1
|
Chowdhury M, John A, Hudson RHE. Breaking the blue barrier of nucleobase fluorescence emission with dicyanovinyl-based uracil molecular rotor probes. RSC Adv 2024; 14:37605-37609. [PMID: 39588240 PMCID: PMC11586925 DOI: 10.1039/d4ra07000c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Dicyanovinyl-modified uracil produces fluorescent molecular rotors (FMR) that display massively red-shifted emission and huge Stokes shifts. They are exemplified by DCVSU - an intrinsically fluorescent nucleobase analog (IFNA) with the longest emission wavelength of 592 nm (DMSO) reported thus far which also shows strong polarity sensitivity and large Stokes shift (λ = 181 nm). The IFNAs exhibited typical molecular rotor response to solvent viscosity with brightnesses (ε × φ) of up to 8700 cm-1 M-1. 1H NMR titration confirmed the expected association of the IFNA with the complementary nucleobase adenine-9-ethyl acetate.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| | - Akym John
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| | - Robert H E Hudson
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| |
Collapse
|
2
|
Riley L, Marshall O, Harkiss AH, Senn HM, Sutherland A. Synthesis of β-Pyridyl α-Amino Acids: Conformationally Sensitive Charge Transfer-Based Fluorophores. Org Lett 2024; 26:5391-5395. [PMID: 38865167 PMCID: PMC11217948 DOI: 10.1021/acs.orglett.4c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Unnatural α-amino acids with charge transfer-based poly aromatic side chains have been designed as conformationally sensitive fluorophores. These were prepared using a hetero-Diels-Alder reaction and a Knoevenagel-Stobbe process to generate a biaryl pyridyl unit, followed by iron-catalyzed bromination and a Suzuki-Miyaura cross-coupling reaction to complete the triaryl system. A photophysical study led to the discovery of a p-methoxy analogue which exhibited viscosity-sensitive fluorescence in which emission could be controlled between twisted and planar conformations.
Collapse
Affiliation(s)
- Leanne
M. Riley
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Olivia Marshall
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Alexander H. Harkiss
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Hans M. Senn
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
3
|
Mori T. Mechanical control of molecular machines at an air-water interface: manipulation of molecular pliers, paddles. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2334667. [PMID: 38628979 PMCID: PMC11020556 DOI: 10.1080/14686996.2024.2334667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Many artificial molecular machines have been synthesized, and various functions have been expressed by changing their molecular conformations. However, their structures are still simple compared with those of biomolecular machines, and more energy is required to control them. To design artificial molecular machines with more complex structures and higher functionality, it is necessary to combine molecular machines with simple movements such as components. This means that the motion of individual molecular machines must be precisely controlled and observed in various environments. At the air - water interface, the molecular orientation and conformation can be controlled with little energy as thermal fluctuations. We designed various molecular machines and controlled them using mechanical stimuli at the air - water interface. We also controlled the transfer of forces to the molecular machines in various lipid matrices. In this review, we describe molecular pliers with amphiphilic binaphthyl, molecular paddles with binuclear platinum complexes, and molecular rotors with julolidine and BODIPY that exhibit twisted intramolecular charge transfer.
Collapse
Affiliation(s)
- Taizo Mori
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
4
|
Paez‐Perez M, Kuimova MK. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew Chem Int Ed Engl 2024; 63:e202311233. [PMID: 37856157 PMCID: PMC10952837 DOI: 10.1002/anie.202311233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.
Collapse
Affiliation(s)
- Miguel Paez‐Perez
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
5
|
Daus K, Tharamak S, Pluempanupat W, Galie PA, Theodoraki MA, Theodorakis EA, Alpaugh ML. Fluorescent molecular rotors as versatile in situ sensors for protein quantitation. Sci Rep 2023; 13:20529. [PMID: 37993476 PMCID: PMC10665405 DOI: 10.1038/s41598-023-46571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Accurate protein quantitation is essential for many cellular mechanistic studies. Existing technology relies on extrinsic sample evaluation that requires significant volumes of sample as well as addition of assay-specific reagents and importantly, is a terminal analysis. This study exploits the unique chemical features of a fluorescent molecular rotor that fluctuates between twisted-to-untwisted states, with a subsequent intensity increase in fluorescence depending on environmental conditions (e.g., viscosity). Here we report the development of a rapid, sensitive in situ protein quantitation method using ARCAM-1, a representative fluorescent molecular rotor that can be employed in both non-terminal and terminal assays.
Collapse
Affiliation(s)
- Kevin Daus
- Department of Biological and Biomedical Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Sorachat Tharamak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Special Research Unit for Advanced Magnetic Resonance, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Wanchai Pluempanupat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Special Research Unit for Advanced Magnetic Resonance, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Maria A Theodoraki
- Department of Biology, Arcadia University, 450 S. Easton Rd, Glenside, PA, 19038, USA
| | - Emmanuel A Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.
| | - Mary L Alpaugh
- Department of Biological and Biomedical Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA.
| |
Collapse
|
6
|
Hu Q, Wang Z, Shen L, Zhao G. Label-Free and Noninvasive Single-Cell Characterization for the Viscoelastic Properties of Cryopreserved Human Red Blood Cells Using a Dielectrophoresis-On-a-Chip Approach. Anal Chem 2022; 94:10245-10255. [DOI: 10.1021/acs.analchem.2c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qianqian Hu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Zirui Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
7
|
Maleckaitė K, Dodonova-Vaitkūnienė J, Žilėnaitė R, Tumkevičius S, Vyšniauskas A. Red fluorescent BODIPY molecular rotor for high microviscosity environments. Methods Appl Fluoresc 2022; 10. [PMID: 35705104 DOI: 10.1088/2050-6120/ac7943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Microviscosity has a strong impact for diffusion-controlled processes in biological environments. BODIPY molecular rotors are viscosity-sensitive fluorophores that provide a simple and non-invasive way to visualise microviscosity. Although green fluorescent probes are already well developed for imaging, thick biological samples require longer wavelengths for investigation. This work focuses on the examination of novelβ-substitutedmeso-phenyl-BODIPYs possessing a red emission. We report a new red fluorescent BODIPY-based probe BP-Vinyl-NO2suitable for sensing microviscosity in rigid environments of over 100 000 cP viscosities. Furthermore, we demonstrate that changing the methyl position fromorthotometaon theβ-phenyl-substituted conjugate BP-PH-m2M-NO2redshifts absorbance and fluorescence spectra while maintaining viscosity sensitivity. Finally, we show that nitro-substitution ofmeso-phenyl is a versatile approach to improve the sensitivity to viscosity while suppressing sensitivity to polarity and temperature of such derivatives. In summary, we present two nitro-substituted red fluorescent probes that could be used as lifetime-based microviscosity sensors.
Collapse
Affiliation(s)
- Karolina Maleckaitė
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT-10257, Lithuania
| | - Jelena Dodonova-Vaitkūnienė
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT-03225, Lithuania
| | - Rugilė Žilėnaitė
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT-10257, Lithuania.,Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT-03225, Lithuania
| | - Sigitas Tumkevičius
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT-03225, Lithuania
| | - Aurimas Vyšniauskas
- Center of Physical Sciences and Technology, Saulėtekio av. 3, Vilnius, LT-10257, Lithuania.,Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, Vilnius, LT-03225, Lithuania
| |
Collapse
|
8
|
Jurgutis D, Jarockyte G, Poderys V, Dodonova-Vaitkuniene J, Tumkevicius S, Vysniauskas A, Rotomskis R, Karabanovas V. Exploring BODIPY-Based Sensor for Imaging of Intracellular Microviscosity in Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23105687. [PMID: 35628497 PMCID: PMC9143602 DOI: 10.3390/ijms23105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
BODIPY-based molecular rotors are highly attractive imaging tools for imaging intracellular microviscosity in living cells. In our study, we investigated the ability to detect the microviscosity of biological objects by using BDP-NO2 and BDP-H molecular rotors. We describe in detail the optical properties of BDP-NO2 and BDP-H molecular rotors in aqueous media with and without proteins, together with their accumulation dynamics and localization in live and fixed human breast cancer cells. Furthermore, we investigate the applicability of these molecules to monitor microviscosity in the organelles of human breast cancer cells by fluorescence lifetime imaging microscopy (FLIM). We demonstrate that the BDP-NO2 molecular rotor aggregates in aqueous media and is incompatible with live cell imaging. The opposite effect is observed with BDP-H which preserves its stability in aqueous media, diffuses through the plasma membrane and accumulates in lipid droplets (LDs) and the cytosol of both live and fixed MCF-7 and MDA-MB-231 cancer cells. Finally, by utilizing BDP-H we demonstrate that LD microviscosity is significantly elevated in more malignant MDA-MB-231 human breast cancer cells, as compared to MCF-7 breast cancer cells. Our findings demonstrate that BDP-H is a water-compatible probe that can be successfully applied to measure microviscosity in the LDs of living cells.
Collapse
Affiliation(s)
- Dziugas Jurgutis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, 10257 Vilnius, Lithuania;
| | - Greta Jarockyte
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
| | - Vilius Poderys
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
| | - Jelena Dodonova-Vaitkuniene
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, 03225 Vilnius, Lithuania; (J.D.-V.); (S.T.)
| | - Sigitas Tumkevicius
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, 03225 Vilnius, Lithuania; (J.D.-V.); (S.T.)
| | - Aurimas Vysniauskas
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, 10257 Vilnius, Lithuania;
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, 10223 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
9
|
Del Frate G, Macchiagodena M, Akhunzada MJ, D'Autilia F, Catte A, Bhattacharjee N, Barone V, Cardarelli F, Brancato G. Probing Liquid-Ordered and Disordered Phases in Lipid Model Membranes: A Combined Theoretical and Spectroscopic Study of a Fluorescent Molecular Rotor. J Phys Chem B 2022; 126:480-491. [PMID: 35001625 PMCID: PMC8785181 DOI: 10.1021/acs.jpcb.1c08324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An integrated theoretical/experimental
strategy has been applied
to the study of environmental effects on the spectroscopic parameters
of 4-(diphenylamino)phtalonitrile (DPAP), a fluorescent molecular
rotor. The computational part starts from the development of an effective
force field for the first excited electronic state of DPAP and proceeds
through molecular dynamics simulations in solvents of different polarities
toward the evaluation of Stokes shifts by quantum mechanics/molecular
mechanics (QM/MM) approaches. The trends of the computed results closely
parallel the available experimental results thus giving confidence
to the interpretation of new experimental studies of the photophysics
of DPAP in lipid bilayers. In this context, results show unambiguously
that both flexible dihedral angles and global rotations are significantly
retarded in a cholesterol/DPPC lipid matrix with respect to the DOPC
matrix, thus confirming the sensitivity of DPAP to probe different
environments and, therefore, its applicability as a probe for detecting
different structures and levels of plasma membrane organization.
Collapse
Affiliation(s)
| | | | | | - Francesca D'Autilia
- Center for Nanotechnology Innovation@NEST (CNI@NEST), Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Andrea Catte
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare(INFN), Largo Pontecorvo 3, I-56 127 Pisa, Italy.,Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50 019 Sesto Fiorentino, Florence, Italy
| | | | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare(INFN), Largo Pontecorvo 3, I-56 127 Pisa, Italy.,Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50 019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
10
|
Nagao M, Kelley EG, Faraone A, Saito M, Yoda Y, Kurokuzu M, Takata S, Seto M, Butler PD. Relationship between Viscosity and Acyl Tail Dynamics in Lipid Bilayers. PHYSICAL REVIEW LETTERS 2021; 127:078102. [PMID: 34459628 DOI: 10.1103/physrevlett.127.078102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Membrane viscosity is a fundamental property that controls molecular transport and structural rearrangements in lipid membranes. Given its importance in many cell processes, various experimental and computational methods have been developed to measure the membrane viscosity, yet the estimated values depend highly on the method and vary by orders of magnitude. Here we investigate the molecular origins of membrane viscosity by measuring the nanoscale dynamics of the lipid acyl tails using x-ray and neutron spectroscopy techniques. The results show that the membrane viscosity can be estimated from the structural relaxation times of the lipid tails.
Collapse
Affiliation(s)
- Michihiro Nagao
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Elizabeth G Kelley
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA
| | - Antonio Faraone
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA
| | - Makina Saito
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, 590-0494, Japan
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, 679-5198, Japan
| | - Masayuki Kurokuzu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, 590-0494, Japan
| | - Shinichi Takata
- J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, 590-0494, Japan
| | - Paul D Butler
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
11
|
Fam KT, Saladin L, Klymchenko AS, Collot M. Confronting molecular rotors and self-quenched dimers as fluorogenic BODIPY systems to probe biotin receptors in cancer cells. Chem Commun (Camb) 2021; 57:4807-4810. [PMID: 33982709 DOI: 10.1039/d1cc00108f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Probing receptors at the cell surface to monitor their expression level can be performed with fluorogenic dyes. Biotin receptors (BRs) are particularly interesting as they are overexpressed in cancer cells. Herein, to image BRs, we adapted and systematically compared two fluorogenic systems based on BODIPYs: a molecular rotor and a self-quenched dimer that light up in response to high viscosity and low polarity of the membrane, respectively. The fluorogenic dimer proved to be more efficient than the rotor and allowed BRs to be imaged in cancer cells, which can effectively be discriminated from non-cancer cells.
Collapse
Affiliation(s)
- Kyong T Fam
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, Illkirch-Graffenstaden 67401, France.
| | - Lazare Saladin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, Illkirch-Graffenstaden 67401, France.
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, Illkirch-Graffenstaden 67401, France.
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, Illkirch-Graffenstaden 67401, France.
| |
Collapse
|
12
|
Bhuyan NN, Pattnaik GP, Mishra A, Chakraborty H. Exploring membrane viscosity at the headgroup region utilizing a hemicyanine-based fluorescent probe. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Luminescence Spectroscopy – a Useful Tool in Real-Time Monitoring of Viscosity during In-Vitro Digestion. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-020-09660-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Páez-Pérez M, López-Duarte I, Vyšniauskas A, Brooks NJ, Kuimova MK. Imaging non-classical mechanical responses of lipid membranes using molecular rotors. Chem Sci 2020; 12:2604-2613. [PMID: 34164028 PMCID: PMC8179291 DOI: 10.1039/d0sc05874b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid packing in cellular membranes has a direct effect on membrane tension and microviscosity, and plays a central role in cellular adaptation, homeostasis and disease. According to conventional mechanical descriptions, viscosity and tension are directly interconnected, with increased tension leading to decreased membrane microviscosity. However, the intricate molecular interactions that combine to build the structure and function of a cell membrane suggest a more complex relationship between these parameters. In this work, a viscosity-sensitive fluorophore ('molecular rotor') is used to map changes in microviscosity in model membranes under conditions of osmotic stress. Our results suggest that the relationship between membrane tension and microviscosity is strongly influenced by the bilayer's lipid composition. In particular, we show that the effects of increasing tension are minimised for membranes that exhibit liquid disordered (Ld) - liquid ordered (Lo) phase coexistence; while, surprisingly, membranes in pure gel and Lo phases exhibit a negative compressibility behaviour, i.e. they soften upon compression.
Collapse
Affiliation(s)
- Miguel Páez-Pérez
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| | - Ismael López-Duarte
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
- Departamento de Química Orgánica, Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Aurimas Vyšniauskas
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
- Center of Physical Sciences and Technology Saulėtekio av. 3 Vilnius Lithuania
| | - Nicholas J Brooks
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| | - Marina K Kuimova
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| |
Collapse
|
15
|
Varejão JOS, Varejão EVV, Fernandes SA. Synthesis and Derivatization of Julolidine: A Powerful Heterocyclic Structure. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jodieh Oliveira Santana Varejão
- Grupo de Química Supramolecular e Biomimética (GQSB); Departamento de Química; Universidade Federal de Viçosa; 36570-900 Brazil
| | - Eduardo Vinícius Vieira Varejão
- Grupo de Química Supramolecular e Biomimética (GQSB); Departamento de Química; Universidade Federal de Viçosa; 36570-900 Brazil
| | - Sergio Antonio Fernandes
- Grupo de Química Supramolecular e Biomimética (GQSB); Departamento de Química; Universidade Federal de Viçosa; 36570-900 Brazil
| |
Collapse
|
16
|
Mori T, Chin H, Kawashima K, Ngo HT, Cho NJ, Nakanishi W, Hill JP, Ariga K. Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field. ACS NANO 2019; 13:2410-2419. [PMID: 30673207 DOI: 10.1021/acsnano.8b09320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The intramolecular rotation of 4-farnesyloxyphenyl-4,4-difluoro-4-bora-3a,4a-diaza- s-indacene (BODIPY-ISO) was controlled by tuning its local physical environment within a mixed self-assembled monolayer at an air-water interface. Intramolecular rotation was investigated by considering the twisted intramolecular charge transfer (TICT) fluorescence of BODIPY-ISO, which increases in intensity with increasing viscosity of the medium. In situ fluorescence spectroscopy was performed on mixed monolayers of BODIPY-ISO with several different lipids at the air-water interface during in-plane compression of the monolayers. Depending on the identity of the lipid used, the fluorescence of the mixed monolayers could be enhanced by mechanical compression, indicating that the rotation of BODIPY-ISO can be controlled dynamically in mixtures with lipids dispersed at the air-water interface. Taken together, our findings provide insight into strategies for controlling the dynamic behavior of molecular machines involving mechanical stimuli at interfaces.
Collapse
Affiliation(s)
- Taizo Mori
- Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5, Kashiwanoha , Kashiwa 277-0827 , Japan
- World Premier International (WPI) Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Hokyun Chin
- School of Materials Science and Engineering , Nanyang Technological University , Singapore , 637553 , Singapore
| | - Kazuhiro Kawashima
- Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN) , National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Huynh Thien Ngo
- World Premier International (WPI) Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , Singapore , 637553 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore , 637459 , Singapore
| | - Waka Nakanishi
- World Premier International (WPI) Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Jonathan P Hill
- World Premier International (WPI) Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5, Kashiwanoha , Kashiwa 277-0827 , Japan
- World Premier International (WPI) Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| |
Collapse
|
17
|
Abbandonato G, Storti B, Tonazzini I, Stöckl M, Subramaniam V, Montis C, Nifosì R, Cecchini M, Signore G, Bizzarri R. Lipid-Conjugated Rigidochromic Probe Discloses Membrane Alteration in Model Cells of Krabbe Disease. Biophys J 2018; 116:477-486. [PMID: 30709620 DOI: 10.1016/j.bpj.2018.11.3141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
The plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (Lo or lipid raft) and more disordered (Ld) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the Lo and Ld domains in living cells on account of its large fluorescence lifetime variation in the two phases. The domain composition is straightforwardly obtained by the phasor approach to confocal fluorescence lifetime imaging, a graphical method that does not require global fitting of the fluorescence decay in every spatial position of the sample. Our imaging strategy was applied to recover the domain composition in human oligodendrocytes at rest and under treatment with galactosylsphingosine (psychosine). Exogenous psychosine administration recapitulates many of the molecular fingerprints of a severe neurological disease, globoid cell leukodystrophy, better known as Krabbe disease. We found out that psychosine progressively destabilizes plasma membrane, as witnessed by a shrinking of the Lo fraction. The unchanged levels of galactosyl ceramidase, i.e., the enzyme lacking in Krabbe disease, upon psychosine treatment suggest that psychosine alters the plasma membrane structure by direct physical effect, as also recently demonstrated in model membranes.
Collapse
Affiliation(s)
- Gerardo Abbandonato
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Martin Stöckl
- Bioimaging Center, Department of Biology, Universität Konstanz, Konstanz, Germany
| | - Vinod Subramaniam
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Nanobiophysics, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Costanza Montis
- Department of Chemistry and CSGI, University of Florence, Florence, Italy
| | - Riccardo Nifosì
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Giovanni Signore
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy; Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy.
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy; Department of Chemistry and CSGI, University of Florence, Florence, Italy.
| |
Collapse
|
18
|
Goh WL, Lee MY, Lim TX, Chua JS, Brenner S, Ghadessy FJ, Teo YN. A novel molecular rotor facilitates detection of p53-DNA interactions using the Fluorescent Intercalator Displacement Assay. Sci Rep 2018; 8:12946. [PMID: 30154420 PMCID: PMC6113202 DOI: 10.1038/s41598-018-31197-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 01/04/2023] Open
Abstract
We have investigated the use of fluorescent molecular rotors as probes for detection of p53 binding to DNA. These are a class of fluorophores that undergo twisted intramolecular charge transfer (TICT). They are non-fluorescent in a freely rotating conformation and experience a fluorescence increase when restricted in the planar conformation. We hypothesized that intercalation of a molecular rotor between DNA base pairs would result in a fluorescence turn-on signal. Upon displacement by a DNA binding protein, measurable loss of signal would facilitate use of the molecular rotor in the fluorescent intercalator displacement (FID) assay. A panel of probes was interrogated using the well-established p53 model system across various DNA response elements. A novel, readily synthesizable molecular rotor incorporating an acridine orange DNA intercalating group (AO-R) outperformed other conventional dyes in the FID assay. It enabled relative measurement of p53 sequence-specific DNA interactions and study of the dominant-negative effects of cancer-associated p53 mutants. In a further application, AO-R also proved useful for staining apoptotic cells in live zebrafish embryos.
Collapse
Affiliation(s)
- Walter L Goh
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Min Yen Lee
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Ting Xiang Lim
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Joy S Chua
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Sydney Brenner
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Farid J Ghadessy
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.
| | - Yin Nah Teo
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
19
|
Lee SC, Heo J, Woo HC, Lee JA, Seo YH, Lee CL, Kim S, Kwon OP. Fluorescent Molecular Rotors for Viscosity Sensors. Chemistry 2018; 24:13706-13718. [DOI: 10.1002/chem.201801389] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Seung-Chul Lee
- Department of Molecular Science and Technology; Ajou University; Suwon 443-749 Republic of Korea
| | - Jeongyun Heo
- Center for Theragnosis; Korea Institute of Science and Technology (KIST); 39-1 Hawolgok-dong Seongbuk-gu Seoul 136-791 Korea
| | - Hee Chul Woo
- Advanced Photonics Research Institute (APRI); Gwangju Institute of Science and Technology (GIST); Gwangju 61005 Republic of Korea
| | - Ji-Ah Lee
- Department of Molecular Science and Technology; Ajou University; Suwon 443-749 Republic of Korea
| | - Young Hun Seo
- Center for Theragnosis; Korea Institute of Science and Technology (KIST); 39-1 Hawolgok-dong Seongbuk-gu Seoul 136-791 Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute (APRI); Gwangju Institute of Science and Technology (GIST); Gwangju 61005 Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis; Korea Institute of Science and Technology (KIST); 39-1 Hawolgok-dong Seongbuk-gu Seoul 136-791 Korea
- Division of Bio-Medical Science & Technology; KIST School; Korea University of Science and Technology (UST); Seoul 02792 Korea
- KU-KIST Graduate School of Converging Science and Technology; Korea University; 145 Anam-ro Seongbuk-gu Seoul 02841 Korea
| | - O-Pil Kwon
- Department of Molecular Science and Technology; Ajou University; Suwon 443-749 Republic of Korea
| |
Collapse
|
20
|
Mori T, Komatsu H, Sakamoto N, Suzuki K, Hill JP, Matsumoto M, Sakai H, Ariga K, Nakanishi W. Molecular rotors confined at an ordered 2D interface. Phys Chem Chem Phys 2018; 20:3073-3078. [PMID: 28759061 DOI: 10.1039/c7cp04256f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular rotation of molecules contained in a two-dimensional monolayer or a three-dimensional collapsed film at an air-water interface was investigated by in situ fluorescence spectroscopy of twisted intramolecular charge transfer (TICT) type 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ) derivatives. The TICT type molecules, CCVJ-C12 and CCVJ-Chol, that contain a linear alkyl dodecyl chain or a cholesteryl group, respectively, as their hydrophobic group, were designed and synthesized to manipulate them at the air-water interface. These lipophilized molecular rotors showed the general properties of TICT molecules in solutions that the fluorescence intensity increases with increasing viscosity of the solvent, which is induced by inhibition of internal molecular rotations. The molecular rotors CCVJ-C12 and CCVJ-Chol formed monolayers at the air-water interface and in situ fluorescence spectroscopy was performed during the in-plane compression of the monolayers. It was revealed that the monomer emissions were suppressed and only after the collapse of monolayers, excimer emission from both layers consisting of CCVJ-C12 or CCVJ-Chol was observed. Suppressed monomer emission from monolayers suggests that intramolecular rotation is not inhibited in dense ordered monolayers. Furthermore, fluorescence spectroscopy of Langmuir-Blodgett (LB) films indicated that molecular rotations are not inhibited in the monolayer transferred on the solid substrates.
Collapse
Affiliation(s)
- Taizo Mori
- World Premier International (WPI) Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mize HE, Blanchard GJ. Interface-mediation of lipid bilayer organization and dynamics. Phys Chem Chem Phys 2018; 18:16977-85. [PMID: 27295126 DOI: 10.1039/c6cp02915a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on the morphology and dynamics of planar supported lipid bilayer structures as a function of pH and ionic strength of the aqueous overlayer. Supported lipid bilayers composed of three components (phosphocholine, sphingomyelin and cholesterol) are known to exhibit phase segregation, with the characteristic domain sizes dependent on the amount and identity of each constituent, and the composition of the aqueous overlayer in contact with the bilayer. We report on fluorescence anisotropy decay imaging measurements of a rhodamine chromophore tethered to the headgroup of a phosphoethanolamine, where anisotropy decay images were acquired as a function of solution overlayer pH and ionic strength. The data reveal a two-component anisotropy decay under all conditions, with the faster time constant being largely independent of pH and ionic strength and the slower component depending on pH and ionic strength in different manners. For liposomes of the same composition, a single exponential anisotropy decay was seen. We interpret this difference in terms of bilayer curvature and support surface-bilayer interactions, and the pH and ionic strength dependencies in terms of ionic screening and protonation in the bilayer headgroup region.
Collapse
Affiliation(s)
- Hannah E Mize
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824-1322, USA.
| | - G J Blanchard
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824-1322, USA.
| |
Collapse
|
22
|
Awosanya EO, Nevzorov AA. Protein Rotational Dynamics in Aligned Lipid Membranes Probed by Anisotropic T 1ρ NMR Relaxation. Biophys J 2018; 114:392-399. [PMID: 29401436 DOI: 10.1016/j.bpj.2017.11.3740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
A membrane-bound form of Pf1 coat protein reconstituted in magnetically aligned DMPC/DHPC bicelles was used as a molecular probe to quantify for the viscosity of the lipid membrane interior by measuring the uniaxial rotational diffusion coefficient of the protein. Orientationally dependent 15N NMR relaxation times in the rotating frame, or T1ρ, were determined by fitting individually the decay of the resolved NMR peaks corresponding to the transmembrane helix of Pf1 coat protein as a function of the spin-lock time incorporated into the 2D SAMPI4 pulse sequence. The T1ρ relaxation mechanism was modeled by uniaxial rotational diffusion on a cone, which yields a linear correlation with respect to the bond factor sin4θB, where θB is the angle that the NH bond forms with respect to the axis of rotation. Importantly, the bond factors can be independently measured from the dipolar couplings in the separated local-field SAMPI4 spectra. From this dependence, the value of the diffusion coefficient D|| = 8.0 × 105 s-1 was inferred from linear regression of the experimental T1ρ data even without any spectroscopic assignment. Alternatively, a close value of D|| = 7.7 × 105 s-1 was obtained by fitting the T1ρ relaxation data for the assigned NMR peaks of the transmembrane domain of Pf1 to a wavelike pattern as a function of residue number. The method illustrates the use of single-helix transmembrane peptides as molecular probes to assess the dynamic parameters of biological membranes by NMR relaxation in oriented lipid bilayers.
Collapse
Affiliation(s)
- Emmanuel O Awosanya
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
23
|
Zaborova OV, Filippov SK, Chytil P, Kováčik L, Ulbrich K, Yaroslavov AA, Etrych T. A Novel Approach to Increase the Stability of Liposomal Containers via In Prep Coating by Poly[N-(2-Hydroxypropyl)Methacrylamide] with Covalently Attached Cholesterol Groups. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Olga V. Zaborova
- Department of Chemistry; Lomonosov Moscow State University; Leninskie Gory 1-3 119991 Moscow Russia
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Sergey K. Filippov
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Lubomir Kováčik
- Center for Cellular Imaging and NanoAnalytics (C-CINA) Biozentrum; University of Basel; Mattenstrasse 26 CH-4058 Basel Switzerland
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Alexander A. Yaroslavov
- Department of Chemistry; Lomonosov Moscow State University; Leninskie Gory 1-3 119991 Moscow Russia
| | - Tomaš Etrych
- Institute of Macromolecular Chemistry; Czech Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| |
Collapse
|
24
|
Jin YJ, Park H, Ohk YJ, Kwak G. Hydrodynamic fluorescence emission behavior of molecular rotor-based vinyl polymers used as viscosity sensors. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Alhassawi FM, Corradini MG, Rogers MA, Ludescher RD. Potential applications of luminescent molecular rotors in food science and engineering. Crit Rev Food Sci Nutr 2017; 58:1902-1916. [DOI: 10.1080/10408398.2017.1278583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Fatemah M. Alhassawi
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Maria G. Corradini
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Michael A. Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Richard D. Ludescher
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
26
|
Saha AK, Osmulski P, Dallo SF, Gaczynska M, Huang THM, Ramasubramanian AK. Cholesterol Regulates Monocyte Rolling through CD44 Distribution. Biophys J 2017; 112:1481-1488. [PMID: 28402890 DOI: 10.1016/j.bpj.2017.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 10/19/2022] Open
Abstract
Cholesterol is an important risk factor of atherosclerosis, due to its active uptake by monocytes/macrophages. Monocyte recruitment from flowing blood to atherosclerotic foci is the key first step in the development of atherosclerosis. Cholesterol content alters cell membrane stiffness, and lateral lipid and protein diffusion. We hypothesized that cholesterol content will modulate the recruitment of monocytes to inflamed endothelial surface by altering the dynamics of adhesion receptors. We depleted or enriched the cellular cholesterol levels using methyl-β-cyclodextran in freshly isolated human monocytes. We investigated the effect of these changes on the mechanics of monocyte rolling on E-selectin surfaces at 1 dyn/cm2 in microchannels. Using imaging flow cytometry and atomic force microscopy, we characterized the distribution of lipid rafts and the E-selectin counterreceptor CD44 on the monocyte surface. We observed that lower levels of cholesterol resulted in the uniform, CD44-mediated rolling of monocytes on the E-selectin-coated surfaces. We also observed that cells depleted of cholesterol had higher membrane fluidity, and more uniform distribution of CD44 counterreceptor, which resulted in smooth motion of the cells compared to cells enriched with cholesterol. This work demonstrates that cholesterol can modulate monocyte adhesion by regulating the receptor mobility, and our results provide insights into the biophysical regulation of inflammation for the better understanding of diseases like atherosclerosis and hypercholesterolemia.
Collapse
Affiliation(s)
- Amit K Saha
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Pawel Osmulski
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Shatha F Dallo
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Maria Gaczynska
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Tim H-M Huang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anand K Ramasubramanian
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas; Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, California.
| |
Collapse
|
27
|
Rianna C, Radmacher M. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:309-324. [DOI: 10.1007/s00249-016-1168-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
|
28
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Wahrnehmung der chemischen Prozesse in einzelnen Organellen mit niedermolekularen Fluoreszenzsonden. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510721] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| |
Collapse
|
29
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew Chem Int Ed Engl 2016; 55:13658-13699. [DOI: 10.1002/anie.201510721] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| |
Collapse
|
30
|
Karpenko IA, Niko Y, Yakubovskyi VP, Gerasov AO, Bonnet D, Kovtun YP, Klymchenko AS. Push-pull dioxaborine as fluorescent molecular rotor: far-red fluorogenic probe for ligand-receptor interactions. JOURNAL OF MATERIALS CHEMISTRY. C 2016; 4:3002-3009. [PMID: 28491320 PMCID: PMC5421572 DOI: 10.1039/c5tc03411f] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Fluorescent solvatochromic dyes and molecular rotors increase their popularity as fluorogenic probes for background-free detection of biomolecules in cellulo in no-wash conditions. Here, we introduce a push-pull boron-containing (dioxaborine) dye that presents unique spectroscopic behavior combining solvatochromism and molecular rotor properties. Indeed, in organic solvents, it shows strong red shifts in the absorption and fluorescence spectra upon increase in solvent polarity, typical for push-pull dyes. On the other hand, in polar solvents, where it probably undergoes Twisted Intramolecular Charge Transfer (TICT), the dye displays strong dependence of its quantum yield on solvent viscosity, in accordance to Förster-Hoffmann equation. In comparison to solvatochromic and molecular rotor dyes, dioxaborine derivative shows exceptional extinction coefficient (120,000 M-1 cm-1), high fluorescence quantum yields and red/far-red operating spectral range. It also displays much higher photostability in apolar media as compared to Nile Red, a fluorogenic dye of similar color. Its reactive carboxy derivative has been successfully grafted to carbetocin, a ligand of the oxytocin G protein-coupled receptor. This conjugate exhibits >1000-fold turn on between apolar 1,4-dioxane and water. It targets specifically the oxytocin receptor at the cell surface, which enables receptor imaging with excellent signal-to-background ratio (>130). We believe that presented push-pull dioxaborine dye opens a new page in the development of fluorogenic probes for bioimaging applications.
Collapse
Affiliation(s)
- Iuliia A. Karpenko
- Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Yosuke Niko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Viktor P. Yakubovskyi
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02094 Kyiv, Ukraine
| | - Andriy O. Gerasov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02094 Kyiv, Ukraine
| | - Dominique Bonnet
- Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Yuriy P. Kovtun
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02094 Kyiv, Ukraine
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
31
|
Haidekker MA, Theodorakis EA. Ratiometric mechanosensitive fluorescent dyes: Design and applications. JOURNAL OF MATERIALS CHEMISTRY. C 2016; 4:2707-2718. [PMID: 27127631 PMCID: PMC4844075 DOI: 10.1039/c5tc03504j] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fluorescent molecules, with their almost instantaneous response to external influences and relatively low-cost measurement instrumentation, have been attractive analytical tools and biosensors for centuries. More recently, advanced chemical synthesis and targeted design have accelerated the development of fluorescent probes. This article focuses on dyes with segmental mobility (known as fluorescent molecular rotors) that act as mechanosensors, which are known for their relationship of emission quantum yield with microviscosity. Fluorescence lifetime is directly related to quantum yield, but steady-state emission intensity is not. To remove confounding factors with steady-state instrumentation, dual-band emission dyes can be used, and molecular rotors have been developed that either have intrinsic dual emission or that have a non-sensitive reference unit to provide a calibration emission band. We report on theory, chemical structure, applications and targeted design of several classes of dual-emission molecular rotors.
Collapse
Affiliation(s)
- Mark A. Haidekker
- College of Engineering, University of Georgia, 597 D. W. Brooks Drive, Athens, GA 30602, USA
| | - Emmanuel A. Theodorakis
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive MC: 0358, La Jolla, CA 92093-0358, USA. Fax: 1-858-822-0386; Tel: 1-858-822-0456
| |
Collapse
|
32
|
Abu-Arish A, Pandzic E, Goepp J, Matthes E, Hanrahan JW, Wiseman PW. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells. Biophys J 2016; 109:85-94. [PMID: 26153705 DOI: 10.1016/j.bpj.2015.04.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/23/2015] [Indexed: 01/01/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function.
Collapse
Affiliation(s)
| | - Elvis Pandzic
- Physics, McGill University, Montreal, Quebec, Canada
| | - Julie Goepp
- Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | - Paul W Wiseman
- Chemistry & Physics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
33
|
Xu Q, Zhao T, Sun Z. Monitoring drug–lipid membrane interactions via a molecular rotor probe. Analyst 2016; 141:4676-84. [DOI: 10.1039/c6an00721j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A label-free sensing method based on membrane viscosity changes to study the interactions between small drug molecules and lipid bilayers.
Collapse
Affiliation(s)
- Qinqin Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Tao Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Zhihua Sun
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|
34
|
Yang X, Sheng W, Ridgley DM, Haidekker MA, Sun GY, Lee JC. Astrocytes regulate α-secretase-cleaved soluble amyloid precursor protein secretion in neuronal cells: Involvement of group IIA secretory phospholipase A2. Neuroscience 2015; 300:508-17. [PMID: 26037803 DOI: 10.1016/j.neuroscience.2015.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/19/2022]
Abstract
Astrocytes are major supportive cells in brains with important functions including providing nutrients and regulating neuronal activities. In this study, we demonstrated that astrocytes regulate amyloid precursor protein (APP) processing in neuronal cells through secretion of group IIA secretory phospholipase A2 (sPLA2-IIA). When astrocytic cells (DITNC) were mildly stimulated with the pro-inflammatory cytokines, such as TNF α and IL-1β, sPLA2-IIA was secreted into the medium. When conditioned medium containing sPLA2-IIA was applied to human neuroblastoma (SH-SY5Y) cells, there was an increase in both cell membrane fluidity and secretion of α-secretase-cleaved soluble amyloid precursor protein (sAPPα). These changes were abrogated by KH064, a selective inhibitor of sPLA2-IIA. In addition, exposing SH-SY5Y cells to recombinant human sPLA2-IIA also increased membrane fluidity, accumulation of APP at the cell surface, and secretion of sAPPα, but without altering total expressions of APP, α-secretases and β-site APP cleaving enzyme (BACE1). Taken together, our results provide novel information regarding a functional role of sPLA2-IIA in astrocytes for regulating APP processing in neuronal cells.
Collapse
Affiliation(s)
- X Yang
- Hope Center for Neurological Disorders and Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - W Sheng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - D M Ridgley
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States
| | - M A Haidekker
- College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602, United States
| | - G Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - J C Lee
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
35
|
|
36
|
Abd El-Aal HAK, Khalaf AA, El-Khawaga AMA. Modern Friedel-Crafts Chemistry. Part 37. Efficient Syntheses of Some New Julolidines via Cyclialkylations of Heteroaryl Carbinols. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Ali A Khalaf
- Chemistry Department, Faculty of Science; Assiut University; Assiut 71516 Egypt
| | | |
Collapse
|
37
|
Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors. Proc Natl Acad Sci U S A 2013; 110:9225-30. [PMID: 23690599 DOI: 10.1073/pnas.1301479110] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a "molecular rotor" embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component.
Collapse
|
38
|
Wu Z, Cui J, Qian X. Rational design of fluorescent viscosity sensors by the principle of photoinduced electron transfer. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Howell S, Dakanali M, Theodorakis EA, Haidekker MA. Intrinsic and extrinsic temperature-dependency of viscosity-sensitive fluorescent molecular rotors. J Fluoresc 2011; 22:457-65. [PMID: 21947609 DOI: 10.1007/s10895-011-0979-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022]
Abstract
Molecular rotors are a group of environment-sensitive fluorescent probes whose quantum yield depends on the ability to form twisted intramolecular charge-transfer (TICT) states. TICT formation is dominantly governed by the solvent's microviscosity, but polarity and the ability of the solvent to form hydrogen bonds play an additional role. The relationship between quantum yield ϕ(F) and viscosity η is widely accepted as a power-law, ϕ(F) = C · η(x). In this study, we isolated the direct influence of the temperature on the TICT formation rate by examining several molecular rotors in protic and aprotic solvents over a range of temperatures. Each solvent's viscosity was determined as a function of temperature and used in the above power-law to determine how the proportionality constant C varies with temperature. We found that the power-law relationship fully explains the variations of the measured steady-state intensity by temperature-induced variations of the solvent viscosity, and C can be assumed to be temperature-independent. The exponent x, however, was found to be significantly higher in aprotic solvents than in protic solvents. We conclude that the ability of the solvent to form hydrogen bonds has a major influence on the relationship between viscosity and quantum yield. To use molecular rotors for the quantitative determination of viscosity or microviscosity, the exponent x needs to be determined for each dye-solvent combination.
Collapse
Affiliation(s)
- Sarah Howell
- Faculty of Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
40
|
Yoon HJ, Dakanali M, Lichlyter D, Chang WM, Nguyen KA, Nipper ME, Haidekker MA, Theodorakis EA. Synthesis and evaluation of self-calibrating ratiometric viscosity sensors. Org Biomol Chem 2011; 9:3530-40. [PMID: 21437318 PMCID: PMC3157677 DOI: 10.1039/c0ob01042a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the design, synthesis and fluorescent profile of a family of self-calibrating dyes that provide ratiometric measurements of fluid viscosity. The design is based on covalently linking a primary fluorophore (reference) that displays a viscosity-independent fluorescence emission with a secondary fluorophore (sensor) that exhibits a viscosity-sensitive fluorescence emission. Characterization of fluorescent properties was made with separate excitation of the units and through Resonance Energy Transfer from the reference to the sensor dye. The chemical structures of both fluorophores and the linker length have been evaluated in order to optimize the overall brightness and sensitivity of the viscosity measurements. We also present an application of such ratiometric dyes for the detection of membrane viscosity changes in a liposome model.
Collapse
Affiliation(s)
- Hyung-Jo Yoon
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive MC: 0358, La Jolla, CA 92093-0358, USA. Fax: 1-858-822-0386; Tel: 1-858-822-0456
| | - Marianna Dakanali
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive MC: 0358, La Jolla, CA 92093-0358, USA. Fax: 1-858-822-0386; Tel: 1-858-822-0456
| | - Darcy Lichlyter
- Faculty of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Willy M. Chang
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive MC: 0358, La Jolla, CA 92093-0358, USA. Fax: 1-858-822-0386; Tel: 1-858-822-0456
| | - Karen A. Nguyen
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive MC: 0358, La Jolla, CA 92093-0358, USA. Fax: 1-858-822-0386; Tel: 1-858-822-0456
| | - Matthew E. Nipper
- Faculty of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Mark A. Haidekker
- Faculty of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel A. Theodorakis
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive MC: 0358, La Jolla, CA 92093-0358, USA. Fax: 1-858-822-0386; Tel: 1-858-822-0456
| |
Collapse
|
41
|
Nipper ME, Dakanali M, Theodorakis E, Haidekker MA. Detection of liposome membrane viscosity perturbations with ratiometric molecular rotors. Biochimie 2011; 93:988-94. [PMID: 21354253 DOI: 10.1016/j.biochi.2011.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 02/14/2011] [Indexed: 11/25/2022]
Abstract
Molecular rotors are a form of fluorescent intramolecular charge-transfer complexes that can undergo intramolecular twisting motion upon photoexcitation. Twisted-state formation leads to non-radiative relaxation that competes with fluorescence emission. In bulk solutions, these molecules exhibit a viscosity-dependent quantum yield. On the molecular scale, the fluorescence emission is a function of the local free volume, which in turn is related to the local micro-viscosity. Membrane viscosity, and the inverse; fluidity, are characteristic terms used to describe the ease of movement withing the membrane. Often, changes in membrane viscosity govern intracellular processes and are indicative of a disease state. Molecular rotors have been used to investigate viscosity changes in liposomes and cells, but accuracy is affected by local concentration gradients and sample optical properties. We have developed self-calibrating ratiometric molecular rotors to overcome this challenge and integrated the new molecules into a DLPC liposome model exposed to the membrane-fluidizing agent propanol. We show that the ratiometric emission intensity linearly decreases with the propanol exposure and that the ratiometric intensity is widely independent of the total liposome concentration. Conversely, dye concentration inside liposomes influences the sensitivity of the system. We suggest that the new self-calibrating dyes can be used for real-time viscosity sensing in liposome systems with the advantages of lifetime measurements, but with low-cost steady-state instrumentation.
Collapse
Affiliation(s)
- Matthew E Nipper
- University of Georgia, Faculty of Engineering, Athens, GA 30602-4435, USA
| | | | | | | |
Collapse
|
42
|
Levitt JA, Chung PH, Kuimova MK, Yahioglu G, Wang Y, Qu J, Suhling K. Fluorescence anisotropy of molecular rotors. Chemphyschem 2011; 12:662-72. [PMID: 21328515 DOI: 10.1002/cphc.201000782] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/10/2011] [Indexed: 12/12/2022]
Abstract
We present polarization-resolved fluorescence measurements of fluorescent molecular rotors 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), 9-(2,2-dicyanovinyl)julolidine (DCVJ), and a meso-substituted boron dipyrromethene (BODIPY-C(12)). The photophysical properties of these molecules are highly dependent on the viscosity of the surrounding solvent. The relationship between their quantum yields and the viscosity of the surrounding medium is given by an equation first described and presented by Förster and Hoffmann and can be used to determine the microviscosity of the environment around a fluorophore. Herein we evaluate the applicability of molecular rotors as probes of apparent viscosity on a microscopic scale based on their viscosity dependent fluorescence depolarization. We develop a theoretical framework, combining the Förster-Hoffmann equation with the Perrin equation and compare the dynamic ranges and usable working regimes for these dyes in terms of utilising fluorescence anisotropy as a measure of viscosity. We present polarization-resolved fluorescence spectra and steady-state fluorescence anisotropy imaging data for measurements of intracellular viscosity. We find that the dynamic range for fluorescence anisotropy for CCVJ and DCVJ is significantly lower than that of BODIPY-C(12) in the viscosity range 0.6<η<600 cP. Moreover, using steady-state anisotropy measurements to probe microviscosity in the low (<3 cP) viscosity regime, the molecular rotors can offer a better dynamic range in anisotropy compared with a rigid dye as a probe of microviscosity, and a higher total working dynamic range in terms of viscosity.
Collapse
Affiliation(s)
- James A Levitt
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Lee WE, Lee CL, Sakaguchi T, Fujiki M, Kwak G. Fluorescent Viscosity Sensor Film of Molecular-Scale Porous Polymer with Intramolecular π-Stack Structure. Macromolecules 2011. [DOI: 10.1021/ma102798j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wang-Eun Lee
- Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Korea
| | - Toshikazu Sakaguchi
- Department of Materials Science and Engineering, Graduate School of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Michiya Fujiki
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Giseop Kwak
- Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| |
Collapse
|
44
|
Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing. Neurochem Int 2010; 58:321-9. [PMID: 21184792 DOI: 10.1016/j.neuint.2010.12.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 10/17/2010] [Accepted: 12/07/2010] [Indexed: 12/19/2022]
Abstract
Fatty acids may integrate into cell membranes to change physical properties of cell membranes, and subsequently alter cell functions in an unsaturation number-dependent manner. To address the roles of fatty acid unsaturation numbers in cellular pathways of Alzheimer's disease (AD), we systematically investigated the effects of fatty acids on cell membrane fluidity and α-secretase-cleaved soluble amyloid precursor protein (sAPP(α)) secretion in relation to unsaturation numbers using stearic acid (SA, 18:0), oleic acid (OA, 18:1), linoleic acid (LA, 18:2), α-linolenic acid (ALA, 18:3), arachidonic acid (AA, 20:4), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6). Treatments of differentiated human neuroblastoma (SH-SY5Y cells) with AA, EPA and DHA for 24h increased sAPP(α) secretion and membrane fluidity, whereas those treatments with SA, OA, LA and ALA did not. Treatments with AA and DHA did not alter the total expressions of amyloid precursor protein (APP) and α-secretases in SH-SY5Y cells. These results suggested that not all unsaturated fatty acids but only those with 4 or more double bonds, such as AA, EPA and DHA, are able to increase membrane fluidity and lead to increase in sAPP(α) secretion. This study provides insights into dietary strategies for the prevention of AD.
Collapse
|
45
|
Haidekker MA, Theodorakis EA. Environment-sensitive behavior of fluorescent molecular rotors. J Biol Eng 2010; 4:11. [PMID: 20843326 PMCID: PMC2949793 DOI: 10.1186/1754-1611-4-11] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/15/2010] [Indexed: 11/10/2022] Open
Abstract
Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer (TICT) states upon photoexcitation. When intramolecular twisting occurs, the molecular rotor returns to the ground state either by emission of a red-shifted emission band or by nonradiative relaxation. The emission properties are strongly solvent-dependent, and the solvent viscosity is the primary determinant of the fluorescent quantum yield from the planar (non-twisted) conformation. This viscosity-sensitive behavior gives rise to applications in, for example, fluid mechanics, polymer chemistry, cell physiology, and the food sciences. However, the relationship between bulk viscosity and the molecular-scale interaction of a molecular rotor with its environment are not fully understood. This review presents the pertinent theories of the rotor-solvent interaction on the molecular level and how this interaction leads to the viscosity-sensitive behavior. Furthermore, current applications of molecular rotors as microviscosity sensors are reviewed, and engineering aspects are presented on how measurement accuracy and precision can be improved.
Collapse
Affiliation(s)
- Mark A Haidekker
- Faculty of Engineering, 597 D,W, Brooks Drive, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
46
|
Majd S, Yusko EC, Billeh YN, Macrae MX, Yang J, Mayer M. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 2010; 21:439-76. [PMID: 20561776 PMCID: PMC3121537 DOI: 10.1016/j.copbio.2010.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 12/29/2022]
Abstract
Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated - often regulated - functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics.
Collapse
Affiliation(s)
- Sheereen Majd
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Jin H, Liang M, Arzhantsev S, Li X, Maroncelli M. Photophysical Characterization of Benzylidene Malononitriles as Probes of Solvent Friction. J Phys Chem B 2010; 114:7565-78. [DOI: 10.1021/jp100908a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hui Jin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Min Liang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sergei Arzhantsev
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Xiang Li
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Mark Maroncelli
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
48
|
Sutharsan J, Lichlyter D, Wright NE, Dakanali M, Haidekker MA, Theodorakis EA. Molecular rotors: Synthesis and evaluation as viscosity sensors. Tetrahedron 2010; 66:2582-2588. [PMID: 20694175 PMCID: PMC2915462 DOI: 10.1016/j.tet.2010.01.093] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It has been shown that compounds containing the p-N,N,-dialkylaminobenzylidene cyanoacetate motif can serve as fluorescent non-mechanical viscosity sensors. These compounds, referred to as molecular rotors, belong to a class of fluorescent probes that are known to form twisted intramolecular charge-transfer complexes in the excited state. In this study we present the synthesis and spectroscopic characterization of these compounds as viscosity sensors. The effects of the molecular structure and electronic density of these rotors to the emission wavelength, fluorescence intensity and viscosity sensitivity are discussed.
Collapse
Affiliation(s)
- Jeyanthy Sutharsan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Darcy Lichlyter
- Faculty of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Nathan E. Wright
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Marianna Dakanali
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Mark A. Haidekker
- Faculty of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| |
Collapse
|
49
|
Sutharsan J, Dakanali M, Capule CC, Haidekker MA, Yang J, Theodorakis EA. Rational design of amyloid binding agents based on the molecular rotor motif. ChemMedChem 2010; 5:56-60. [PMID: 20024978 PMCID: PMC2837554 DOI: 10.1002/cmdc.200900440] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Indexed: 11/07/2022]
Abstract
Alzheimer’s disease (AD) is characterized by a progressive loss of cognitive function and constitutes the most common and fatal neurodegenerative disorder.[1 ] Genetic and clinical evidence supports the hypothesis that accumulation of amyloid deposits in the brain plays an important role in the pathology of the disease. This event is associated with perturbations of biological functions in the surrounding tissue leading to neuronal cell death, thus contributing to the disease process. The deposits are comprised primarily of amyloid (Aβ) peptides, a 39–43 amino acid sequence that self aggregates into a fibrillar β-pleated sheet motif. While the exact three-dimensional structure of the aggregated Aβ peptides is not known, a model structure that sustains the property of aggregation has been proposed.[2 ] This creates opportunities for in vivo imaging of amyloid deposits that can not only help evaluate the time course and evolution of the disease, but can also allow the timely monitoring of therapeutic treatments.[3 ]
Collapse
Affiliation(s)
- Jeyanthy Sutharsan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+1) 858-822-0386 (ET), Fax: (+1) 858-534-4554 (JY)
| | - Marianna Dakanali
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+1) 858-822-0386 (ET), Fax: (+1) 858-534-4554 (JY)
| | - Christina C. Capule
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+1) 858-822-0386 (ET), Fax: (+1) 858-534-4554 (JY)
| | - Mark A. Haidekker
- Faculty of Engineering, University of Georgia, Athens, GA 30602 (USA)
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+1) 858-822-0386 (ET), Fax: (+1) 858-534-4554 (JY)
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+1) 858-822-0386 (ET), Fax: (+1) 858-534-4554 (JY)
| |
Collapse
|
50
|
|