to the problem of significant leakage of doxorubicin from LTSL already at 37 °C in the bloodstream.
Collapse
|
35
|
Mittag JJ, Kneidl B, Preiβ T, Hossann M, Winter G, Wuttke S, Engelke H, Rädler JO. Impact of plasma protein binding on cargo release by thermosensitive liposomes probed by fluorescence correlation spectroscopy. Eur J Pharm Biopharm 2017. [DOI: 10.1016/j.ejpb.2017.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Dou YN, Chaudary N, Chang MC, Dunne M, Huang H, Jaffray DA, Milosevic M, Allen C. Tumor microenvironment determines response to a heat-activated thermosensitive liposome formulation of cisplatin in cervical carcinoma. J Control Release 2017; 262:182-191. [PMID: 28760449 DOI: 10.1016/j.jconrel.2017.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023]
Abstract
Significant heterogeneity in the tumor microenvironment of human cervical cancer patients is known to challenge treatment outcomes in this population. The current standard of care for cervical cancer patients is radiation therapy and concurrent cisplatin (CDDP) chemotherapy. Yet this treatment strategy fails to control loco-regional disease in 10-30% of patients. In order to improve the loco-regional control rate, a thermosensitive liposome formulation of CDDP (HTLC) was developed to increase local concentrations of drug in response to mild hyperthermia (HT). The HTLC formulation in combination with local HT demonstrated a significant therapeutic advantage in comparison to free drug and Lipoplatin™ in ME-180 and SiHa xenograft models of human cervical cancer, as well as in four distinct cervical patient-derived xenograft models. Differential response to HTLC+HT treatment was observed between the ME-180 and SiHa tumor models. Tumor doubling time, in vitro cell sensitivity, and tumor drug accumulation were found to be non-predictive of treatment efficacy. Rather, tumor microenvironment parameters, in particular elevated levels of both tumor hypoxia and associated stromal content, were found to serve as the overriding factors that limit drug efficacy. The prognostic value of these markers may enable stratification of cervical cancer patients for implementation of personalized medicine in the clinical setting.
Collapse
Affiliation(s)
- Yannan N Dou
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Naz Chaudary
- Ontario Cancer Institute, Princess Margaret Cancer Center and The Campbell Family Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Martin C Chang
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael Dunne
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Huang Huang
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - David A Jaffray
- Techna Institute, University Health Network, Toronto, ON M5G 1L5, Canada; Department of Radiation Oncology, University of Toronto, ON M5S 3E2, Canada
| | - Michael Milosevic
- Department of Radiation Oncology, University of Toronto, ON M5S 3E2, Canada; Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
37
|
The effect of thermosensitive liposomal formulations on loading and release of high molecular weight biomolecules. Int J Pharm 2017; 524:279-289. [DOI: 10.1016/j.ijpharm.2017.03.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 12/16/2022]
|
38
|
Dou Y, Hynynen K, Allen C. To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. J Control Release 2017; 249:63-73. [DOI: 10.1016/j.jconrel.2017.01.025] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
|
39
|
Rinaldi F, Del Favero E, Rondelli V, Pieretti S, Bogni A, Ponti J, Rossi F, Di Marzio L, Paolino D, Marianecci C, Carafa M. pH-sensitive niosomes: Effects on cytotoxicity and on inflammation and pain in murine models. J Enzyme Inhib Med Chem 2017; 32:538-546. [PMID: 28114822 PMCID: PMC6010110 DOI: 10.1080/14756366.2016.1268607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
pH-sensitive nonionic surfactant vesicles (niosomes) by polysorbate-20 (Tween-20) or polysorbate-20 derivatized by glycine (added as pH sensitive agent), were developed to deliver Ibuprofen (IBU) and Lidocaine (LID). For the physical-chemical characterization of vesicles (mean size, size distribution, zeta potential, vesicle morphology, bilayer properties and stability) dynamic light scattering (DLS), small angle X-ray scattering and fluorescence studies were performed. Potential cytotoxicity was evaluated on immortalized human keratinocyte cells (HaCaT) and on immortalized mouse fibroblasts Balb/3T3. In vivo antinociceptive activity (formalin test) and anti-inflammatory activity tests (paw edema induced by zymosan) in murine models were performed on drug-loaded niosomes. pH-sensitive niosomes were stable in the presence of 0 and 10% fetal bovine serum, non-cytotoxic and able to modify IBU or LID pharmacological activity in vivo. The synthesis of stimuli responsive surfactant, as an alternative to add pH-sensitive molecules to niosomes, could represent a promising delivery strategy for anesthetic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Federica Rinaldi
- a Fondazione Istituto Italiano di Tecnologia , Center for Life Nano Science@Sapienza , Rome , Italy
| | - Elena Del Favero
- b Department of Medical Biotechnologies and Traslational Medicine , University of Milan , Milan , Italy
| | - Valeria Rondelli
- b Department of Medical Biotechnologies and Traslational Medicine , University of Milan , Milan , Italy
| | - Stefano Pieretti
- c Department of Therapeutic Research and Medicine Evaluation , Istituto Superiore di Sanità , Rome , Italy
| | - Alessia Bogni
- d Consumers and Reference Materials, Consumer Products Safety Unit (F.2) , European Commission, Directorate General Joint Research Centre Directorate F - Health , ISPRA , Varese , Italy
| | - Jessica Ponti
- d Consumers and Reference Materials, Consumer Products Safety Unit (F.2) , European Commission, Directorate General Joint Research Centre Directorate F - Health , ISPRA , Varese , Italy
| | - François Rossi
- d Consumers and Reference Materials, Consumer Products Safety Unit (F.2) , European Commission, Directorate General Joint Research Centre Directorate F - Health , ISPRA , Varese , Italy
| | - Luisa Di Marzio
- e Department of Pharmacy , University "G. d'Annunzio" , Chieti , Italy
| | - Donatella Paolino
- f Interregional Research Center for Food Safety & Health (IRC-FSH), Campus Universitario "S. Venuta", University of Catanzaro "Magna Græcia" , Catanzaro , Italy.,g Department of Health Sciences , Campus Universitario "S. Venuta", University of Catanzaro "Magna Græcia" , Catanzaro , Italy
| | - Carlotta Marianecci
- h Department of Drug Chemistry and Technology , University of Rome "Sapienza" , Rome , Italy
| | - Maria Carafa
- h Department of Drug Chemistry and Technology , University of Rome "Sapienza" , Rome , Italy
| |
Collapse
|
40
|
Lu T, Ten Hagen TLM. Inhomogeneous crystal grain formation in DPPC-DSPC based thermosensitive liposomes determines content release kinetics. J Control Release 2016; 247:64-72. [PMID: 28042084 DOI: 10.1016/j.jconrel.2016.12.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Thermosensitive liposomes (TSL) receive attention due to their rapid externally controlled drug release at transition temperature in combination with hyperthermia. This rapid release feature of TSL occurs when the liposome membrane is going through a phase change which results in numerous interfaces, at so-called crystal grain boundaries. Based on experience with TSLs, our group found that thermosensitive liposomes formulated by binary compositions of DPPC and DSPC at proper ratios are able to exhibit rapid release without incorporation of release-promoting components. The aim of this study was to understand the mechanism of rapid release from bi-component DPPC-DSPC based TSL. Based on the investigation of a series of TSLs formulated by different DPPC-DSPC ratios, and through the analysis of binary-phase diagrams of DPPC-DSPC TSLs, we conclude that inhomogeneous crystal grains are formed in bi-component TSL membranes rather than mono-component, thereby facilitating content release. The resulting inhomogeneous membrane pattern is affected by DPPC/DSPC ratio, i.e. this determines the number of interfaces between solid and liquid phases at transition temperature, which can be diminished by addition of cholesterol. At appropriate DPPC/DSPC ratio, substantive solid/liquid interfaces can be generated not only between membrane domains but also between crystal grains in each domain of the liposome membranes, therefore improving content release from the TSL at transition temperatures.
Collapse
Affiliation(s)
- Tao Lu
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. Int J Pharm 2016; 515:132-164. [DOI: 10.1016/j.ijpharm.2016.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
|
42
|
Zimmermann K, Hossann M, Hirschberger J, Troedson K, Peller M, Schneider M, Brühschwein A, Meyer-Lindenberg A, Wess G, Wergin M, Dörfelt R, Knösel T, Schwaiger M, Baumgartner C, Brandl J, Schwamberger S, Lindner LH. A pilot trial of doxorubicin containing phosphatidyldiglycerol based thermosensitive liposomes in spontaneous feline soft tissue sarcoma. Int J Hyperthermia 2016; 33:178-190. [PMID: 27592502 DOI: 10.1080/02656736.2016.1230233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Doxorubicin (DOX)-loaded phosphatidyldiglycerol-based thermosensitive liposomes (DPPG2-TSL-DOX) combined with local hyperthermia (HT) was evaluated in cats with locally advanced spontaneous fibrosarcomas (soft tissue sarcoma [STS]). The study was designed to evaluate the safety and pharmacokinetic profile of the drug. Results from four dose-levels are reported. METHODS Eleven client-owned cats with advanced STS were enrolled. Five cats received escalating doses of 0.1-0.4 mg/kg DOX (group I), three received 0.4 mg/kg constantly (group II) and three 0.6 mg/kg (group III) IV over 15 min. HT with a target temperature of 41.5 °C was started 15 min before drug application and continued for a total of 60 min. Six HT treatments were applied every other week using a radiofrequency applicator. Tumour growth was monitored by magnetic resonance imaging (MRI) and for dose level III also with 18F-FDG PET. RESULTS Treatment was generally well tolerated and reasons for premature study termination in four cats were not associated with drug-induced toxicity. No DPPG2-TSL-DOX based hypersensitivity reaction was observed. One cat showed simultaneous partial response (PR) in MRI and positron emission tomography (PET) whereas one cat showed stable disease in MRI and PR in PET (both cats in dose level III). Pharmacokinetic measurements demonstrated DOX release triggered by HT. CONCLUSION DPPG2-TSL-DOX + HT is a promising treatment option for advanced feline STS by means of targeted drug delivery. As MTD was not reached further investigation is warranted to determine if higher doses would result in even better tumour responses.
Collapse
Affiliation(s)
- Katja Zimmermann
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Martin Hossann
- b Department of Internal Medicine III , University Hospital of Munich, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Johannes Hirschberger
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Karin Troedson
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Michael Peller
- c Institute for Clinical Radiology , University Hospital of Munich, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Moritz Schneider
- c Institute for Clinical Radiology , University Hospital of Munich, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Andreas Brühschwein
- d Clinic of Small Animal Surgery and Reproduction , Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Andrea Meyer-Lindenberg
- d Clinic of Small Animal Surgery and Reproduction , Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München , Munich , Germany
| | - Gerhard Wess
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Melanie Wergin
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - René Dörfelt
- a Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Thomas Knösel
- e Department of Pathology , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Markus Schwaiger
- f Department of Nuclear Medicine , Clinic Rechts der Isar, Technical University Munich , Munich , Germany
| | - Christine Baumgartner
- f Department of Nuclear Medicine , Clinic Rechts der Isar, Technical University Munich , Munich , Germany
| | - Johanna Brandl
- f Department of Nuclear Medicine , Clinic Rechts der Isar, Technical University Munich , Munich , Germany
| | - Sabine Schwamberger
- f Department of Nuclear Medicine , Clinic Rechts der Isar, Technical University Munich , Munich , Germany
| | - Lars H Lindner
- b Department of Internal Medicine III , University Hospital of Munich, Ludwig-Maximilians-Universität München , Munich , Germany
| |
Collapse
|
43
|
Peller M, Willerding L, Limmer S, Hossann M, Dietrich O, Ingrisch M, Sroka R, Lindner LH. Surrogate MRI markers for hyperthermia-induced release of doxorubicin from thermosensitive liposomes in tumors. J Control Release 2016; 237:138-46. [DOI: 10.1016/j.jconrel.2016.06.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/24/2016] [Accepted: 06/25/2016] [Indexed: 10/21/2022]
|
44
|
Eleftheriou K, Sideratou Z, Thanassoulas A, Papakyriakou A, Tsiourvas D. Comparative Experimental and Computational Study of Monoalkyl Chain Phosphatidylcholine-Containing Thermoresponsive Liposomes. J Phys Chem B 2016; 120:5417-28. [PMID: 27280363 DOI: 10.1021/acs.jpcb.6b02783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Liposomes containing lysophospholipids are intensively studied as drug delivery systems that are stable at normal body temperature but exhibit fast release of their drug load at slightly elevated temperatures. In this study, the stability and release properties of dipalmitoylglycerophosphocholine (DPPC)-based liposomes incorporating the commonly used lysophosphatidylocholine (lyso-PC), and a series of monoalkyl chain ether-linked phosphatidylcholine, i.e., the biologically relevant monoalkyl chain platelet activating factor (PAF) and its derivatives lyso-PAF and methyl-PAF, were investigated. To this end a series of PEGylated small unilamellar liposomes with DPPC:monoalkyl lipid compositions of 5% and 10% molar ratio were prepared and compared with regard to stability (37 °C) and release properties at elevated temperatures (38-43 °C). All systems were characterized with respect to size distribution, ζ-potential, and phase transition characteristics. The presence of ether-lipids endows liposomes with superior (∼10% increase) release properties at 5% incorporation compared to lyso-PC, while at 10% molar ratio the formulations do not differ significantly, the release being close to 90%. The findings are supported by atomistic molecular dynamics simulations that suggest a correlation between the enhanced permeability and increased penetration of water molecules within the bilayers with density fluctuations resulting from the increased area-per-lipid and the disorder of the lysolipids alkyl chains.
Collapse
Affiliation(s)
- Kleopatra Eleftheriou
- Institute of Nanoscience and Nanotechology, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechology, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| | - Angelos Thanassoulas
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| | - Athanasios Papakyriakou
- Institute of Nanoscience and Nanotechology, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechology, NCSR ''Demokritos" , 15310 Aghia Paraskevi, Attiki, Greece
| |
Collapse
|
45
|
Wardlow R, Bing C, VanOsdol J, Maples D, Ladouceur-Wodzak M, Harbeson M, Nofiele J, Staruch R, Ramachandran A, Malayer J, Chopra R, Ranjan A. Targeted antibiotic delivery using low temperature-sensitive liposomes and magnetic resonance-guided high-intensity focused ultrasound hyperthermia. Int J Hyperthermia 2016; 32:254-64. [PMID: 26892114 PMCID: PMC6029942 DOI: 10.3109/02656736.2015.1134818] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic non-healing wound infections require long duration antibiotic therapy, and are associated with significant morbidity and health-care costs. Novel approaches for efficient, readily-translatable targeted and localised antimicrobial delivery are needed. The objectives of this study were to 1) develop low temperature-sensitive liposomes (LTSLs) containing an antimicrobial agent (ciprofloxacin) for induced release at mild hyperthermia (∼42 °C), 2) characterise in vitro ciprofloxacin release, and efficacy against Staphylococcus aureus plankton and biofilms, and 3) determine the feasibility of localised ciprofloxacin delivery in combination with MR-HIFU hyperthermia in a rat model. LTSLs were loaded actively with ciprofloxacin and their efficacy was determined using a disc diffusion method, MBEC biofilm device, and scanning electron microscopy (SEM). Ciprofloxacin release from LTSLs was assessed in a physiological buffer by fluorescence spectroscopy, and in vivo in a rat model using MR-HIFU. Results indicated that < 5% ciprofloxacin was released from the LTSL at body temperature (37 °C), while >95% was released at 42 °C. Precise hyperthermia exposures in the thigh of rats using MR-HIFU during intravenous (i.v.) administration of the LTSLs resulted in a four fold greater local concentration of ciprofloxacin compared to controls (free ciprofloxacin + MR-HIFU or LTSL alone). The biodistribution of ciprofloxacin in unheated tissues was fairly similar between treatment groups. Triggered release at 42 °C from LTSL achieved significantly greater S. aureus killing and induced membrane deformation and changes in biofilm matrix compared to free ciprofloxacin or LTSL at 37 °C. This technique has potential as a method to deliver high concentration antimicrobials to chronic wounds.
Collapse
Affiliation(s)
- Rachel Wardlow
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Chenchen Bing
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joshua VanOsdol
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Danny Maples
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Michele Harbeson
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Joris Nofiele
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert Staruch
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Clinical Sites Research Program, Philips Research, Briarcliff Manor, NY
| | | | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
46
|
Li M, Li Z, Yang Y, Wang Z, Yang Z, Li B, Xie X, Song J, Zhang H, Li Y, Gao G, Yang J, Mei X, Gong W. Thermo-Sensitive Liposome co-Loaded of Vincristine and Doxorubicin Based on Their Similar Physicochemical Properties had Synergism on Tumor Treatment. Pharm Res 2016; 33:1881-98. [DOI: 10.1007/s11095-016-1924-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/07/2016] [Indexed: 12/28/2022]
|
47
|
Kim HR, You DG, Park SJ, Choi KS, Um W, Kim JH, Park JH, Kim YS. MRI Monitoring of Tumor-Selective Anticancer Drug Delivery with Stable Thermosensitive Liposomes Triggered by High-Intensity Focused Ultrasound. Mol Pharm 2016; 13:1528-39. [PMID: 26998616 DOI: 10.1021/acs.molpharmaceut.6b00013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Monitoring of drug release from a heat-activated liposome carrier provides an opportunity for real-time control of drug delivery and allows prediction of the therapeutic effect. We have developed short-chain elastin-like polypeptide-incorporating thermosensitive liposomes (STLs). Here, we report the development of STL encapsulating gadobenate dimeglumine (Gd-BOPTA), a MRI contrast agent, and doxorubicin (Dox) (Gd-Dox-STL). The Dox release profile from Gd-Dox-STL was comparable to Gd-Dox-LTSL; however, the serum stability of Gd-Dox-STL was much higher than Gd-Dox-LTSL. MRI studies showed that the difference in T1 relaxation time between 37 and 42 °C for Gd-Dox-STL was larger than the difference for Gd-Dox-LTSL. Although relaxivity for both liposomes at 42 °C was similar, the relaxivity of Gd-Dox-STL at 37 °C was 2.5-fold lower than that of Gd-Dox-LTSL. This was likely due to Gd-BOPTA leakage from the LTSL because of low stability at 37 °C. Pharmacokinetic studies showed plasma half-lives of 4.85 and 1.95 h for Gd-Dox-STL and Gd-Dox-LTSL, respectively, consistent with in vitro stability data. In vivo MRI experiments demonstrated corelease of Dox and Gd-BOPTA from STL under mild hyperthermia induced by high-intensity focused ultrasound (HIFU), which suggests STL is a promising tumor selective formulation when coupled with MR-guided HIFU.
Collapse
Affiliation(s)
- Hyun Ryoung Kim
- Bio Therapeutics Laboratory, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd. , #130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | | | - Sang-Jun Park
- Bio Therapeutics Laboratory, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd. , #130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | | | | | | | | | | |
Collapse
|
48
|
Al-Ahmady Z, Kostarelos K. Chemical Components for the Design of Temperature-Responsive Vesicles as Cancer Therapeutics. Chem Rev 2016; 116:3883-918. [DOI: 10.1021/acs.chemrev.5b00578] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
- Manchester
Pharmacy School, University of Manchester, Stopford Building, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
49
|
Willerding L, Limmer S, Hossann M, Zengerle A, Wachholz K, ten Hagen TL, Koning GA, Sroka R, Lindner LH, Peller M. Method of hyperthermia and tumor size influence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors. J Control Release 2016; 222:47-55. [DOI: 10.1016/j.jconrel.2015.12.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
|
50
|
Filippi M, Patrucco D, Martinelli J, Botta M, Castro-Hartmann P, Tei L, Terreno E. Novel stable dendrimersome formulation for safe bioimaging applications. NANOSCALE 2015; 7:12943-12954. [PMID: 26167654 DOI: 10.1039/c5nr02695d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dendrimersomes are nanosized vesicles constituted by amphiphilic Janus dendrimers (JDs), which have been recently proposed as innovative nanocarriers for biomedical applications. Recently, we have demonstrated that dendrimersomes self-assembled from (3,5)12G1-PE-BMPA-G2-(OH)8 dendrimers can be successfully loaded with hydrophilic and amphiphilic imaging contrast agents. Here, we present two newly synthesized low generation isomeric JDs: JDG0G1(3,5) and JDG0G1(3,4). Though less branched than the above-cited dendrimers, they retain the ability to form self-assembled, almost monodisperse vesicular nanoparticles. This contribution reports on the characterization of such nanovesicles loaded with the clinically approved MRI probe Gadoteridol and the comparison with the related nanoparticles assembled from more branched dendrimers. Special emphasis was given to the in vitro stability test of the systems in biologically relevant media, complemented by preliminary in vivo data about blood circulation lifetime collected from healthy mice. The results point to very promising safety and stability profiles of the nanovesicles, in particular for those made of JDG0G1(3,5), whose spontaneous self-organization in water gives rise to a homogeneous suspension. Importantly, the blood lifetimes of these systems are comparable to those of standard liposomes. By virtue of the reported results, the herein presented nanovesicles augur well for future use in a variety of biomedical applications.
Collapse
Affiliation(s)
- M Filippi
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Centro di Imaging Molecolare e Preclinico, Università degli Studi di Torino, Via Nizza 52, Torino, 10126, Italy.
| | | | | | | | | | | | | |
Collapse
|