1
|
Moustafa RI, Dubuisson J, Lavie M. Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virol 2019. [DOI: 10.2217/fvl-2018-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HCV envelope glycoproteins, E1 and E2, are multifunctional proteins. Until recently, E2 glycoprotein was thought to be the fusion protein and was the focus of investigations. However, the recently obtained partial structures of E2 and E1 rather support a role for E1 alone or in association with E2 in HCV fusion. Moreover, they suggest that HCV harbors a new fusion mechanism, distinct from that of other members of the Flaviviridae family. In this context, E1 aroused a renewed interest. Recent functional characterizations of E1 revealed a more important role than previously thought in entry and assembly. Thus, E1 is involved in the viral genome encapsidation step and influences the association of the virus with lipoprotein components. Moreover, E1 modulates HCV–receptor interaction and participates in a late entry step potentially fusion. In this review, we outline our current knowledge on E1 functions in HCV assembly and entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- Department of Microbial Biotechnology, Genetic Engineering & Biotechnology Division, National Research Center, Dokki, Cairo, Egypt
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Muriel Lavie
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
2
|
Gonzalez S, Gallier F, Kellouche S, Carreiras F, Novellino E, Carotenuto A, Chassaing G, Rovero P, Uziel J, Lubin-Germain N. Studies of membranotropic and fusogenic activity of two putative HCV fusion peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:50-61. [PMID: 30343120 DOI: 10.1016/j.bbamem.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022]
Abstract
Over the past decades, membranotropic peptides such as positively charged cell-penetrating peptides (CPPs) or amphipathic antimicrobial peptides (AMPs) have received increasing interest in order to improve therapeutic agent cellular uptake. As far as we are concerned, we were interested in studying HCV fusion peptides as putative anchors. Two peptides, HCV6 and HCV7, were identified and conjugated to a fluorescent tag NBD and tested for their interaction with liposomes as model membranes. DSC and spectrofluorescence analyses demonstrate HCV7 propensity to insert or internalize in vesicles containing anionic lipids DMPG whereas no activity was observed with zwitterionic DMPC. This behavior could be explained by the peptide sequence containing a cationic arginine residue. On the contrary, HCV6 did not exhibit any membranotropic activity but was the only sequence able to induce liposomes' fusion or aggregation monitored by spectrofluorescence and DLS. This two peptides mild activity was related to their inefficient structuration in contact with membrane mimetics, which was demonstrated by CD and NMR experiments. Altogether, our data allowed us to identify two promising membrane-active peptides from E1 and E2 HCV viral proteins, one fusogenic (HCV6) and the other membranotropic (HCV7). The latter was also confirmed by fluorescence microscopy with CHO cells, indicating that HCV7 could cross the plasma membrane via an endocytosis process. Therefore, this study provides new evidences supporting the identification of HCV6 as the HCV fusion peptide as well as insights on a novel membranotropic peptide from the HCV-E2 viral protein.
Collapse
Affiliation(s)
- Simon Gonzalez
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France
| | - Florian Gallier
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Ettore Novellino
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Gérard Chassaing
- Sorbonne Universités, UPMC University Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France
| | - Paolo Rovero
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Jacques Uziel
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France
| | - Nadège Lubin-Germain
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France.
| |
Collapse
|
3
|
Lombana L, Ortega-Atienza S, Gómez-Gutiérrez J, Yélamos B, Peterson DL, Gavilanes F. The deletion of residues 268-292 of E1 impairs the ability of HCV envelope proteins to induce pore formation. Virus Res 2016; 217:63-70. [PMID: 26945847 DOI: 10.1016/j.virusres.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/25/2022]
Abstract
We have obtained a chimeric protein containing the ectodomains of hepatitis C virus (HCV) envelope proteins but lacking the region 268-292 of E1. All its structural properties are coincident with those of the corresponding full length chimera. The deleted and entire chimeras were compared in terms of their membrane destabilizing properties. No differences were found in their ability to induce vesicle aggregation and lipid mixing but the deleted chimera showed a reduced capacity to promote leakage. The role of the deletion was also studied by obtaining HCV pseudoparticles (HCVpp). Both E1 and E2, and also the E1 deleted mutant, were incorporated into HCVpp to a similar level. However, HCVpp containing the E1 deleted protein are almost unable to infect Huh7 cells. These results point to the involvement of the region 268-292 in the formation of pores in the membrane necessary for the complete fusion of the membranes.
Collapse
Affiliation(s)
- Laura Lombana
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara Ortega-Atienza
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julián Gómez-Gutiérrez
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Belén Yélamos
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Darrell L Peterson
- Department of Biochemistry and Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Francisco Gavilanes
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Alves NS, Mendes YS, Souza TLF, Bianconi ML, Silva JL, Gomes AMO, Oliveira AC. A biophysical characterization of the interaction of a hepatitis C virus membranotropic peptide with micelles. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:359-71. [PMID: 26773352 DOI: 10.1016/j.bbapap.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 01/02/2016] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Membrane fusion is a highly regulated process that allows enveloped viruses to enter cells and replicate. Viral glycoproteins trigger membrane fusion by means of internal sequences known as fusion peptides. The hepatitis C virus (HCV) genome encodes the envelope glycoproteins E1 and E2, but their specific roles in the fusion step and the localization of the fusion peptide remain uncharacterized. Here, we studied the biophysics of the interactions between the glycoprotein E2 peptide HCV421-445 and four different micellar systems providing ionic, non-ionic and zwitterionic surfaces to investigate the importance of electrostatic interactions for peptide-membrane binding. Circular dichroism, fluorescence spectroscopy and calorimetry were used to characterize peptide-micelle interactions and structural changes. Fluorescence quenching showed that HCV421-445 interacts with SDS or CTAB ionic, n-OGP non-ionic and DPC zwitterionic micelles. The indole ring of Trp seems to anchor the peptide in micelles. Trp residues seem to be more deeply inserted in ionic and non-ionic micelles where peptide interactions are more stable than with DPC zwitterionic micelles. The interaction with zwitterionic micelles appears to occur at the surface. Both interaction types are exothermic because of peptide-micelle interactions and a gain of secondary structure in the helical conformation. HCV421-445 interacts with detergent monomers and micelles. Peptide-micelle interaction is pH-independent. HCV421-445 interacts with membranes, promoting aggregation and coalescence of vesicles with content leakage, suggesting that HCV421-445 may participate in membrane fusion. This structural characterization contributes to our understanding of the molecular process that promotes fusion, which is important in the further development of new antiviral therapies.
Collapse
Affiliation(s)
- N S Alves
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Y S Mendes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - T L F Souza
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - M L Bianconi
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - J L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - A M O Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - A C Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
5
|
Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion. J Virol 2015; 89:10333-46. [PMID: 26246575 DOI: 10.1128/jvi.00991-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED In hepatitis C virus (HCV)-infected cells, the envelope glycoproteins E1 and E2 assemble as a heterodimer. To investigate potential changes in the oligomerization of virion-associated envelope proteins, we performed SDS-PAGE under reducing conditions but without thermal denaturation. This revealed the presence of SDS-resistant trimers of E1 in the context of cell-cultured HCV (HCVcc) as well as in the context of HCV pseudoparticles (HCVpp). The formation of E1 trimers was found to depend on the coexpression of E2. To further understand the origin of E1 trimer formation, we coexpressed in bacteria the transmembrane (TM) domains of E1 (TME1) and E2 (TME2) fused to reporter proteins and analyzed the fusion proteins by SDS-PAGE and Western blotting. As expected for strongly interacting TM domains, TME1-TME2 heterodimers resistant to SDS were observed. These analyses also revealed homodimers and homotrimers of TME1, indicating that such complexes are stable species. The N-terminal segment of TME1 exhibits a highly conserved GxxxG sequence, a motif that is well documented to be involved in intramembrane protein-protein interactions. Single or double mutations of the glycine residues (Gly354 and Gly358) in this motif markedly decreased or abrogated the formation of TME1 homotrimers in bacteria, as well as homotrimers of E1 in both HCVpp and HCVcc systems. A concomitant loss of infectivity was observed, indicating that the trimeric form of E1 is essential for virus infectivity. Taken together, these results indicate that E1E2 heterodimers form trimers on HCV particles, and they support the hypothesis that E1 could be a fusion protein. IMPORTANCE HCV glycoproteins E1 and E2 play an essential role in virus entry into liver cells as well as in virion morphogenesis. In infected cells, these two proteins form a complex in which E2 interacts with cellular receptors, whereas the function of E1 remains poorly understood. However, recent structural data suggest that E1 could be the protein responsible for the process of fusion between viral and cellular membranes. Here we investigated the oligomeric state of HCV envelope glycoproteins. We demonstrate that E1 forms functional trimers after virion assembly and that in addition to the requirement for E2, a determinant for this oligomerization is present in a conserved GxxxG motif located within the E1 transmembrane domain. Taken together, these results indicate that a rearrangement of E1E2 heterodimer complexes likely occurs during the assembly of HCV particles to yield a trimeric form of the E1E2 heterodimer. Gaining structural information on this trimer will be helpful for the design of an anti-HCV vaccine.
Collapse
|
6
|
Abstract
ABSTRACT HCV encodes two envelope glycoproteins, E1 and E2, which assemble as a non-covalent heterodimer in infected cells. During HCV morphogenesis, these proteins are incorporated into viral particles and they are the major viral determinants of HCV entry. Functional studies have revealed unique features in these viral envelope glycoproteins. Indeed, E1–E2 interaction, mediated by their transmembrane domain, is essential for HCV assembly and entry. Furthermore, recent data also show that these glycoproteins interact with apolipoproteins. Recent crystallography data provide some structural support to better understand how these proteins interact with the host. In this review, we summarize the biogenesis of HCV envelope glycoproteins and their role in HCV morphogenesis in the context of the hijacking of the very low-density lipoprotein assembly pathway by this virus. We also describe the functions of HCV glycoproteins during virus entry with a special focus on the unexpected structural features of E2 glycoprotein. Finally, we discuss the major neutralizing epitopes in the light of E2 structure.
Collapse
Affiliation(s)
- Muriel Lavie
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University of Lille, F-59021 Lille, France
| | - François Penin
- Institut de Biologie & Chimie des Protéines, Bases Moléculaires & Structurales des Systèmes Infectieux, UMR-5086-CNRS, Labex Ecofect, Université de Lyon, Lyon, France
| | - Jean Dubuisson
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University of Lille, F-59021 Lille, France
| |
Collapse
|
7
|
Unexpected structural features of the hepatitis C virus envelope protein 2 ectodomain. J Virol 2014; 88:10280-8. [PMID: 24991010 DOI: 10.1128/jvi.00874-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV), a member of the family Flaviviridae, is a leading cause of chronic liver disease and cancer. Recent advances in HCV therapeutics have resulted in improved cure rates, but an HCV vaccine is not available and is urgently needed to control the global pandemic. Vaccine development has been hampered by the lack of high-resolution structural information for the two HCV envelope glycoproteins, E1 and E2. Recently, Kong and coworkers (Science 342:1090-1094, 2013, doi:10.1126/science.1243876) and Khan and coworkers (Nature 509[7500]:381-384, 2014, doi:10.1038/nature13117) independently determined the structure of the HCV E2 ectodomain core with some unexpected and informative results. The HCV E2 ectodomain core features a globular architecture with antiparallel β-sheets forming a central β sandwich. The residues comprising the epitopes of several neutralizing and nonneutralizing human monoclonal antibodies were also determined, which is an essential step toward obtaining a fine map of the human humoral response to HCV. Also clarified were the regions of E2 that directly bind CD81, an important HCV cellular receptor. While it has been widely assumed that HCV E2 is a class II viral fusion protein (VFP), the newly determined structure suggests that the HCV E2 ectodomain shares structural and functional similarities only with domain III of class II VFPs. The new structural determinations suggest that the HCV glycoproteins use a different mechanism than that used by class II fusion proteins for cell fusion.
Collapse
|
8
|
Wahid A, Helle F, Descamps V, Duverlie G, Penin F, Dubuisson J. Disulfide bonds in hepatitis C virus glycoprotein E1 control the assembly and entry functions of E2 glycoprotein. J Virol 2013; 87:1605-17. [PMID: 23175356 PMCID: PMC3554189 DOI: 10.1128/jvi.02659-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/09/2012] [Indexed: 12/24/2022] Open
Abstract
Class II membrane fusion proteins have been described in viruses in which the envelope proteins are derived from a precursor polyprotein containing two transmembrane glycoproteins arranged in tandem. Although the second protein, which carries the membrane fusion function, is in general well characterized, the companion protein, which is a protein chaperone for the folding of the fusion protein, is less well characterized for some viruses, like hepatitis C virus (HCV). To investigate the role of the class II companion glycoprotein E1 of HCV, we chose to target conserved cysteine residues in the protein, and we systematically mutated them in a full-length infectious HCV clone by reverse genetics. All the mutants were infectious, albeit with lower titers than the wild-type virus. The reduced infectivity was in part due to a decrease in viral assembly, as revealed by measurement of intracellular infectivity and by quantification of core protein released from cells transfected with mutant genomes. Analyses of mutated proteins did not show any major defect in folding. However, the mutations reduced virus stability, and they could also affect the density of infectious viral particles. Mutant viruses also showed a defect in cell-to-cell transmission. Finally, our data indicate that HCV glycoprotein E1 can also affect the fusion protein E2 by modulating its recognition by the cellular coreceptor CD81. Therefore, in the context of HCV, our data identify an additional function of a class II companion protein as a molecule that can control the binding capacity of the fusion protein.
Collapse
Affiliation(s)
- Ahmed Wahid
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- Department of Biochemistry, Faculty of Pharmacy, Minia, University, Minia, Egypt
| | - François Helle
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Véronique Descamps
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Gilles Duverlie
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR-5086-CNRS, Université de Lyon, Lyon, France
| | - Jean Dubuisson
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| |
Collapse
|
9
|
Palomares-Jerez F, Nemesio H, Villalaín J. The membrane spanning domains of protein NS4B from hepatitis C virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2958-66. [DOI: 10.1016/j.bbamem.2012.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 02/08/2023]
|
10
|
Nemésio H, Palomares-Jerez F, Villalaín J. NS4A and NS4B proteins from dengue virus: Membranotropic regions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2818-30. [DOI: 10.1016/j.bbamem.2012.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
|
11
|
Palomares-Jerez MF, Nemesio H, Villalaín J. Interaction with membranes of the full C-terminal domain of protein NS4B from hepatitis C virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2536-49. [PMID: 22749751 DOI: 10.1016/j.bbamem.2012.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) NS4B protein is a transmembrane highly hydrophobic protein responsible for many key aspects of the viral replication process. The C-terminal part of NS4B is essential for replication and is a potential target for HCV replication inhibitors. In this work we have carried out a study of the binding to and interaction with model biomembranes of a peptide corresponding to the C-terminal domain of NS4B, NS4B(Cter). We show that NS4B(Cter) partitions into phospholipid membranes, is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. NS4B(Cter) is located in a shallow position in the membrane but it is able to affect the lipid environment from the membrane surface down to the hydrophobic core. Our results identify the C-terminal region of the HCV NS4B protein as a membrane interacting domain, and therefore directly implicated in the HCV life cycle and possibly in the formation of the membranous web.
Collapse
|
12
|
The membrane-active regions of the dengue virus proteins C and E. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2390-402. [DOI: 10.1016/j.bbamem.2011.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 12/24/2022]
|
13
|
Helle F, Duverlie G, Dubuisson J. The hepatitis C virus glycan shield and evasion of the humoral immune response. Viruses 2011; 3:1909-32. [PMID: 22069522 PMCID: PMC3205388 DOI: 10.3390/v3101909] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/28/2011] [Accepted: 10/01/2011] [Indexed: 12/14/2022] Open
Abstract
Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.
Collapse
Affiliation(s)
- François Helle
- Laboratory of Virology, EA4294, Jules Verne University of Picardie, Amiens 80000, France; E-Mail:
| | - Gilles Duverlie
- Laboratory of Virology, EA4294, Jules Verne University of Picardie, Amiens 80000, France; E-Mail:
- Virology Department, Amiens University Hospital Center, South Hospital, Amiens 80000, France
| | - Jean Dubuisson
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille 59021, France; E-Mail:
| |
Collapse
|
14
|
Interaction of the N-terminal segment of HCV protein NS5A with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1212-24. [DOI: 10.1016/j.bbamem.2010.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/18/2010] [Accepted: 02/04/2010] [Indexed: 01/03/2023]
|