1
|
Wilhelm J, Pos KM. Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001438. [PMID: 38358391 PMCID: PMC10924465 DOI: 10.1099/mic.0.001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Gram-negative bacterial members of the Resistance Nodulation and cell Division (RND) superfamily form tripartite efflux pump systems that span the cell envelope. One of the intriguing features of the multiple drug efflux members of this superfamily is their ability to recognize different classes of antibiotics, dyes, solvents, bile salts, and detergents. This review provides an overview of the molecular mechanisms of multiple drug efflux catalysed by the tripartite RND efflux system AcrAB-TolC from Eschericha coli. The determinants for sequential or simultaneous multiple substrate binding and efflux pump inhibitor binding are discussed. A comparison is made with the determinants for substrate binding of AdeB from Acinetobacter baumannii, which acts within the AdeABC multidrug efflux system. There is an apparent general similarity between the structures of AcrB and AdeB and their substrate specificity. However, the presence of distinct conformational states and different drug efflux capacities as revealed by single-particle cryo-EM and mutational analysis suggest that the drug binding and transport features exhibited by AcrB may not be directly extrapolated to the homolog AdeB efflux pump.
Collapse
Affiliation(s)
- Julia Wilhelm
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Lupu L, Kleinekofort W, Morgner N. Epitope characterization of proteins and aptamers with mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:359-369. [PMID: 37957929 DOI: 10.1177/14690667231208530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The way in which professor Michael Przybylski has combined the spirit of research with entrepreneurship has set an example for any and all scientists. He has made significant achievements in the fields of mass spectrometry, biochemistry and medicine, and has initiated important technological developments in the area of protein analysis. Between 2016 and 2023 professor Przybylski's scientific focus shifted on protein interactions with emphasis on aptamer-protein and antibody-protein analysis. This review focuses on professor Przybylski's achievements in the last few years highlighting his impact on the scientific community, on his students and colleagues.
Collapse
Affiliation(s)
- Loredana Lupu
- AffyMSLifeChem Centre for Analytical Biochemistry and Biomedical Mass Spectrometry, Rüsselsheim am Main, Germany
| | | | - Nina Morgner
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt am Main, Frankfurt Am Main, Germany
| |
Collapse
|
3
|
Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010180. [PMID: 36671381 PMCID: PMC9854755 DOI: 10.3390/antibiotics12010180] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a major problem in public health leading to an estimated 4.95 million deaths in 2019. The selective pressure caused by the massive and repeated use of antibiotics has led to bacterial strains that are partially or even entirely resistant to known antibiotics. AMR is caused by several mechanisms, among which the (over)expression of multidrug efflux pumps plays a central role. Multidrug efflux pumps are transmembrane transporters, naturally expressed by Gram-negative bacteria, able to extrude and confer resistance to several classes of antibiotics. Targeting them would be an effective way to revive various options for treatment. Many efflux pump inhibitors (EPIs) have been described in the literature; however, none of them have entered clinical trials to date. This review presents eight families of EPIs active against Escherichia coli or Pseudomonas aeruginosa. Structure-activity relationships, chemical synthesis, in vitro and in vivo activities, and pharmacological properties are reported. Their binding sites and their mechanisms of action are also analyzed comparatively.
Collapse
|
4
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
5
|
Kobylka J, Kuth MS, Müller RT, Geertsma ER, Pos KM. AcrB: a mean, keen, drug efflux machine. Ann N Y Acad Sci 2019; 1459:38-68. [PMID: 31588569 DOI: 10.1111/nyas.14239] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022]
Abstract
Gram-negative bacteria are intrinsically resistant against cytotoxic substances by means of their outer membrane and a network of multidrug efflux systems, acting in synergy. Efflux pumps from various superfamilies with broad substrate preferences sequester and pump drugs across the inner membrane to supply the highly polyspecific and powerful tripartite resistance-nodulation-cell division (RND) efflux pumps with compounds to be extruded across the outer membrane barrier. In Escherichia coli, the tripartite efflux system AcrAB-TolC is the archetype RND multiple drug efflux pump complex. The homotrimeric inner membrane component acriflavine resistance B (AcrB) is the drug specificity and energy transduction center for the drug/proton antiport process. Drugs are bound and expelled via a cycle of mainly three consecutive states in every protomer, constituting a flexible alternating access channel system. This review recapitulates the molecular basis of drug and inhibitor binding, including mechanistic insights into drug efflux by AcrB. It also summarizes 17 years of mutational analysis of the gene acrB, reporting the effect of every substitution on the ability of E. coli to confer resistance toward antibiotics (http://goethe.link/AcrBsubstitutions). We emphasize the functional robustness of AcrB toward single-site substitutions and highlight regions that are more sensitive to perturbation.
Collapse
Affiliation(s)
- Jessica Kobylka
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Miriam S Kuth
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Reinke T Müller
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Asami H, Kawabata R, Kawauchi N, Kohno JY. Photodissociation Spectroscopy of Hydrated Myoglobin Ions Isolated by IR-laser Ablation of a Droplet Beam: Recovery from pH-denatured Structure by Gas-phase Isolation. CHEM LETT 2019. [DOI: 10.1246/cl.180884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hiroya Asami
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Rina Kawabata
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Norishi Kawauchi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-ya Kohno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
7
|
Hellwig N, Peetz O, Ahdash Z, Tascón I, Booth PJ, Mikusevic V, Diskowski M, Politis A, Hellmich Y, Hänelt I, Reading E, Morgner N. Native mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs. Chem Commun (Camb) 2018; 54:13702-13705. [PMID: 30452022 PMCID: PMC6289172 DOI: 10.1039/c8cc06284f] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
Other than more widely used methods, the use of styrene maleic acid allows the direct extraction of membrane proteins from the lipid bilayer into SMALPs keeping it in its native lipid surrounding. Here we present the combined use of SMALPs and LILBID-MS, allowing determination of oligomeric states of membrane proteins of different functionality directly from the native nanodiscs.
Collapse
Affiliation(s)
- Nils Hellwig
- Institute of Physical and Theoretical Chemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 7
, 60438 Frankfurt
, Germany
.
| | - Oliver Peetz
- Institute of Physical and Theoretical Chemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 7
, 60438 Frankfurt
, Germany
.
| | - Zainab Ahdash
- Department of Chemistry
, King's College London
,
7 Trinity Street
, SE1 1DB
, London
, UK
| | - Igor Tascón
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Paula J. Booth
- Department of Chemistry
, King's College London
,
7 Trinity Street
, SE1 1DB
, London
, UK
| | - Vedrana Mikusevic
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Marina Diskowski
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Argyris Politis
- Department of Chemistry
, King's College London
,
7 Trinity Street
, SE1 1DB
, London
, UK
| | - Yvonne Hellmich
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Inga Hänelt
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Eamonn Reading
- Department of Chemistry
, King's College London
,
7 Trinity Street
, SE1 1DB
, London
, UK
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 7
, 60438 Frankfurt
, Germany
.
| |
Collapse
|
8
|
Puvanendran D, Cece Q, Picard M. Reconstitution of the activity of RND efflux pumps: a “bottom-up” approach. Res Microbiol 2018; 169:442-449. [DOI: 10.1016/j.resmic.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/11/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022]
|
9
|
Tam HK, Malviya VN, Pos KM. High-Resolution Crystallographic Analysis of AcrB Using Designed Ankyrin Repeat Proteins (DARPins). Methods Mol Biol 2018; 1700:3-24. [PMID: 29177822 DOI: 10.1007/978-1-4939-7454-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
X-ray crystallography is still the most prominent technique in use to decipher the 3D structures of membrane proteins. For successful crystallization, sample quality is the most important parameter that should be addressed. In almost every case, highly pure, monodisperse, and stable protein sample is a prerequisite. Vapor diffusion is in general the method of choice for obtaining crystals. Here, we discuss a detailed protocol for overproduction and purification of the inner-membrane multidrug transporter AcrB and of DARPins, which are used for crystallization of the AcrB/DARPin complex, resulting in high-resolution diffraction and subsequent structure determination.
Collapse
Affiliation(s)
- Heng Keat Tam
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany.
| | | | - Klaas M Pos
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Müller RT, Travers T, Cha HJ, Phillips JL, Gnanakaran S, Pos KM. Switch Loop Flexibility Affects Substrate Transport of the AcrB Efflux Pump. J Mol Biol 2017; 429:3863-3874. [PMID: 28987732 DOI: 10.1016/j.jmb.2017.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/15/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022]
Abstract
The functionally important switch loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11-amino-acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutions on the PC1-proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway toward the deep binding pocket. Two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.
Collapse
Affiliation(s)
- Reinke T Müller
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States; Center for Nonlinear Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Hi-Jea Cha
- Engelhard Arzneimittel GmbH & Co. KG, Herzbergstrasse 3, 61138 Niederdorfelden, Germany
| | - Joshua L Phillips
- Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Klaas M Pos
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Upadhyay V, Ceh K, Tumulka F, Abele R, Hoffmann J, Langer J, Shima S, Ermler U. Molecular characterization of methanogenic N 5 -methyl-tetrahydromethanopterin: Coenzyme M methyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2140-2144. [DOI: 10.1016/j.bbamem.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/15/2016] [Indexed: 11/26/2022]
|
12
|
Komatsu K, Nirasawa T, Hoshino-Nagasaka M, Kohno JY. Mechanism of Protein Molecule Isolation by IR Laser Ablation of Droplet Beam. J Phys Chem A 2016; 120:1495-500. [PMID: 26903000 DOI: 10.1021/acs.jpca.5b10873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas-phase isolation of bovine serum albumin (BSA) from aqueous solutions is performed by IR laser ablation of a droplet beam. Multiply charged BSA ions (positive and negative) were produced by the IR laser irradiation onto a droplet beam of aqueous BSA solutions with various pH values prepared by addition of hydrochloric acid or sodium hydroxide to the solution. The isolation mechanism was discussed based on the charge state of the isolated BSA ions. A nanodroplet model explains the gas-phase charge distribution of the BSA ions. This study provides a fundamental basis for further studies of a wide variety of biomolecules in the gas phase isolated directly from solution.
Collapse
Affiliation(s)
- Kensuke Komatsu
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Takuya Nirasawa
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Mariko Hoshino-Nagasaka
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-ya Kohno
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
13
|
Du D, van Veen HW, Murakami S, Pos KM, Luisi BF. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 2015; 33:76-91. [PMID: 26282926 DOI: 10.1016/j.sbi.2015.07.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/29/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies.
Collapse
Affiliation(s)
- Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Hendrik W van Veen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Satoshi Murakami
- Division of Structure and Function of Biomolecules, Department of Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Klaas M Pos
- Institute of Biochemistry, Goethe Universität Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
14
|
Ly K, Bartho JD, Eicher T, Pos KM, Mitra AK. A novel packing arrangement of AcrB in the lipid bilayer membrane. FEBS Lett 2014; 588:4776-83. [PMID: 25451234 DOI: 10.1016/j.febslet.2014.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 12/01/2022]
Abstract
The central component AcrB of the Escherichia coli drug efflux complex AcrA-AcrB-TolC has been extensively investigated by X-ray crystallography of detergent-protein 3-D crystals. In these crystals, AcrB packs as trimers - the functional unit. We visualized the AcrB-AcrB interaction in its native environment by examining E. coli lipid reconstituted 2-D crystals, which were overwhelmingly formed by asymmetric trimers stabilized by strongly-interacting monomers from adjacent trimers. Most interestingly, we observed lattices formed by an arrangement of AcrB monomers distinct from that in traditional trimers. This hitherto unobserved packing, might play a role in the biogenesis of trimeric AcrB.
Collapse
Affiliation(s)
- K Ly
- School of Biological Sciences, Private Bag 92019, University of Auckland, Auckland, New Zealand
| | - J D Bartho
- School of Biological Sciences, Private Bag 92019, University of Auckland, Auckland, New Zealand
| | - T Eicher
- Institute of Biochemistry, Max-von-Laue-Str. 9, Goethe-University Frankfurt am Main, Germany(1)
| | - K M Pos
- Institute of Biochemistry, Max-von-Laue-Str. 9, Goethe-University Frankfurt am Main, Germany(1)
| | - A K Mitra
- School of Biological Sciences, Private Bag 92019, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Kohno JY, Nabeta K, Sasaki N. Charge State of Lysozyme Molecules in the Gas Phase Produced by IR-Laser Ablation of Droplet Beam. J Phys Chem A 2012; 117:9-14. [DOI: 10.1021/jp3096506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jun-ya Kohno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo
171-8588, Japan
| | - Kyohei Nabeta
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo
171-8588, Japan
| | - Nobuteru Sasaki
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo
171-8588, Japan
| |
Collapse
|
16
|
Lu W, Chai Q, Zhong M, Yu L, Fang J, Wang T, Li H, Zhu H, Wei Y. Assembling of AcrB trimer in cell membrane. J Mol Biol 2012; 423:123-34. [PMID: 22766312 PMCID: PMC5699209 DOI: 10.1016/j.jmb.2012.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 11/16/2022]
Abstract
Many membrane proteins exist and function as oligomers, but how monomers oligomerize in the cell membrane remains poorly understood. AcrB is an obligate homo-trimer. We previously found that the folding of individual subunit precedes oligomerization. Following folding, individual AcrB subunits must locate and interact with each other in order to dimerize and eventually trimerize. It has been unclear if AcrB trimerization is a spontaneous process following the "chance encounter and random assembling" mechanism. In other words, it is currently unknown whether monomeric subunits diffuse freely to "search" for each other after they are co-translationally inserted and folded into the cell membrane. Using four sets of experiments exploiting AcrB variants with different fusion tags, disulfide trapping, and activity measurement, here we showed that AcrB variants co-expressed in the same Escherichia coli cell did co-assemble into hybrid trimers in vivo. However, the level of co-assembly measured experimentally was not consistent with calculations derived from random assembling. The potential role of the polysome structure during protein translation and the resultant clustering effect were discussed as a potential explanation for the observed bias in AcrB subunit assembling in vivo. Our results provide new insights into the dynamic assembling and equilibration process of obligate homo-oligomeric membrane proteins in the cell membrane.
Collapse
Affiliation(s)
- Wei Lu
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Qian Chai
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Meng Zhong
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Linliang Yu
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jun Fang
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Tong Wang
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Huilin Li
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
17
|
Ohene-Agyei T, Lea JD, Venter H. Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets. FEMS Microbiol Lett 2012; 333:20-7. [PMID: 22568688 DOI: 10.1111/j.1574-6968.2012.02594.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/24/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
Drug efflux pumps such as MexAB-OprM from Pseudomonas aeruginosa confer resistance to a wide range of chemically different compounds. Within the tripartite assembly, the inner membrane protein MexB is mainly responsible for substrate recognition. Recently, considerable advances have been made in elucidating the drug efflux pathway through the large periplasmic domains of resistance-nodulation-division (RND) transporters. However, little is known about the role of amino acids in other parts of the protein. We have investigated the role of two conserved phenylalanine residues that are aligned around the cytoplasmic side of the central cavity of MexB. The two conserved phenylalanine residues have been mutated to alanine residues (FAFA MexB). The interaction of the wild-type and mutant proteins with a variety of drugs from different classes was investigated by assays of cytotoxicity and drug transport. The FAFA mutation affected the efflux of compounds that have targets inside the cell, but antibiotics that act on cell wall synthesis and membrane probes were unaffected. Combined, our results indicate the presence of a hitherto unidentified cytoplasmic-binding site in RND drug transporters and enhance our understanding of the molecular mechanisms that govern drug resistance in Gram-negative pathogens.
Collapse
|
18
|
Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 2012; 109:5687-92. [PMID: 22451937 DOI: 10.1073/pnas.1114944109] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AcrAB-TolC is the major efflux protein complex in Escherichia coli extruding a vast variety of antimicrobial agents from the cell. The inner membrane component AcrB is a homotrimer, and it has been postulated that the monomers cycle consecutively through three conformational stages designated loose (L), tight (T), and open (O) in a concerted fashion. Binding of drugs has been shown at a periplasmic deep binding pocket in the T conformation. The initial drug-binding step and transport toward this drug-binding site has been elusive thus far. Here we report high resolution structures (1.9-2.25 Å) of AcrB/designed ankyrin repeat protein (DARPin) complexes with bound minocycline or doxorubicin. In the AcrB/doxorubicin cocrystal structure, binding of three doxorubicin molecules is apparent, with one doxorubicin molecule bound in the deep binding pocket of the T monomer and two doxorubicin molecules in a stacked sandwich arrangement in an access pocket at the lateral periplasmic cleft of the L monomer. This access pocket is separated from the deep binding pocket apparent in the T monomer by a switch-loop. The localization and conformational flexibility of this loop seems to be important for large substrates, because a G616N AcrB variant deficient in macrolide transport exhibits an altered conformation within this loop region. Transport seems to be a stepwise process of initial drug uptake in the access pocket of the L monomer and subsequent accommodation of the drug in the deep binding pocket during the L to T transition to the internal deep binding pocket of the T monomer.
Collapse
|