1
|
Suzuki M, Kawai S, Shee CF, Yamada R, Uchida S, Yasukawa T. Development of a simultaneous electrorotation device with microwells for monitoring the rotation rates of multiple single cells upon chemical stimulation. LAB ON A CHIP 2023; 23:692-701. [PMID: 36355051 DOI: 10.1039/d2lc00627h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Here, we described a unique simultaneous electrorotation (ROT) device for monitoring the rotation rate of Jurkat cells via chemical stimulation without fluorescent labeling and an algorithm for estimating cell rotation rates. The device comprised two pairs of interdigitated array electrodes that were stacked orthogonally through a 20 μm-thick insulating layer with rectangular microwells. Four microelectrodes (two were patterned on the bottom of the microwells and the other two on the insulating layer) were arranged on each side of the rectangular microwells. The cells, which were trapped in the microwells, underwent ROT when AC voltages were applied to the four microelectrodes to generate a rotating electric field. These microwells maintained the cells even in fluid flows. Thereafter, the ROT rates of the trapped cells were estimated and monitored during the stimulation. We demonstrated the feasibility of estimating the chemical efficiency of cells by monitoring the ROT rates of the cells. After introducing a Jurkat cell suspension into the device, the cells were subjected to ROT by applying an AC signal. Further, the rotating cells were chemically stimulated by adding an ionomycin (a calcium ionophore)-containing aliquot. The ROT rate of the ionomycin-stimulated cells decreased gradually to 90% of the initial rate after 30 s. The ROT rate was reduced by an increase in membrane capacitance. Thus, our device enabled the simultaneous chemical stimulation-induced monitoring of the alterations in the membrane capacitances of many cells without fluorescent labeling.
Collapse
Affiliation(s)
- Masato Suzuki
- Graduate School of Science, University of Hyogo, Hyogo, Japan.
- Advanced Medical Engineering Research Institute, University of Hyogo, Hyogo, Japan
| | - Shikiho Kawai
- Graduate School of Science, University of Hyogo, Hyogo, Japan.
| | - Chean Fei Shee
- Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan
| | - Ryoga Yamada
- Graduate School of Science, University of Hyogo, Hyogo, Japan.
| | - Seiichi Uchida
- Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Yasukawa
- Graduate School of Science, University of Hyogo, Hyogo, Japan.
- Advanced Medical Engineering Research Institute, University of Hyogo, Hyogo, Japan
| |
Collapse
|
2
|
Brosch PK, Korsa T, Taban D, Eiring P, Kreisz P, Hildebrand S, Neubauer J, Zimmermann H, Sauer M, Shirakashi R, Djuzenova CS, Sisario D, Sukhorukov VL. Glucose and Inositol Transporters, SLC5A1 and SLC5A3, in Glioblastoma Cell Migration. Cancers (Basel) 2022; 14:5794. [PMID: 36497276 PMCID: PMC9738886 DOI: 10.3390/cancers14235794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022] Open
Abstract
(1) Background: The recurrence of glioblastoma multiforme (GBM) is mainly due to invasion of the surrounding brain tissue, where organic solutes, including glucose and inositol, are abundant. Invasive cell migration has been linked to the aberrant expression of transmembrane solute-linked carriers (SLC). Here, we explore the role of glucose (SLC5A1) and inositol transporters (SLC5A3) in GBM cell migration. (2) Methods: Using immunofluorescence microscopy, we visualized the subcellular localization of SLC5A1 and SLC5A3 in two highly motile human GBM cell lines. We also employed wound-healing assays to examine the effect of SLC inhibition on GBM cell migration and examined the chemotactic potential of inositol. (3) Results: While GBM cell migration was significantly increased by extracellular inositol and glucose, it was strongly impaired by SLC transporter inhibition. In the GBM cell monolayers, both SLCs were exclusively detected in the migrating cells at the monolayer edge. In single GBM cells, both transporters were primarily localized at the leading edge of the lamellipodium. Interestingly, in GBM cells migrating via blebbing, SLC5A1 and SLC5A3 were predominantly detected in nascent and mature blebs, respectively. (4) Conclusion: We provide several lines of evidence for the involvement of SLC5A1 and SLC5A3 in GBM cell migration, thereby complementing the migration-associated transportome. Our findings suggest that SLC inhibition is a promising approach to GBM treatment.
Collapse
Affiliation(s)
- Philippa K. Brosch
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (P.K.B.); (T.K.); (D.T.); (P.E.); (S.H.); (M.S.)
| | - Tessa Korsa
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (P.K.B.); (T.K.); (D.T.); (P.E.); (S.H.); (M.S.)
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany; (J.N.); (H.Z.)
| | - Danush Taban
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (P.K.B.); (T.K.); (D.T.); (P.E.); (S.H.); (M.S.)
| | - Patrick Eiring
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (P.K.B.); (T.K.); (D.T.); (P.E.); (S.H.); (M.S.)
| | - Philipp Kreisz
- Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany;
| | - Sascha Hildebrand
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (P.K.B.); (T.K.); (D.T.); (P.E.); (S.H.); (M.S.)
| | - Julia Neubauer
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany; (J.N.); (H.Z.)
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering (IBMT), 66280 Sulzbach, Germany; (J.N.); (H.Z.)
- Department of Molecular and Cellular Biotechnology, Saarland University, 66123 Saarbrücken, Germany
- Faculty of Marine Science, Universidad Católica del Norte, Coquimbo 1281, Chile
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (P.K.B.); (T.K.); (D.T.); (P.E.); (S.H.); (M.S.)
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan;
| | - Cholpon S. Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, 97080 Würzburg, Germany;
| | - Dmitri Sisario
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (P.K.B.); (T.K.); (D.T.); (P.E.); (S.H.); (M.S.)
| | - Vladimir L. Sukhorukov
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (P.K.B.); (T.K.); (D.T.); (P.E.); (S.H.); (M.S.)
| |
Collapse
|
3
|
Ferroptotic pores induce Ca 2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ 2021; 28:1644-1657. [PMID: 33335287 PMCID: PMC8167089 DOI: 10.1038/s41418-020-00691-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated necrosis associated with lipid peroxidation. Despite its key role in the inflammatory outcome of ferroptosis, little is known about the molecular events leading to the disruption of the plasma membrane during this type of cell death. Here we show that a sustained increase in cytosolic Ca2+ is a hallmark of ferroptosis that precedes complete bursting of the cell. We report that plasma membrane damage leading to ferroptosis is associated with membrane nanopores of a few nanometers in radius and that ferroptosis, but not lipid peroxidation, can be delayed by osmoprotectants. Importantly, Ca2+ fluxes during ferroptosis induce the activation of the ESCRT-III-dependent membrane repair machinery, which counterbalances the kinetics of cell death and modulates the immunological signature of ferroptosis. Our findings with ferroptosis provide a unifying concept that sustained increase of cytosolic Ca2+ prior to plasma membrane rupture is a common feature of regulated types of necrosis and position ESCRT-III activation as a general protective mechanism in these lytic cell death pathways.
Collapse
|
4
|
Ros U, Pedrera L, Garcia-Saez AJ. Techniques for studying membrane pores. Curr Opin Struct Biol 2021; 69:108-116. [PMID: 33945958 DOI: 10.1016/j.sbi.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/30/2023]
Abstract
Pore-forming proteins (PFPs) are of special interest because of the association of their activity with the disruption of the membrane impermeability barrier and cell death. They generally convert from a monomeric, soluble form into transmembrane oligomers that induce the opening of membrane pores. The study of pore formation in membranes with molecular detail remains a challenging endeavor because of its highly dynamic and complex nature, usually involving diverse oligomeric structures with different functionalities. Here we discuss current methods applied for the structural and functional characterization of PFPs at the individual vesicle and cell level. We highlight how the development of high-resolution and single-molecule imaging techniques allows the analysis of the structural organization of protein oligomers and pore entities in lipid membranes.
Collapse
Affiliation(s)
- Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Lohans Pedrera
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany.
| |
Collapse
|
5
|
Espiritu RA, Pedrera L, Ros U. Tuning the way to die: implications of membrane perturbations in necroptosis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/bs.abl.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
7
|
Soto C, Bergado G, Blanco R, Griñán T, Rodríguez H, Ros U, Pazos F, Lanio ME, Hernández AM, Álvarez C. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death. Biochimie 2018; 148:18-35. [DOI: 10.1016/j.biochi.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
|
8
|
Ros U, Peña-Blanco A, Hänggi K, Kunzendorf U, Krautwald S, Wong WWL, García-Sáez AJ. Necroptosis Execution Is Mediated by Plasma Membrane Nanopores Independent of Calcium. Cell Rep 2017; 19:175-187. [PMID: 28380356 PMCID: PMC5465952 DOI: 10.1016/j.celrep.2017.03.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/22/2016] [Accepted: 03/06/2017] [Indexed: 01/14/2023] Open
Abstract
Necroptosis is a form of regulated necrosis that
results in cell death and content release after plasma membrane permeabilization.
However, little is known about the molecular events responsible for the disruption of
the plasma membrane. Here, we find that early increase in cytosolic calcium in
TNF-induced necroptosis is mediated by treatment with a Smac mimetic via the
TNF/RIP1/TAK1 survival pathway. This does not require the activation of the necrosome
and is dispensable for necroptosis. Necroptosis induced by the activation of TLR3/4
pathways does not trigger early calcium flux. We also demonstrate that necroptotic
plasma membrane rupture is mediated by osmotic forces and membrane pores around 4 nm
in diameter. This late permeabilization step represents a hallmark in necroptosis
execution that is cell and treatment independent and requires the RIP1/RIP3/MLKL
core. In support of this, treatment with osmoprotectants reduces cell damage in an
in vivo necroptosis model of ischemia-reperfusion injury. Early calcium signaling in TSZ necroptosis correlates with
cellular levels of cIAP1/2 Calcium flux is induced by a Smac mimetic and is
dispensable for necroptosis execution Pores ∼4 nm in diameter mediate final plasma membrane
disruption in necroptosis
Collapse
Affiliation(s)
- Uris Ros
- Interfaculty Institute of Biochemistry, Tübingen University, 72076 Tübingen, Germany.
| | - Aida Peña-Blanco
- Interfaculty Institute of Biochemistry, Tübingen University, 72076 Tübingen, Germany
| | - Kay Hänggi
- Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - W Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, 72076 Tübingen, Germany; Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| |
Collapse
|
9
|
Sözer EB, Wu YH, Romeo S, Vernier PT. Nanometer-Scale Permeabilization and Osmotic Swelling Induced by 5-ns Pulsed Electric Fields. J Membr Biol 2016; 250:21-30. [PMID: 27435216 DOI: 10.1007/s00232-016-9918-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022]
Abstract
High-intensity nanosecond pulsed electric fields (nsPEFs) permeabilize cell membranes. Although progress has been made toward an understanding of the mechanism of nsPEF-induced membrane poration, the dependence of pore size and distribution on pulse duration, strength, number, and repetition rate remains poorly defined experimentally. In this paper, we characterize the size of nsPEF-induced pores in living cell membranes by isosmotically replacing the solutes in pulsing media with polyethylene glycols and sugars before exposing Jurkat T lymphoblasts to 5 ns, 10 MV/m electric pulses. Pore size was evaluated by analyzing cell volume changes resulting from the permeation of osmolytes through the plasma membrane. We find that pores created by 5 ns pulses have a diameter between 0.7 and 0.9 nm at pulse counts up to 100 with a repetition rate of 1 kHz. For larger number of pulses, either the pore diameter or the number of pores created, or both, increase with increasing pulse counts. But the prevention of cell swelling by PEG 1000 even after 2000 pulses suggests that 5 ns, 10 MV/m pulses cannot produce pores with a diameter larger than 1.9 nm.
Collapse
Affiliation(s)
- Esin B Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way. STE 300, Norfolk, VA, USA.
| | - Yu-Hsuan Wu
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stefania Romeo
- CNR - Institute for Electromagnetic Sensing of the Environment (IREA), Via Diocleziano 328, 80124, Naples, Italy
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way. STE 300, Norfolk, VA, USA
| |
Collapse
|
10
|
Andronic J, Shirakashi R, Pickel SU, Westerling KM, Klein T, Holm T, Sauer M, Sukhorukov VL. Hypotonic activation of the myo-inositol transporter SLC5A3 in HEK293 cells probed by cell volumetry, confocal and super-resolution microscopy. PLoS One 2015; 10:e0119990. [PMID: 25756525 PMCID: PMC4355067 DOI: 10.1371/journal.pone.0119990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol Pino [m/s] and expression/localization of SLC5A3. Pino values were determined by cell volumetry over a wide tonicity range (100–275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200–275 mOsm), Pino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼3 nm/s at 100–125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in Pino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200–2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80–800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.
Collapse
Affiliation(s)
- Joseph Andronic
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Simone U. Pickel
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Katherine M. Westerling
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Thorge Holm
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Vladimir L. Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Bonincontro A, Risuleo G. Electrorotation: A Spectroscopic Imaging Approach to Study the Alterations of the Cytoplasmic Membrane. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ami.2015.51001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Memmel S, Sukhorukov VL, Höring M, Westerling K, Fiedler V, Katzer A, Krohne G, Flentje M, Djuzenova CS. Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status. PLoS One 2014; 9:e87052. [PMID: 24498019 PMCID: PMC3909012 DOI: 10.1371/journal.pone.0087052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/17/2013] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by rapid growth, invasion and resistance to chemo−/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM), the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT) technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN) exhibited the lowest degree of membrane folding, probed by the area-specific capacitance Cm = 1.9 µF/cm2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19) showed the highest Cm values of 3.7–4.0 µF/cm2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the migration and invasion of GBM and other tumor types.
Collapse
Affiliation(s)
- Simon Memmel
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Vladimir L. Sukhorukov
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
- * E-mail: (VLS); (CSD)
| | - Marcus Höring
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Katherine Westerling
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Georg Krohne
- Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Cholpon S. Djuzenova
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
- * E-mail: (VLS); (CSD)
| |
Collapse
|
13
|
Aponte J, Baur P. Transport properties of the mung bean (Vigna radiata) non-aerial hypocotyl membrane: permselectivity to hydrophilic compounds. PEST MANAGEMENT SCIENCE 2014; 70:148-155. [PMID: 23526781 DOI: 10.1002/ps.3540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/08/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Aerial plant surfaces are covered by a lipophilic cuticular membrane (CM) that restricts the transport of water and small solutes. Non-aerial tissues do not exhibit such a barrier. Recent data have shown that large relative to CM hydrophilic agrochemicals were able to pass at high rates through the non-aerial coleoptile. RESULTS A moderately large hydrophilic solute like PEG 1000 with a mean molar volume of 782 cm(3) mol(-1) was rejected by the non-aerial hypocotyl. Uptake of smaller solutes like urea (46.5 cm(3) mol(-1) ) was fast and with 99% after 1 day. Cut-off size estimations suggest a pore size diameter below 1.5 nm. CONCLUSION Aerial and non-aerial CM differ largely in their absolute barrier properties. This difference is related to the absence of embedded cuticular waxes in the non-aerial hypocotyl membrane, which make the CM physically dense and cause low solubility of hydrophilic solutes. The free volume for diffusion at the interface of the non-aerial hypocotyl cuticle to the environment is much larger resulting in higher penetration rates. It is suggested that diffusion through the non-aerial hypocotyl does not proceed in a real channel system with continuous aqueous phase but is more like transport through a filter with restricted diffusion in the pore openings.
Collapse
Affiliation(s)
- John Aponte
- Faculty of Natural Sciences, Leibniz University of Hannover, Hannover, Germany
| | | |
Collapse
|
14
|
Ragoonanan V, Less R, Aksan A. Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses. Part 2: The link between the state of the membrane-cytoskeleton complex and the cellular damage. Cryobiology 2012; 66:96-104. [PMID: 23261886 DOI: 10.1016/j.cryobiol.2012.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/04/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022]
Abstract
In an earlier paper [35], we examined the mutual interaction between the actin cytoskeleton and the cell membrane and explored the role this interaction plays during freeze/thaw. In this follow-up paper, we investigate the physical and chemical stresses induced by freeze/thaw and explore the different mechanisms of damage caused by these stresses. Our results showed that changes in cell volume during freeze/thaw and the unfrozen water content in the solution alter the cytoskeleton stiffness, and the available membrane material. Combined with unfavorable ice-membrane interactions and increasing membrane stiffness, increased de-structuring of the membrane (such as bleb and microvilli formation) synergistically act on the membrane-cytoskeleton system generating irreversible damage.
Collapse
Affiliation(s)
- Vishard Ragoonanan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
15
|
Andronic J, Bobak N, Bittner S, Ehling P, Kleinschnitz C, Herrmann AM, Zimmermann H, Sauer M, Wiendl H, Budde T, Meuth SG, Sukhorukov VL. Identification of two-pore domain potassium channels as potent modulators of osmotic volume regulation in human T lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:699-707. [PMID: 23041580 DOI: 10.1016/j.bbamem.2012.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022]
Abstract
Many functions of T lymphocytes are closely related to cell volume homeostasis and regulation, which utilize a complex network of membrane channels for anions and cations. Among the various potassium channels, the voltage-gated K(V)1.3 is well known to contribute greatly to the osmoregulation and particularly to the potassium release during the regulatory volume decrease (RVD) of T cells faced with hypotonic environment. Here we address a putative role of the newly identified two-pore domain (K(2P)) channels in the RVD of human CD4(+) T lymphocytes, using a series of potent well known channel blockers. In the present study, the pharmacological profiles of RVD inhibition revealed K(2P)5.1 and K(2P)18.1 as the most important K(2P) channels involved in the RVD of both naïve and stimulated T cells. The impact of chemical inhibition of K(2P)5.1 and K(2P)18.1 on the RVD was comparable to that of K(V)1.3. K(2P)9.1 also notably contributed to the RVD of T cells but the extent of this contribution and its dependence on the activation status could not be unambiguously resolved. In summary, our data provide first evidence that the RVD-related potassium efflux from human T lymphocytes relies on K(2P) channels.
Collapse
Affiliation(s)
- Joseph Andronic
- University of Wuerzburg, Lehrstuhl für Biotechnologie und Biophysik, Biozentrum, Am Hubland, 97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cell activation by CpG ODN leads to improved electrofusion in hybridoma production. J Immunol Methods 2011; 373:102-10. [PMID: 21878337 DOI: 10.1016/j.jim.2011.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022]
Abstract
Hybridoma formation is an indispensable step in the production of monoclonal antibodies. Obtaining highly efficient fusion of an antibody-producing cell to the myeloma cell to form the hybridoma is an important step in this process. The electrofusion method is superior to chemical fusion methods such as the polyethylene glycol (PEG) method due to its high fusion efficiency. However, this method requires cell activation prior to electrofusion, a process that is time-consuming and tends to cause cell death. In this study, we achieved much higher fusion efficiency by stimulating B cells with CpG oligodeoxynucleotide (CpG ODN) over shorter periods. Splenocytes were isolated from immunized mice and cultured in the presence of a CpG ODN for 1 or 2 days. This CpG ODN stimulation evokes about one order of magnitude higher fusion efficiency than other stimulators. CpG ODN stimulation not only increases the fusion efficiency but also the number of antibody-producing cells. This leads to a substantial increase in the number of positive clones obtained. This highly efficient fusion method was used to produce a functional antibody against Gaussia luciferase. This method was found to produce greater numbers of hybridomas and to enable direct screening for antibodies with functional characteristics such as inhibition of the luminescence activity of an antigen. We were able to establish a functional antibody against Gaussia luciferase after a single fusion experiment using our electrofusion method.
Collapse
|
17
|
Bobak N, Bittner S, Andronic J, Hartmann S, Mühlpfordt F, Schneider-Hohendorf T, Wolf K, Schmelter C, Göbel K, Meuth P, Zimmermann H, Döring F, Wischmeyer E, Budde T, Wiendl H, Meuth SG, Sukhorukov VL. Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2036-44. [DOI: 10.1016/j.bbamem.2011.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 01/05/2023]
|
18
|
Nesin OM, Pakhomova ON, Xiao S, Pakhomov AG. Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:792-801. [PMID: 21182825 DOI: 10.1016/j.bbamem.2010.12.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/11/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Intense nanosecond-duration electric pulses (nsEP) open stable nanopores in the cell membrane, followed by cell volume changes due to water uptake or expulsion, as regulated by the osmolality balance of pore-impermeable solutes inside and outside the cell. The size of pores opened by either fifty 60-ns EP (~13 kV/cm) or five, 600-ns EP (~6 kV/cm) in GH3 cells was estimated by isoosmotic replacement of bath NaCl with polyethylene glycols and sugars. Such replacement reduced cell swelling or resulted in transient or sustained cell shrinking in response to EP. depending on the availability of pores permeable to the test solute. Unexpectedly, solute substitutions showed that for the same integral area of pores opened by 60- and 600-ns treatments (as estimated by cell volume changes), the pore sizes were similar. However, the 600-ns exposure triggered significantly higher cell uptake of propidium. We concluded that 600-ns EP opened a greater number of larger (propidium-permeable pores), but the fraction of the larger pores in the entire pore population was insufficient to contribute to cell volume changes. For both the 60- and 600-ns exposures, cell volume changes were determined by pores smaller than 0.9 nm in diameter; however, the diameter increased with increasing the nsEP intensity.
Collapse
Affiliation(s)
- Olena M Nesin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | | | | | | |
Collapse
|