1
|
Juhaniewicz-Debinska J. Melittin-Induced Structural Transformations in DMPG and DMPS Lipid Membranes: A Langmuir Monolayer and AFM Study. Molecules 2024; 29:6064. [PMID: 39770152 PMCID: PMC11677270 DOI: 10.3390/molecules29246064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, we explore the interactions between melittin, a cationic antimicrobial peptide, and model lipid membranes composed of the negatively charged phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS). Using the Langmuir monolayer technique and atomic force microscopy (AFM), we reveal novel insights into these interactions. Our key finding is the observation of the ripple phase in the DMPS bilayer on mica, a phenomenon not previously reported for negatively charged single bilayers. This discovery is significant given the critical role of phosphatidylserine (PS) in cancer biology and the potential of melittin as an anticancer agent. We also highlight the importance of subphase composition, as melittin interacts preferentially with lipids in the liquid-condensed phase; thus, selecting the appropriate subphase composition is crucial because it affects lipid behavior and consequently melittin interactions. Our results show that melittin incorporates into lipid monolayers in both liquid-expanded and liquid-condensed phases, enhancing membrane fluidity and disorder, but is expelled from DMPS in the solid phase. AFM imaging further reveals that melittin induces substantial structural changes in the DMPG membrane and forms the ripple phase in the DMPS bilayers. Despite these alterations, melittin does not cause pore formation or membrane rupture, suggesting strong electrostatic adsorption on the membrane surface that prevents penetration. These findings highlight the differential impacts of melittin on lipid monolayers and bilayers and underscore its potential for interacting with membranes without causing disruption.
Collapse
Affiliation(s)
- Joanna Juhaniewicz-Debinska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
2
|
Imaura R, Kawata Y, Matsuo K. Salt-Induced Hydrophobic C-Terminal Region of α-Synuclein Triggers Its Fibrillation under the Mimic Physiologic Condition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20537-20549. [PMID: 39285698 DOI: 10.1021/acs.langmuir.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (αS) causes Parkinson's disease due to the structural alteration into amyloid fibrils that form after the interaction with synaptic membranes in neurons. To understand the alternation mechanism, the effect of salt (NaCl) on the interaction of αS with synaptic mimic membrane was characterized at the molecular level because salt triggered the amyloid fibril formation. The membrane-bound conformation (or the initial conformation before fibrillation) showed that NaCl decreased the number of helical structures and Tyr residues interacting with the membrane surface compared to when NaCl was absent, implying an increase in solvent-exposed regions. The N-terminal region of αS interacted with the membrane, forming the helical structures regardless of NaCl, while the C-terminal region formed a random structure with weak membrane interaction, but NaCl inhibited the interaction of its hydrophobic area, suggesting that salt promoted amyloid fibril formations by exposing the hydrophobic C-terminal region, which can intermolecularly interact with free αS.
Collapse
Affiliation(s)
- Ryota Imaura
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan
| | - Yasushi Kawata
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Koichi Matsuo
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan
- Research Institute for Synchrotron Radiation Science, Hiroshima University, Hiroshima 739-0046, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Hiroshima 739-0046, Japan
| |
Collapse
|
3
|
Characterization and Differential Cytotoxicity of Gramicidin Nanoparticles Combined with Cationic Polymer or Lipid Bilayer. Pharmaceutics 2022; 14:pharmaceutics14102053. [PMID: 36297488 PMCID: PMC9610547 DOI: 10.3390/pharmaceutics14102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Gramicidin (Gr) nanoparticles (NPs) and poly (diallyl dimethyl ammonium) chloride (PDDA) water dispersions were characterized and evaluated against Gram-positive and Gram-negative bacteria and fungus. Dynamic light scattering for sizing, zeta potential analysis, polydispersity, and colloidal stability over time characterized Gr NPs/PDDA dispersions, and plating and colony-forming units counting determined their microbicidal activity. Cell viabilities of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in the presence of the combinations were reduced by 6, 7, and 7 logs, respectively, at 10 μM Gr/10 μg·mL−1 PDDA, 0.5 μM Gr/0. 5μg·mL−1 PDDA, and 0.5 μM Gr/0.5 μg·mL−1 PDDA, respectively. In comparison to individual Gr doses, the combinations reduced doses by half (S. aureus) and a quarter (C. albicans); in comparison to individual PDDA doses, the combinations reduced doses by 6 times (P. aeruginosa) and 10 times (C. albicans). Gr in supported or free cationic lipid bilayers reduced Gr activity against S. aureus due to reduced Gr access to the pathogen. Facile Gr NPs/PDDA disassembly favored access of each agent to the pathogen: PDDA suctioned the pathogen cell wall facilitating Gr insertion in the pathogen cell membrane. Gr NPs/PDDA differential cytotoxicity suggested the possibility of novel systemic uses for the combination.
Collapse
|
4
|
Rocha S, Kumar R, Nordén B, Wittung-Stafshede P. Orientation of α-Synuclein at Negatively Charged Lipid Vesicles: Linear Dichroism Reveals Time-Dependent Changes in Helix Binding Mode. J Am Chem Soc 2021; 143:18899-18906. [PMID: 34748321 PMCID: PMC8603351 DOI: 10.1021/jacs.1c05344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The neuronal protein
α-synuclein, linked to Parkinson’s
disease, binds to negatively charged vesicles adopting a partial α-helix
structure, but helix arrangement at the vesicle surface is not fully
understood. Using linear dichroism spectroscopy (LD), we study the
interaction of monomeric α-synuclein with large unilamellar
vesicles of 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), and 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DOPG) under mild shear flow. The LD data
of oriented lipid vesicles show that the long axis of the protein
helix is oriented preferentially perpendicular to the membrane normal
but deviates from a uniform in-plane distribution. Upon initial binding,
a fraction of helices are oriented in the direction of least curvature
for all ellipsoid-shaped vesicles at a lipid:protein molar ratio of
100. However, at a lower protein concentration the helices distribute
uniformly on DOPS and POPS vesicles. In all cases, the α-synuclein
helices rearrange with time (minute time scale) in the shear flow
and begin to tilt into the vesicle membrane. Faster reorientation
kinetics in the presence of flow suggests that modulation of membrane
dynamics, by thermal or shear-dynamic activation, may overcome steric
barriers by what may be called “flow catalysis”.
Collapse
|
5
|
Quemé-Peña M, Juhász T, Kohut G, Ricci M, Singh P, Szigyártó IC, Papp ZI, Fülöp L, Beke-Somfai T. Membrane Association Modes of Natural Anticancer Peptides: Mechanistic Details on Helicity, Orientation, and Surface Coverage. Int J Mol Sci 2021; 22:ijms22168613. [PMID: 34445319 PMCID: PMC8395313 DOI: 10.3390/ijms22168613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anticancer peptides (ACPs) could potentially offer many advantages over other cancer therapies. ACPs often target cell membranes, where their surface mechanism is coupled to a conformational change into helical structures. However, details on their binding are still unclear, which would be crucial to reach progress in connecting structural aspects to ACP action and to therapeutic developments. Here we investigated natural helical ACPs, Lasioglossin LL-III, Macropin 1, Temporin-La, FK-16, and LL-37, on model liposomes, and also on extracellular vesicles (EVs), with an outer leaflet composition similar to cancer cells. The combined simulations and experiments identified three distinct binding modes to the membranes. Firstly, a highly helical structure, lying mainly on the membrane surface; secondly, a similar, yet only partially helical structure with disordered regions; and thirdly, a helical monomeric form with a non-inserted perpendicular orientation relative to the membrane surface. The latter allows large swings of the helix while the N-terminal is anchored to the headgroup region. These results indicate that subtle differences in sequence and charge can result in altered binding modes. The first two modes could be part of the well-known carpet model mechanism, whereas the newly identified third mode could be an intermediate state, existing prior to membrane insertion.
Collapse
Affiliation(s)
- Mayra Quemé-Peña
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Tünde Juhász
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Correspondence: (T.J.); (T.B.-S.)
| | - Gergely Kohut
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Maria Ricci
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
| | - Priyanka Singh
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Imola Cs. Szigyártó
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
| | - Zita I. Papp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.I.P.); (L.F.)
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.I.P.); (L.F.)
| | - Tamás Beke-Somfai
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Correspondence: (T.J.); (T.B.-S.)
| |
Collapse
|
6
|
Lima B, Ricci M, Garro A, Juhász T, Szigyártó IC, Papp ZI, Feresin G, Garcia de la Torre J, Lopez Cascales J, Fülöp L, Beke-Somfai T, Enriz RD. New short cationic antibacterial peptides. Synthesis, biological activity and mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183665. [PMID: 34097861 DOI: 10.1016/j.bbamem.2021.183665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
We report a theoretical and experimental study on a new series of small-sized antibacterial peptides. Synthesis and bioassays for these peptides are reported here. In addition, we evaluated different physicochemical parameters that modulate antimicrobial activity (charge, secondary structure, amphipathicity, hydrophobicity and polarity). We also performed molecular dynamic simulations to assess the interaction between these peptides and their molecular target (the membrane). Biophysical characterization of the peptides was carried out with different techniques, such as circular dichroism (CD), linear dichroism (LD), infrared spectroscopy (IR), dynamic light scattering (DLS), fluorescence spectroscopy and TEM studies using model systems (liposomes) for mammalian and bacterial membranes. The results of this study allow us to draw important conclusions on three different aspects. Theoretical and experimental results indicate that small-sized peptides have a particular mechanism of action that is different to that of large peptides. These results provide additional support for a previously proposed four-step mechanism of action. The possible pharmacophoric requirement for these small-sized peptides is discussed. Furthermore, our results indicate that a net +4 charge is the adequate for 9 amino acid long peptides to produce antibacterial activity. The information reported here is very important for designing new antibacterial peptides with these structural characteristics.
Collapse
Affiliation(s)
- Beatriz Lima
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400 San Juan, Argentina
| | - Maria Ricci
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Adriana Garro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Tünde Juhász
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Imola Csilla Szigyártó
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Zita I Papp
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 8, Hungary
| | - Gabriela Feresin
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400 San Juan, Argentina
| | - Jose Garcia de la Torre
- Facultad de Química, Departamento de Química Física, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
| | - Javier Lopez Cascales
- Grupo de Bioinformática y Macromoléculas (BioMac), Área de Química Física, Universidad Politécnica de Cartagena, Aulario II, ́ Campus de Alfonso XIII, 30203 Cartagena, Murcia, Spain
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 8, Hungary.
| | - Tamás Beke-Somfai
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary.
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina.
| |
Collapse
|
7
|
Singh P, Szigyártó IC, Ricci M, Zsila F, Juhász T, Mihály J, Bősze S, Bulyáki É, Kardos J, Kitka D, Varga Z, Beke-Somfai T. Membrane Active Peptides Remove Surface Adsorbed Protein Corona From Extracellular Vesicles of Red Blood Cells. Front Chem 2020; 8:703. [PMID: 32850685 PMCID: PMC7432246 DOI: 10.3389/fchem.2020.00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022] Open
Abstract
Besides the outstanding potential in biomedical applications, extracellular vesicles (EVs) are also promising candidates to expand our knowledge on interactions between vesicular surface proteins and small-molecules which exert biomembrane-related functions. Here we provide mechanistic details on interactions between membrane active peptides with antimicrobial effect (MAPs) and red blood cell derived EVs (REVs) and we demonstrate that they have the capacity to remove members of the protein corona from REVs even at lower than 5 μM concentrations. In case of REVs, the Soret-band arising from the membrane associated hemoglobins allowed to follow the detachment process by flow-Linear Dichroism (flow-LD). Further on, the significant change on the vesicle surfaces was confirmed by transmission electron microscopy (TEM). Since membrane active peptides, such as melittin have the affinity to disrupt vesicles, a combination of techniques, fluorescent antibody labeling, microfluidic resistive pulse sensing, and flow-LD were employed to distinguish between membrane destruction and surface protein detachment. The removal of protein corona members is a newly identified role for the investigated peptides, which indicates complexity of their in vivo function, but may also be exploited in synthetic and natural nanoparticle engineering. Furthermore, results also promote that EVs can be used as improved model systems for biophysical studies providing insight to areas with so far limited knowledge.
Collapse
Affiliation(s)
- Priyanka Singh
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Maria Ricci
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Éva Bulyáki
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Diána Kitka
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
8
|
Lyu C, Fang F, Li B. Anti-Tumor Effects of Melittin and Its Potential Applications in Clinic. Curr Protein Pept Sci 2019; 20:240-250. [PMID: 29895240 DOI: 10.2174/1389203719666180612084615] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
Melittin, a major component of bee venom, is a water-soluble toxic peptide of which a various biological effects have been identified to be useful in anti-tumor therapy. In addition, Melittin also has anti-parasitic, anti-bacterial, anti-viral, and anti-inflammatory activities. Therefore, it is a very attractive therapeutic candidate for human diseases. However, melittin induces extensive hemolysis, a severe side effect that dampens its future development and clinical application. Thus, studies of melittin derivatives and new drug delivery systems have been conducted to explore approaches for optimizing the efficacy of this compound, while reducing its toxicity. A number of reviews have focused on each side, respectively. In this review, we summarize the research progress on the anti-tumor effects of melittin and its derivatives, and discuss its future potential clinical applications.
Collapse
Affiliation(s)
- Can Lyu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Britt HM, Mosely JA, Sanderson JM. The influence of cholesterol on melittin lipidation in neutral membranes. Phys Chem Chem Phys 2019; 21:631-640. [DOI: 10.1039/c8cp06661b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cholesterol inclusion in membranes influences the rate and selectivity of acyl transfer from lipids to a membrane-embedded peptide.
Collapse
|
10
|
Szigyártó IC, Deák R, Mihály J, Rocha S, Zsila F, Varga Z, Beke-Somfai T. Flow Alignment of Extracellular Vesicles: Structure and Orientation of Membrane-Associated Bio-macromolecules Studied with Polarized Light. Chembiochem 2018; 19:545-551. [PMID: 29237098 DOI: 10.1002/cbic.201700378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/17/2017] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles (EVs) are currently in scientific focus, as they have great potential to revolutionize the diagnosis and therapy of various diseases. However, numerous aspects of these species are still poorly understood, and thus, additional insight into their molecular-level properties, membrane-protein interactions, and membrane rigidity is still needed. We here demonstrate the use of red-blood-cell-derived EVs (REVs) that polarized light spectroscopy techniques, linear and circular dichroism, can provide molecular-level structural information on these systems. Flow-linear dichroism (flow-LD) measurements show that EVs can be oriented by shear force and indicate that hemoglobin molecules are associated to the lipid bilayer in freshly released REVs. During storage, this interaction ceases; this is coupled to major protein conformational changes relative to the initial state. Further on, the degree of orientation gives insight into vesicle rigidity, which decreases in time parallel to changes in protein conformation. Overall, we propose that both linear dichroism and circular dichroism spectroscopy can provide simple, rapid, yet efficient ways to track changes in the membrane-protein interactions of EV components at the molecular level, which may also give insight into processes occurring during vesiculation.
Collapse
Affiliation(s)
- Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Róbert Deák
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Sandra Rocha
- Department of Biology and Biological Engineering, Chalmers University of Technology, Chemical Biology, Kemigården 4, 41296, Göteborg, Sweden
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary.,Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Kemigården 4, 41296, Göteborg, Sweden
| |
Collapse
|
11
|
|
12
|
Juhaniewicz J, Sek S. Interaction of Melittin with Negatively Charged Lipid Bilayers Supported on Gold Electrodes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Kogan M, Feng B, Nordén B, Rocha S, Beke-Somfai T. Shear-induced membrane fusion in viscous solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4875-4878. [PMID: 24758573 DOI: 10.1021/la404857r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s(-1) provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force-induced stress.
Collapse
Affiliation(s)
- Maxim Kogan
- Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
14
|
Postupalenko VY, Zamotaiev OM, Shvadchak VV, Strizhak AV, Pivovarenko VG, Klymchenko AS, Mely Y. Dual-fluorescence L-amino acid reports insertion and orientation of melittin peptide in cell membranes. Bioconjug Chem 2013; 24:1998-2007. [PMID: 24266665 DOI: 10.1021/bc400325n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring insertion and orientation of peptides in situ on cell membranes remains a challenge. To this end, we synthesized an l-amino acid (AFaa) containing a dual-fluorescence dye of the 3-hydroxyflavone family, as a side chain. In contrast to other labeling approaches using a flexible linker, the AFaa fluorophore, introduced by solid phase synthesis into desired position of a peptide, is attached closely to its backbone with well-defined orientation, and, therefore, could reflect its localization in the membrane. This concept was validated by replacing the leucine-9 (L9) and tryptophan-19 (W19) residues by AFaa in melittin, a well-studied membrane-active peptide. Due to high sensitivity of AFaa dual emission to the environment polarity, we detected a much deeper insertion of L9 peptide position into the bilayer, compared to the W19 position. Moreover, using fluorescence microscopy with a polarized light excitation, we found different orientation of AFaa at L9 and W19 positions of melittin in the bilayers of giant vesicles and cellular membranes. These results suggested that in the natural membranes, similarly to the model lipid bilayers, melittin is preferentially oriented parallel to the membrane surface. The developed amino acid and the proposed methodology will be of interest to study other membrane peptides.
Collapse
Affiliation(s)
- Viktoriia Y Postupalenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Chaudhuri A, Haldar S, Sun H, Koeppe RE, Chattopadhyay A. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:419-28. [PMID: 24148157 DOI: 10.1016/j.bbamem.2013.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 01/25/2023]
Abstract
The linear ion channel peptide gramicidin represents an excellent model for exploring the principles underlying membrane protein structure and function, especially with respect to tryptophan residues. The tryptophan residues in gramicidin channels are crucial for the structure and function of the channel. In order to test the importance of indole hydrogen bonding for the biophysical properties of gramicidin channels, we monitored the effect of N-methylation of gramicidin tryptophans, using a combination of steady state and time-resolved fluorescence approaches along with circular dichroism spectroscopy. We show here that in the absence of the hydrogen bonding ability of tryptophans, tetramethyltryptophan gramicidin (TM-gramicidin) is unable to maintain the single stranded, head-to-head dimeric channel conformation in membranes. Our results show that TM-gramicidin displays a red-shifted fluorescence emission maximum, lower red edge excitation shift (REES), and higher fluorescence intensity and lifetime, consistent with its nonchannel conformation. This is in agreement with the measured location (average depth) of the 1-methyltryptophans in TM-gramicidin using the parallax method. These results bring out the usefulness of 1-methyltryptophan as a fluorescent tool to examine the hydrogen bonding ability of tryptophans in proteins and peptides. We conclude that changes in the hydrogen bonding ability of tryptophans, along with coupled changes in peptide backbone structure induce the loss of single stranded β(6.3) helical dimer conformation. These results agree with earlier results from size-exclusion chromatography and single-channel measurements for TM-gramicidin, and confirm the importance of indole hydrogen bonding for the conformation and function of ion channels and membrane proteins.
Collapse
Affiliation(s)
- Arunima Chaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | |
Collapse
|
16
|
Kogan M, Nordén B, Beke-Somfai T. High anisotropy of flow-aligned bicellar membrane systems. Chem Phys Lipids 2013; 175-176:105-15. [PMID: 23999012 DOI: 10.1016/j.chemphyslip.2013.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/17/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 °C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes.
Collapse
Affiliation(s)
- Maxim Kogan
- Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | |
Collapse
|
17
|
Carvalho CA, Olivares-Ortega C, Soto-Arriaza MA, Carmona-Ribeiro AM. Interaction of gramicidin with DPPC/DODAB bilayer fragments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3064-71. [PMID: 22960286 DOI: 10.1016/j.bbamem.2012.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
The interaction between the antimicrobial peptide gramicidin (Gr) and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer fragments (BFs) was evaluated by means of several techniques. The major methods were: 1) Gr intrinsic fluorescence and circular dichroism (CD) spectroscopy; 2) dynamic light scattering for sizing and zeta-potential analysis; 3) determination of the bilayer phase transition from extrinsic fluorescence of bilayer probes; 4) pictures of the dispersions for evaluation of coloidal stability over a range of time and NaCl concentration. For Gr in LVs, the Gr dimeric channel conformation is suggested from: 1) CD and intrinsic fluorescence spectra similar to those in trifluoroethanol (TFE); 2) KCl or glucose permeation through the LVs/Gr bilayer. For Gr in BFs, the intertwined dimeric, non-channel Gr conformation is evidenced by CD and intrinsic fluorescence spectra similar to those in ethanol. Both LVs and BFs shield Gr tryptophans against quenching by acrylamide but the Stern-Volmer quenching constant was slightly higher for Gr in BFs confirming that the peptide is more exposed to the water phase in BFs than in LVs. The DPPC/DODAB/Gr supramolecular assemblies may predict the behavior of other antimicrobial peptides in assemblies with lipids.
Collapse
Affiliation(s)
- Camilla A Carvalho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
18
|
Sanderson JM. Resolving the kinetics of lipid, protein and peptide diffusion in membranes. Mol Membr Biol 2012; 29:118-43. [DOI: 10.3109/09687688.2012.678018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Dods RH, Mosely JA, Sanderson JM. The innate reactivity of a membrane associated peptide towards lipids: acyl transfer to melittin without enzyme catalysis. Org Biomol Chem 2012; 10:5371-8. [DOI: 10.1039/c2ob07113d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Rokitskaya TI, Sorochkina AI, Kovalchuk SI, Egorova NS, Kotova EA, Sychev SV, Antonenko YN. The pH-dependent induction of lipid membrane ionic permeability by N-terminally lysine-substituted analogs of gramicidin A. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:129-38. [DOI: 10.1007/s00249-011-0764-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/30/2011] [Accepted: 10/11/2011] [Indexed: 11/29/2022]
|
21
|
Irudayam SJ, Berkowitz ML. Influence of the arrangement and secondary structure of melittin peptides on the formation and stability of toroidal pores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2258-66. [DOI: 10.1016/j.bbamem.2011.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/21/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
|