1
|
Müh F, Bothe A, Zouni A. Towards understanding the crystallization of photosystem II: influence of poly(ethylene glycol) of various molecular sizes on the micelle formation of alkyl maltosides. PHOTOSYNTHESIS RESEARCH 2024; 162:273-289. [PMID: 38488943 PMCID: PMC11615006 DOI: 10.1007/s11120-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
The influence of poly(ethylene glycol) (PEG) polymers H-(O-CH2-CH2)p-OH with different average molecular sizes p on the micelle formation of n-alkyl-β-D-maltoside detergents with the number of carbon atoms in the alkyl chain ranging from 10 to 12 is investigated with the aim to learn more about the detergent behavior under conditions suitable for the crystallization of the photosynthetic pigment-protein complex photosystem II. PEG is shown to increase the critical micelle concentration (CMC) of all three detergents in the crystallization buffer in a way that the free energy of micelle formation increases linearly with the concentration of oxyethylene units (O-CH2-CH2) irrespective of the actual molecular weight of the polymer. The CMC shift is modeled by assuming for simplicity that it is dominated by the interaction between PEG and detergent monomers and is interpreted in terms of an increase of the transfer free energy of a methylene group of the alkyl chain by 0.2 kJ mol-1 per 1 mol L-1 increase of the concentration of oxyethylene units at 298 K. Implications of this effect for the solubilization and crystallization of protein-detergent complexes as well as detergent extraction from crystals are discussed.
Collapse
Affiliation(s)
- Frank Müh
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Adrian Bothe
- Institut für Molekularbiologie und Biophysik, ETH Zürich, HPK, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Athina Zouni
- Institut für Biologie, Humboldt Universität zu Berlin, Leonor-Michaelis-Haus, Philippstrasse 13, 10095, Berlin, Germany
| |
Collapse
|
2
|
Golub M, Pieper J. Recent Progress in Solution Structure Studies of Photosynthetic Proteins Using Small-Angle Scattering Methods. Molecules 2023; 28:7414. [PMID: 37959833 PMCID: PMC10650700 DOI: 10.3390/molecules28217414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Utilized for gaining structural insights, small-angle neutron and X-ray scattering techniques (SANS and SAXS, respectively) enable an examination of biomolecules, including photosynthetic pigment-protein complexes, in solution at physiological temperatures. These methods can be seen as instrumental bridges between the high-resolution structural information achieved by crystallography or cryo-electron microscopy and functional explorations conducted in a solution state. The review starts with a comprehensive overview about the fundamental principles and applications of SANS and SAXS, with a particular focus on the recent advancements permitting to enhance the efficiency of these techniques in photosynthesis research. Among the recent developments discussed are: (i) the advent of novel modeling tools whereby a direct connection between SANS and SAXS data and high-resolution structures is created; (ii) the employment of selective deuteration, which is utilized to enhance spatial selectivity and contrast matching; (iii) the potential symbioses with molecular dynamics simulations; and (iv) the amalgamations with functional studies that are conducted to unearth structure-function relationships. Finally, reference is made to time-resolved SANS/SAXS experiments, which enable the monitoring of large-scale structural transformations of proteins in a real-time framework.
Collapse
Affiliation(s)
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald Str. 1, 50411 Tartu, Estonia;
| |
Collapse
|
3
|
Bothe A, Zouni A, Müh F. Refined definition of the critical micelle concentration and application to alkyl maltosides used in membrane protein research. RSC Adv 2023; 13:9387-9401. [PMID: 36968053 PMCID: PMC10031436 DOI: 10.1039/d2ra07440k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
The critical micelle concentration (CMC) of nonionic detergents is defined as the breaking point in the monomer concentration as a function of the total detergent concentration, identified by setting the third derivate of this function to zero. Combined with a mass action model for micelle formation, this definition yields analytic formulae for the concentration ratio of monomers to total detergent at the CMC and the relationship between the CMC and the free energy of micellization g mic. The theoretical breaking point is shown to coincide with the breaking point of the experimental titration curve, if the fluorescence enhancement of 8-anilino-1-naphthalene-sulfonic acid (ANS) or a similar probe dye is used to monitor micelle formation. Application to a series of n-alkyl-β-d-maltosides with the number of carbon atoms in the alkyl chain ranging from 8 to 12 demonstrates the good performance of a molecular thermodynamic model, in which the free energy of micellization is given by g mic = σΦ + g pack + g st. In this model, σ is a fit parameter with the dimension of surface tension, Φ represents the change in area of hydrophobic molecular surfaces in contact with the aqueous phase, and g pack and g st are contributions, respectively, from alkyl chain packing in the micelle interior and steric repulsion of detergent head groups. The analysis of experimental data from different sources shows that varying experimental conditions such as co-solutes in the aqueous phase can be accounted for by adapting only σ, if the co-solutes do not bind to the detergent to an appreciable extent. The model is considered a good compromise between theory and practicability to be applied in the context of in vitro investigations of membrane proteins.
Collapse
Affiliation(s)
- Adrian Bothe
- Institut für Biologie, Humboldt Universität zu Berlin Leonor-Michaelis-Haus, Philippstrasse 13 D-10095 Berlin Germany
| | - Athina Zouni
- Institut für Biologie, Humboldt Universität zu Berlin Leonor-Michaelis-Haus, Philippstrasse 13 D-10095 Berlin Germany
| | - Frank Müh
- Institut für Theoretische Physik, Johannes Kepler Universität Linz Altenberger Strasse 69 A-4040 Linz Austria
| |
Collapse
|
4
|
Insights into Solution Structures of Photosynthetic Protein Complexes from Small-Angle Scattering Methods. CRYSTALS 2021. [DOI: 10.3390/cryst11020203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
High-resolution structures of photosynthetic pigment–protein complexes are often determined using crystallography or cryo-electron microscopy (cryo-EM), which are restricted to the use of protein crystals or to low temperatures, respectively. However, functional studies and biotechnological applications of photosystems necessitate the use of proteins isolated in aqueous solution, so that the relevance of high-resolution structures has to be independently verified. In this regard, small-angle neutron and X-ray scattering (SANS and SAXS, respectively) can serve as the missing link because of their capability to provide structural information for proteins in aqueous solution at physiological temperatures. In the present review, we discuss the principles and prototypical applications of SANS and SAXS using the photosynthetic pigment–protein complexes phycocyanin (PC) and Photosystem I (PSI) as model systems for a water-soluble and for a membrane protein, respectively. For example, the solution structure of PSI was studied using SAXS and SANS with contrast matching. A Guinier analysis reveals that PSI in solution is virtually free of aggregation and characterized by a radius of gyration of about 75 Å. The latter value is about 10% larger than expected from the crystal structure. This is corroborated by an ab initio structure reconstitution, which also shows a slight expansion of Photosystem I in buffer solution at room temperature. In part, this may be due to conformational states accessible by thermally activated protein dynamics in solution at physiological temperatures. The size of the detergent belt is derived by comparison with SANS measurements without detergent match, revealing a monolayer of detergent molecules under proper solubilization conditions.
Collapse
|
5
|
Golub M, Hussein R, Ibrahim M, Hecht M, Wieland DCF, Martel A, Machado B, Zouni A, Pieper J. Solution Structure of the Detergent-Photosystem II Core Complex Investigated by Small-Angle Scattering Techniques. J Phys Chem B 2020; 124:8583-8592. [PMID: 32816484 DOI: 10.1021/acs.jpcb.0c07169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Albeit achieving the X-ray diffraction structure of dimeric photosystem II core complexes (dPSIIcc) at the atomic resolution, the nature of the detergent belt surrounding dPSIIcc remains ambiguous. Therefore, the solution structure of the whole detergent-protein complex of dPSIIcc of Thermosynechococcus elongatus (T. elongatus) solubilized in n-dodecyl-ß-d-maltoside (ßDM) was investigated by a combination of small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) with contrast variation. First, the structure of dPSIIcc was studied separately in SANS experiments using a contrast of 5% D2O. Guinier analysis reveals that the dPSIIcc solution is virtually free of aggregation in the studied concentration range of 2-10 mg/mL dPSIIcc, and characterized by a radius of gyration of 62 Å. A structure reconstitution shows that dPSIIcc in buffer solution widely retains the crystal structure reported by X-ray free electron laser studies at room temperature with a slight expansion of the entire protein. Additional SANS experiments on dPSIIcc samples in a buffer solution containing 75% D2O provide information about the size and shape of the whole detergent-dPSIIcc. The maximum position of P(r) function increases to 68 Å, i.e., it is about 6 Å larger than that of dPSIIcc only, thus indicating the presence of an additional structure. Thus, it can be concluded that dPSIIcc is surrounded by a monomolecular belt of detergent molecules under appropriate solubilization conditions. The homogeneity of the ßDM-dPSIIcc solutions was also verified using dynamic light scattering. Complementary SAXS experiments indicate the presence of unbound detergent micelles by a separate peak consistent with a spherical shape possessing a radius of about 40 Å. The latter structure also contributes to the SANS data but rather broadens the SANS curve artificially. Without the simultaneous inspection of SANS and SAXS data, this effect may lead to an apparent underestimation of the size of the PS II-detergent complex. The formation of larger unbound detergent aggregates in solution prior to crystallization may have a significant effect on the crystal formation or quality of the ßDM-dPSIIcc.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| | - Rana Hussein
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115 Berlin, Germany
| | - Mohamed Ibrahim
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115 Berlin, Germany
| | - Max Hecht
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| | | | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Barbara Machado
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Athina Zouni
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald str. 1, 50411 Tartu, Estonia
| |
Collapse
|
6
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
7
|
Yu D, Lan J, Khan NU, Li Q, Xu F, Huang G, Xu H, Huang F. The in vitro synergistic denaturation effect of heat and surfactant on photosystem I isolated from Arthrospira Platensis. PHOTOSYNTHESIS RESEARCH 2019; 141:229-243. [PMID: 30725234 DOI: 10.1007/s11120-019-00623-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Photosystem I (PSI) generates the most negative redox potential found in nature, and the performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermal stability of PSI. Thus, understanding thermal denaturation is an important prerequisite for the use of PSI at elevated temperatures. To assess the thermal stability of surfactant-solubilized PSI from cyanobacteria Arthrospira Platensis, the synergistic denaturation effect of heat and surfactant was studied. At room temperature, surfactant n-dodecyl-β-D-maltoside solubilized PSI trimer gradually disassembles into PSI monomers and free pigments over long time. In the solubilizing process of PSI particles, surfactant can uncouple pigments of PSI, and the high concentration of surfactant causes the pigment to uncouple more; after the surfactant-solubilizing process, the uncoupling is relatively slow. During the heating process, changes were monitored by transmittance T800nm, ellipticity θ686nm and θ222nm, upon slow heating (1.5 °C per minute) of samples in Tris buffer (20 mM, pH 7.8) from 20 to 95 °C. The thermal denaturation of surfactant-solubilized PSI is a much more complicated process, which includes the uncoupling of pigments by surfactants, the disappearance of surrounding surfactants, and the unfolding of PSI α-helices. During the heating process, the uncoupling chlorophyll a (Chla) and converted pheophytin (Pheo) can form excitons of Chla-Pheo. The secondary structure α-helix of PSI proteins is stable up to 87-92 °C in the low-concentration surfactant solubilized PSI, and high-concentration surfactant and pigments uncoupling can accelerate the α-helical unfolding.
Collapse
Affiliation(s)
- Daoyong Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Jinxiao Lan
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Naseer Ullah Khan
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Quan Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Fengxi Xu
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Guihong Huang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
8
|
Feifel SC, Stieger KR, Hejazi M, Wang X, Ilbert M, Zouni A, Lojou E, Lisdat F. Dihemic c4-type cytochrome acting as a surrogate electron conduit: Artificially interconnecting a photosystem I supercomplex with electrodes. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
9
|
Golub M, Hejazi M, Kölsch A, Lokstein H, Wieland DCF, Zouni A, Pieper J. Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering. PHOTOSYNTHESIS RESEARCH 2017; 133:163-173. [PMID: 28258466 DOI: 10.1007/s11120-017-0342-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
The structure of monomeric and trimeric photosystem I (PS I) of Thermosynechococcus elongatus BP1 (T. elongatus) was investigated by small-angle X-ray scattering (SAXS). The scattering data reveal that the protein-detergent complexes possess radii of gyration of 58 and 78 Å in the cases of monomeric and trimeric PS I, respectively. The results also show that the samples are monodisperse, virtually free of aggregation, and contain empty detergent micelles. The shape of the protein-detergent complexes can be well approximated by elliptical cylinders with a height of 78 Å. Monomeric PS I in buffer solution exhibits minor and major radii of the elliptical cylinder of about 50 and 85 Å, respectively. In the case of trimeric PS I, both radii are equal to about 110 Å. The latter model can be shown to accommodate three elliptical cylinders equal to those describing monomeric PS I. A structure reconstitution also reveals that the protein-detergent complexes are larger than their respective crystal structures. The reconstituted structures are larger by about 20 Å mainly in the region of the hydrophobic surfaces of the monomeric and trimeric PS I complexes. This seeming contradiction can be resolved by the addition of a detergent belt constituted by a monolayer of dodecyl-β-D-maltoside molecules. Assuming a closest possible packing, a number of roughly 1024 and 1472 detergent molecules can be determined for monomeric and trimeric PS I, respectively. Taking the monolayer of detergent molecules into account, the solution structure can be almost perfectly modeled by the crystal structures of monomeric and trimeric PS I.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, Wilhelm Ostwaldi 1, 50411, Tartu, Estonia
| | - Mahdi Hejazi
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115, Berlin, Germany
| | - Adrian Kölsch
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115, Berlin, Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague, Czech Republic
| | - D C Florian Wieland
- Department for Metalic Biomaterials, Institute for Materials Research, Helmholtz Zentrum Geesthacht, 21502, Geesthacht, Germany
| | - Athina Zouni
- Humboldt Universität zu Berlin, Philipp Str. 13, 10115, Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwaldi 1, 50411, Tartu, Estonia.
| |
Collapse
|
10
|
Feifel SC, Lokstein H, Hejazi M, Zouni A, Lisdat F. Unidirectional Photocurrent of Photosystem I on π-System-Modified Graphene Electrodes: Nanobionic Approaches for the Construction of Photobiohybrid Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10590-8. [PMID: 26348323 DOI: 10.1021/acs.langmuir.5b01625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
One major vital element of the oxygenic photosynthesis is photosystem I (PSI). We report on the construction of graphene-based nanohybrid light-harvesting architectures consisting of PSI supercomplexes adsorbed onto π-system-modified graphene interfaces. The light-driven nanophotobioelectrochemical architectures have been designed on a modified carbon surface, on the basis of π-π-stacking interactions between polycyclic aromatic compounds and graphene. As a result of the remarkable features of graphene and the feasibility of purposeful surface property adjustment, well-defined photoelectrochemical responses have been displayed by the nanophotohybrid electrodes. In particular, the PSI-graphene electrodes utilizing naphthalene derivatives provided a suitable surface for the adsorption of PSI and display already at the open circuit potential (OCP) a high cathodic photocurrent output of 4.5 ± 0.1 μA/cm(2). By applying an overpotential and addition of a soluble electron acceptor (methyl viologen), the photocurrent density can be further magnified to 20 ± 0.5 μA/cm(2). On the contrary, the investigated anthracene-based PSI-graphene electrodes exhibit considerably smaller and not very directed photoelectrochemical responses. This study grants insights into the influences of different polycyclic aromatic compounds acting as an interface between the very large protein supercomplex PSI and graphene while supporting the electrochemical communication of the biomolecule with the electrode. It needs to be emphasized that solely the naphthalene-based photoelectrodes reveal unidirectional cathodic photocurrents, establishing the feasibility of utilizing this advanced approach for the construction of next-generation photovoltaic devices.
Collapse
Affiliation(s)
- Sven C Feifel
- Technical University of Applied Sciences Wildau , Hochschulring 1, 15745 Wildau, Germany
| | - Heiko Lokstein
- Institute of Molecular, Cell and System Biology, University of Glasgow , 120 University Place, Glasgow G12 8TA, Scotland
| | - Mahdi Hejazi
- Humboldt-Universität zu Berlin, Insitut für Biologie , Philippstrasse 13, 10099 Berlin, Germany
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Insitut für Biologie , Philippstrasse 13, 10099 Berlin, Germany
| | - F Lisdat
- Technical University of Applied Sciences Wildau , Hochschulring 1, 15745 Wildau, Germany
| |
Collapse
|
11
|
Müh F, DiFiore D, Zouni A. The influence of poly(ethylene glycol) on the micelle formation of alkyl maltosides used in membrane protein crystallization. Phys Chem Chem Phys 2015; 17:11678-91. [DOI: 10.1039/c5cp00431d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of poly(ethylene glycol) on the micelle formation of alkyl maltosides under conditions of membrane protein crystallization is investigated.
Collapse
Affiliation(s)
- Frank Müh
- Institut für Theoretische Physik
- Johannes Kepler Universität Linz
- A-4040 Linz
- Austria
| | - Dörte DiFiore
- Max-Volmer-Laboratorium für Biophysikalische Chemie
- Technische Universität Berlin
- D-10623 Berlin
- Germany
| | - Athina Zouni
- Institut für Biologie
- Humboldt Universität zu Berlin
- D-10095 Berlin
- Germany
| |
Collapse
|
12
|
Le RK, Harris BJ, Iwuchukwu IJ, Bruce BD, Cheng X, Qian S, Heller WT, O’Neill H, Frymier PD. Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-d-maltoside using small-angle neutron scattering and molecular dynamics simulation. Arch Biochem Biophys 2014; 550-551:50-7. [DOI: 10.1016/j.abb.2014.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
|
13
|
Stieger KR, Feifel SC, Lokstein H, Lisdat F. Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. Phys Chem Chem Phys 2014; 16:15667-74. [DOI: 10.1039/c4cp00935e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Engineering biohybrid photodiodes using surface-fixed cytochrome c as scaffold for efficiently connecting photosystem I with electrodes in 3D protein architectures.
Collapse
Affiliation(s)
- Kai R. Stieger
- Biosystems Technology
- Technical University of Applied Sciences Wildau
- D-15745 Wildau, Germany
| | - Sven C. Feifel
- Biosystems Technology
- Technical University of Applied Sciences Wildau
- D-15745 Wildau, Germany
| | - Heiko Lokstein
- Institute for Molecular, Cell & Systems Biology
- Glasgow Biomedical Research Centre
- University of Glasgow
- Glasgow, Scotland, UK
| | - Fred Lisdat
- Biosystems Technology
- Technical University of Applied Sciences Wildau
- D-15745 Wildau, Germany
| |
Collapse
|
14
|
Experimental Study of CMC Evaluation in Single and Mixed Surfactant Systems, Using the UV–Vis Spectroscopic Method. J SURFACTANTS DETERG 2012. [DOI: 10.1007/s11743-012-1403-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Zhao L, Du J, Duan Y, Zang Y, Zhang H, Yang C, Cao F, Zhai G. Curcumin loaded mixed micelles composed of Pluronic P123 and F68: Preparation, optimization and in vitro characterization. Colloids Surf B Biointerfaces 2012; 97:101-8. [DOI: 10.1016/j.colsurfb.2012.04.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/29/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
|
16
|
Müh F, Madjet MEA, Renger T. Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II. PHOTOSYNTHESIS RESEARCH 2012; 111:87-101. [PMID: 21809112 DOI: 10.1007/s11120-011-9675-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
The linear optical spectra (absorbance, linear dichroism, circular dichroism, fluorescence) of the CP43 (PsbC) antenna of the photosystem II core complex (PSIIcc) pertaining to the S(0) → S(1) (Q(Y)) transitions of the chlorophyll (Chl) a pigments are simulated by applying a combined quantum chemical/electrostatic method to obtain excitonic couplings and local transition energies (site energies) on the basis of the 2.9 Å resolution crystal structure (Guskov et al., Nat Struct Mol Biol 16:334-342, 2009). The electrostatic calculations identify three Chls with low site energies (Chls 35, 37, and 45 in the nomenclature of Loll et al. (Nature 438:1040-1044, 2005). A refined simulation of experimental spectra of isolated CP43 suggests a modified set of site energies within 143 cm(-1) of the directly calculated values (root mean square deviation: 80 cm(-1)). In the refined set, energy sinks are at Chls 37, 43, and 45 in agreement with earlier fitting results (Raszewski and Renger, J Am Chem Soc 130:4431-4446, 2008). The present structure-based simulations reveal that a large part of the redshift of Chl 37 is due to a digalactosyldiacylglycerol lipid. This finding suggests a new role for lipids in PSIIcc, namely the tuning of optical spectra and the creation of an excitation energy funnel towards the reaction center. The analysis of electrostatic pigment-protein interactions is used to identify amino acid residues that are of potential interest for an experimental approach to an assignment of site energies and energy sinks by site-directed mutagenesis.
Collapse
Affiliation(s)
- Frank Müh
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040, Linz, Austria.
| | | | | |
Collapse
|
17
|
Müh F, Renger T. Refined structure-based simulation of plant light-harvesting complex II: linear optical spectra of trimers and aggregates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1446-60. [PMID: 22387396 DOI: 10.1016/j.bbabio.2012.02.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 11/27/2022]
Abstract
Linear optical spectra of solubilized trimers and small lamellar aggregates of the major light-harvesting complex II (LHCII) of higher plants are simulated employing excitonic couplings and site energies of chlorophylls (Chls) computed on the basis of the two crystal structures by a combined quantum chemical/electrostatic approach. A good agreement between simulation and experiment is achieved (except for the circular dichroism in the Chl b region), if vibronic transitions of Chls are taken into account. Site energies are further optimized by refinement fits of optical spectra. The differences between refined and directly calculated values are not significant enough to decide, whether the crystal structures are closer to trimers or aggregates. Changes in the linear dichroism spectrum upon aggregation are related to site energy shifts of Chls b601, b607, a603, a610, and a613, and are interpreted in terms of conformational changes of violaxanthin and the two luteins involving their ionone rings. Chl a610 is the energy sink at 77K in both conformations. An analysis of absorption spectra of trimers perpendicular and parallel to the C(3)-axis (van Amerongen et al. Biophys. J. 67 (1994) 837-847) shows that only Chl a604 close to neoxanthin is significantly reoriented in trimers compared to the crystal structures. Whether this pigment is orientated in aggregates as in the crystal structures, can presently not be determined faithfully. To finally decide about pigment reorientations that could be of relevance for non-photochemical quenching, further polarized absorption and fluorescence measurements of aggregates or detergent-depleted LHCII would be helpful. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Frank Müh
- Johannes Kepler Universitat Linz, Linz, Austria.
| | | |
Collapse
|
18
|
Brecht M, Hussels M, Schlodder E, Karapetyan NV. Red antenna states of Photosystem I trimers from Arthrospira platensis revealed by single-molecule spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:445-52. [PMID: 22155210 DOI: 10.1016/j.bbabio.2011.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Single-molecule fluorescence spectroscopy at 1.4K was used to investigate the spectral properties of red (long-wavelength) chlorophylls in trimeric Photosystem I (PSI) complexes from the cyanobacterium Arthrospira platensis. Three distinct red antenna states could be identified in the fluorescence spectra of single PSI trimers from A. platensis in the presence of oxidized P700. Two of them are responsible for broad emission bands centered at 726 and 760nm. These bands are similar to those found in bulk fluorescence spectra measured at cryogenic temperatures. The broad fluorescence bands at ≅726 and ≅760nm belong to individual emitters that are broadened by strong electron-phonon coupling giving rise to a large Stokes-shift of about 20nm and rapid spectral diffusion. An almost perpendicular orientation of the transition dipole moments of F726 and F760 has to be assumed because direct excitation energy transfer does not occur between F726 and F760. For the first time a third red state assigned to the pool absorbing around 708nm could be detected by its zero-phonon lines. The center of the zero-phonon line distribution is found at ≅714nm. The spectral properties of the three red antenna states show a high similarity to the red antenna states found in trimeric PSI of Thermosynechoccocus elongatus. Based on these findings a similar organization of the red antenna states in PSI of these two cyanobacteria is discussed.
Collapse
Affiliation(s)
- Marc Brecht
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
19
|
Petrova I, Kurashov V, Semenov A, Mamedov M. Manganese-depleted/reconstituted photosystem II core complexes in solution and liposomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:372-6. [DOI: 10.1016/j.jphotobiol.2011.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/28/2011] [Accepted: 03/05/2011] [Indexed: 11/26/2022]
|
20
|
Mukherjee D, May M, Khomami B. Detergent–protein interactions in aqueous buffer suspensions of Photosystem I (PS I). J Colloid Interface Sci 2011; 358:477-84. [DOI: 10.1016/j.jcis.2011.03.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 11/27/2022]
|
21
|
Mukherjee D, May M, Vaughn M, Bruce BD, Khomami B. Controlling the morphology of Photosystem I assembly on thiol-activated Au substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:16048-54. [PMID: 20845944 DOI: 10.1021/la102832x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Morphological variations of Photosystem I (PS I) assembly on hydroxyl-terminated alkanethiolate self-assembled monolayer (SAM)/Au substrates with various deposition techniques is presented. Our studies indicate that deposition conditions such as PS I concentration and driving force play a central role in determining organization of immobilized PS I on thiol-activated Au surfaces. Specifically, atomic force microscopy (AFM) and ellipsometry analyses indicate that gravity-driven deposition from concentrated PS I solutions results in a large number of columnar PS I aggregates, which assemble perpendicular to the Au surface. PS I deposition yields much more uniform layers when deposited at lower concentrations, suggesting preassembly of the aggregate formation in the solution phase. Moreover, in electric field assisted deposition at high field strengths, columnar self-assembly is largely prevented, thereby allowing a uniform, monolayer-like deposition even at very high PS I concentrations. In situ dynamic light scattering (DLS) studies of solution-phase aggregation dynamics of PS I suspensions in both the presence and absence of an applied electric field support these observations and clearly demonstrate that the externally imposed electric field effectively fragments large PS I aggregates in the solution phase, thereby permitting a uniform deposition of PS I trimers on SAM/Au substrates.
Collapse
Affiliation(s)
- Dibyendu Mukherjee
- Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|
22
|
Broser M, Gabdulkhakov A, Kern J, Guskov A, Müh F, Saenger W, Zouni A. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-a resolution. J Biol Chem 2010; 285:26255-62. [PMID: 20558739 DOI: 10.1074/jbc.m110.127589] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-embedded photosystem II core complex (PSIIcc) uses light energy to oxidize water in photosynthesis. Information about the spatial structure of PSIIcc obtained from x-ray crystallography was so far derived from homodimeric PSIIcc of thermophilic cyanobacteria. Here, we report the first crystallization and structural analysis of the monomeric form of PSIIcc with high oxygen evolution capacity, isolated from Thermosynechococcus elongatus. The crystals belong to the space group C222(1), contain one monomer per asymmetric unit, and diffract to a resolution of 3.6 A. The x-ray diffraction pattern of the PSIIcc-monomer crystals exhibit less anisotropy (dependence of resolution on crystal orientation) compared with crystals of dimeric PSIIcc, and the packing of the molecules within the unit cell is different. In the monomer, 19 protein subunits, 35 chlorophylls, two pheophytins, the non-heme iron, the primary plastoquinone Q(A), two heme groups, 11 beta-carotenes, 22 lipids, seven detergent molecules, and the Mn(4)Ca cluster of the water oxidizing complex could be assigned analogous to the dimer. Based on the new structural information, the roles of lipids and protein subunits in dimer formation of PSIIcc are discussed. Due to the lack of non-crystallographic symmetry and the orientation of the membrane normal of PSIIcc perpendicular ( approximately 87 degrees ) to the crystallographic b-axis, further information about the structure of the Mn(4)Ca cluster is expected to become available from orientation-dependent spectroscopy on this new crystal form.
Collapse
Affiliation(s)
- Matthias Broser
- Institute of Chemistry, Max Volmer Laboratory of Biophysical Chemistry, Technische Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Guskov A, Gabdulkhakov A, Broser M, Glöckner C, Hellmich J, Kern J, Frank J, Müh F, Saenger W, Zouni A. Recent Progress in the Crystallographic Studies of Photosystem II. Chemphyschem 2010; 11:1160-71. [DOI: 10.1002/cphc.200900901] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Cardoso MB, Smolensky D, Heller WT, O’Neill H. Insight into the Structure of Light-Harvesting Complex II and Its Stabilization in Detergent Solution. J Phys Chem B 2009; 113:16377-83. [DOI: 10.1021/jp905050b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mateus B. Cardoso
- Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dmitriy Smolensky
- Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - William T. Heller
- Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Hugh O’Neill
- Center for Structural Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|