1
|
Bruni R. High-Throughput Cell-Free Screening of Eukaryotic Membrane Proteins in Lipidic Mimetics. Curr Protoc 2022; 2:e510. [PMID: 35926131 DOI: 10.1002/cpz1.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane proteins (MPs) carry out important functions in the metabolism of cells, such as the detection of extracellular activities and the transport of small molecules across the plasma and organelle membranes. Expression of MPs for biochemical, biophysical, and structural analysis is in most cases achieved by overexpression of the desired target in an appropriate host, such as a bacterium. However, overexpression of MPs is usually toxic to the host cells and can lead to aggregation of target protein and to resistance to detergent extraction. An alternative to cell-based MP expression is cell-free (CF), or in vitro, expression. CF expression of MPs has several advantages over cell-based methods, including lack of toxicity issues, no requirement for detergent extraction, and direct incorporation of target proteins in various lipidic mimetics. This article describes a high-throughput method for the expression and purification of eukaryotic membrane proteins used in the author's lab. Basic Protocol 1 describes the selection and cloning of target genes into appropriate vectors for CF expression. Basic Protocol 2 describes the assembly of CF reactions for high-throughput screening. Basic Protocol 3 outlines methods for purification and detection of target proteins. Support Protocols 1-6 describe various accessory procedures: amplification of target, treatment of vectors to prepare them for ligation-independent cloning, and the preparation of S30 extract, T7 RNA polymerase, liposomes, and nanodiscs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Target selection, construct design, and cloning into pET-based expression vectors Support Protocol 1: Amplification of target DNA Support Protocol 2: Preparation of ligation-independent cloning (LIC)-compatible vectors Basic Protocol 2: Assembly of small-scale cell-free reactions for high-throughput screening Support Protocol 3: Preparation of Escherichia coli S30 extract Support Protocol 4: Preparation of T7 RNA polymerase Support Protocol 5: Preparation of liposomes Support Protocol 6: Preparation of nanodiscs Basic Protocol 3: Purification and detection of cell-free reaction products.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center, New York, New York
| |
Collapse
|
2
|
Bruni R, Laguerre A, Kaminska A, McSweeney S, Hendrickson WA, Liu Q. High-throughput cell-free screening of eukaryotic membrane protein expression in lipidic mimetics. Protein Sci 2022; 31:639-651. [PMID: 34910339 PMCID: PMC8862427 DOI: 10.1002/pro.4259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022]
Abstract
Membrane proteins play essential roles in cellular function and metabolism. Nonetheless, biophysical and structural studies of membrane proteins are impeded by the difficulty of their expression in and purification from heterologous cell-based systems. As an alternative to these cell-based systems, cell-free protein synthesis has proven to be an exquisite method for screening membrane protein targets in a variety of lipidic mimetics. Here we report a high-throughput screening workflow and apply it to screen 61 eukaryotic membrane protein targets. For each target, we tested its expression in lipidic mimetics: two detergents, two liposomes, and two nanodiscs. We show that 35 membrane proteins (57%) can be expressed in a soluble fraction in at least one of the mimetics with the two detergents performing significantly better than nanodiscs and liposomes, in that order. Using the established cell-free workflow, we studied the production and biophysical assays for mitochondrial pyruvate carrier (MPC) complexes. Our studies show that the complexes produced in cell-free are functionally competent in complex formation and substrate binding. Our results highlight the utility of using cell-free systems for screening and production of eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA
| | - Aisha Laguerre
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
Roche DiagnosticsSanta ClaraCaliforniaUSA
| | - Anna‐Maria Kaminska
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
New York Blood CenterNew YorkNew YorkUSA
| | | | - Wayne A. Hendrickson
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
| | - Qun Liu
- NSLS‐II, Brookhaven National LaboratoryUptonNew YorkUSA,Biology DepartmentBrookhaven National LaboratoryUptonNew YorkUSA
| |
Collapse
|
3
|
Clénet D, Clavier L, Strobbe B, Le Bon C, Zoonens M, Saulnier A. Full-length G glycoprotein directly extracted from rabies virus with detergent and then stabilized by amphipols in liquid and freeze-dried forms. Biotechnol Bioeng 2021; 118:4317-4330. [PMID: 34297405 PMCID: PMC9291542 DOI: 10.1002/bit.27900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 11/11/2022]
Abstract
Pathogen surface antigens are at the forefront of the viral strategy when invading host organisms. These antigens, including membrane proteins (MPs), are broadly targeted by the host immune response. Obtaining these MPs in a soluble and stable form constitutes a real challenge, regardless of the application purposes (e.g. quantification/characterization assays, diagnosis, and preventive and curative strategies). A rapid process to obtain a native-like antigen by solubilization of a full-length MP directly from a pathogen is reported herein. Rabies virus (RABV) was used as a model for this demonstration and its full-length G glycoprotein (RABV-G) was stabilized with amphipathic polymers, named amphipols (APols). The stability of RABV-G trapped in APol A8-35 (RABV-G/A8-35) was evaluated under different stress conditions (temperature, agitation, and light exposure). RABV-G/A8-35 in liquid form exhibited higher unfolding temperature (+6°C) than in detergent and was demonstrated to be antigenically stable over 1 month at 5°C and 25°C. Kinetic modeling of antigenicity data predicted antigenic stability of RABV-G/A8-35 in a solution of up to 1 year at 5°C. The RABV-G/A8-35 complex formulated in an optimized buffer composition and subsequently freeze-dried displayed long-term stability for 2-years at 5, 25, and 37°C. This study reports for the first time that a natural full-length MP extracted from a virus, complexed to APols and subsequently freeze-dried, displayed long-term antigenic stability, without requiring storage under refrigerated conditions.
Collapse
Affiliation(s)
- Didier Clénet
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
| | - Léna Clavier
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
| | - Benoît Strobbe
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
| | - Christel Le Bon
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, CNRS, Institut de Biologie Physico‐ChimiqueUniversité de ParisParisFrance
| | - Manuela Zoonens
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, CNRS, Institut de Biologie Physico‐ChimiqueUniversité de ParisParisFrance
| | - Aure Saulnier
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
- Department of Analytical SciencesSanofi PasteurMarcy l'EtoileFrance
| |
Collapse
|
4
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
5
|
Escherichia coli Extract-Based Cell-Free Expression System as an Alternative for Difficult-to-Obtain Protein Biosynthesis. Int J Mol Sci 2020; 21:ijms21030928. [PMID: 32023820 PMCID: PMC7037961 DOI: 10.3390/ijms21030928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Before utilization in biomedical diagnosis, therapeutic treatment, and biotechnology, the diverse variety of peptides and proteins must be preliminarily purified and thoroughly characterized. The recombinant DNA technology and heterologous protein expression have helped simplify the isolation of targeted polypeptides at high purity and their structure-function examinations. Recombinant protein expression in Escherichia coli, the most-established heterologous host organism, has been widely used to produce proteins of commercial and fundamental research interests. Nonetheless, many peptides/proteins are still difficult to express due to their ability to slow down cell growth or disrupt cellular metabolism. Besides, special modifications are often required for proper folding and activity of targeted proteins. The cell-free (CF) or in vitro recombinant protein synthesis system enables the production of such difficult-to-obtain molecules since it is possible to adjust reaction medium and there is no need to support cellular metabolism and viability. Here, we describe E. coli-based CF systems, the optimization steps done toward the development of highly productive and cost-effective CF methodology, and the modification of an in vitro approach required for difficult-to-obtain protein production.
Collapse
|
6
|
Rebuffet E, Frick A, Järvå M, Törnroth-Horsefield S. Cell-free production and characterisation of human uncoupling protein 1-3. Biochem Biophys Rep 2017; 10:276-281. [PMID: 28955755 PMCID: PMC5614671 DOI: 10.1016/j.bbrep.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022] Open
Abstract
The uncoupling proteins (UCPs) leak protons across the inner mitochondrial membrane, thus uncoupling the proton gradient from ATP synthesis. The main known physiological role for this is heat generation by UCP1 in brown adipose tissue. However, UCPs are also believed to be important for protection against reactive oxygen species, fine-tuning of metabolism and have been suggested to be involved in disease states such as obesity, diabetes and cancer. Structural studies of UCPs have long been hampered by difficulties in sample preparation with neither expression in yeast nor refolding from inclusion bodies in E. coli yielding sufficient amounts of pure and stable protein. In this study, we have developed a protocol for cell-free expression of human UCP1, 2 and 3, resulting in 1 mg pure protein per 20 mL of expression media. Lauric acid, a natural UCP ligand, significantly improved protein thermal stability and was therefore added during purification. Secondary structure characterisation using circular dichroism spectroscopy revealed the proteins to consist of mostly α-helices, as expected. All three UCPs were able to bind GDP, a well-known physiological inhibitor, as shown by the Fluorescence Resonance Energy Transfer (FRET) technique, suggesting that the proteins are in a natively folded state. A protocol for cell-free expression of human uncoupling protein 1–3 is described. Addition of native membrane components increased expression levels. Addition of lauric acid increased protein stability in solution. CD spectroscopy confirms alpha-helical secondary structure as expected. All proteins binds GDP as demonstrated by Fluorescence Resonance Energy Transfer.
Collapse
Affiliation(s)
- Etienne Rebuffet
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Anna Frick
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Michael Järvå
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Susanna Törnroth-Horsefield
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden.,Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
7
|
Malhotra K, Alder NN. Reconstitution of Mitochondrial Membrane Proteins into Nanodiscs by Cell-Free Expression. Methods Mol Biol 2017; 1567:155-178. [PMID: 28276018 DOI: 10.1007/978-1-4939-6824-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The isolation and characterization of mitochondrial membrane proteins is technically challenging because they natively reside within the specialized environment of the lipid bilayer, an environment that must be recapitulated to some degree during reconstitution to ensure proper folding, stability, and function. Here we describe protocols for the assembly of a membrane protein into lipid bilayer nanodiscs in a series of cell-free reactions. Cell-free expression of membrane proteins circumvents problems attendant with in vivo expression such as cytotoxicity, low expression levels, and the formation of inclusion bodies. Nanodiscs are artificial membrane systems comprised of discoidal lipid bilayer particles bound by annuli of amphipathic scaffold protein that shield lipid acyl chains from water. They are therefore excellent platforms for membrane protein reconstitution and downstream solution-based biochemical and biophysical analysis. This chapter details the procedures for the reconstitution of a mitochondrial membrane protein into nanodiscs using two different types of approaches: cotranslational and posttranslational assembly. These strategies are broadly applicable for different mitochondrial membrane proteins. They are also applicable for the use of nanodiscs with distinct lipid compositions that are biomimetic for different mitochondrial membranes and that recapitulate lipid profiles associated with pathological disorders in lipid metabolism.
Collapse
Affiliation(s)
- Ketan Malhotra
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269, USA.,Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, Sterling Hall of Medicine, New Haven, CT, 06520, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269, USA.
| |
Collapse
|
8
|
Abstract
Which properties of the membrane environment are essential for the folding and oligomerization of transmembrane proteins? Because the lipids that surround membrane proteins in situ spontaneously organize into bilayers, it may seem intuitive that interactions with the bilayer provide both hydrophobic and topological constraints that help the protein to achieve a stable and functional three-dimensional structure. However, one may wonder whether folding is actually driven by the membrane environment or whether the folded state just reflects an adaptation of integral proteins to the medium in which they function. Also, apart from the overall transmembrane orientation, might the asymmetry inherent in biosynthesis processes cause proteins to fold to out-of-equilibrium, metastable topologies? Which of the features of a bilayer are essential for membrane protein folding, and which are not? To which extent do translocons dictate transmembrane topologies? Recent data show that many membrane proteins fold and oligomerize very efficiently in media that bear little similarity to a membrane, casting doubt on the essentiality of many bilayer constraints. In the following discussion, we argue that some of the features of bilayers may contribute to protein folding, stability and regulation, but they are not required for the basic three-dimensional structure to be achieved. This idea, if correct, would imply that evolution has steered membrane proteins toward an accommodation to biosynthetic pathways and a good fit into their environment, but that their folding is not driven by the latter or dictated by insertion apparatuses. In other words, the three-dimensional structure of membrane proteins is essentially determined by intramolecular interactions and not by bilayer constraints and insertion pathways. Implications are discussed.
Collapse
Affiliation(s)
- Jean-Luc Popot
- Centre National de la Recherche Scientifique/Université Paris-7 UMR 7099 , Institut de Biologie Physico-Chimique (FRC 550), 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University , Box 208114, New Haven, Connecticut 06520-8114, United States
| |
Collapse
|
9
|
Abstract
The large-scale production of recombinant G protein-coupled receptors (GPCRs) is one of the major bottlenecks that hamper functional and structural studies of this important class of integral membrane proteins. Heterologous overexpression of GPCRs often results in low yields of active protein, usually due to a combination of several factors, such as low expression levels, protein insolubility, host cell toxicity, and the need to use harsh and often denaturing detergents (e.g., SDS, LDAO, OG, and DDM, among others) to extract the recombinant receptor from the host cell membrane. Many of these problematic issues are inherently linked to cell-based expression systems and can therefore be circumvented by the use of cell-free systems. In this unit, we provide a range of protocols for the production of GPCRs in a cell-free expression system. Using this system, we typically obtain GPCR expression levels of ∼1 mg per ml of reaction mixture in the continuous-exchange configuration. Although the protocols in this unit have been optimized for the cell-free expression of GPCRs, they should provide a good starting point for the production of other classes of membrane proteins, such as ion channels, aquaporins, carrier proteins, membrane-bound enzymes, and even large molecular complexes.
Collapse
Affiliation(s)
- Kenneth Segers
- VIB Center for the Biology of Disease, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Structural Biology Group, Biologics Research Europe, Janssen Research & Development, Beerse, Belgium
| | - Stefan Masure
- Structural Biology Group, Biologics Research Europe, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
10
|
Henrich E, Hein C, Dötsch V, Bernhard F. Membrane protein production in Escherichia coli cell-free lysates. FEBS Lett 2015; 589:1713-22. [PMID: 25937121 DOI: 10.1016/j.febslet.2015.04.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
Abstract
Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Christopher Hein
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany.
| |
Collapse
|
11
|
Crichton PG, Lee Y, Ruprecht JJ, Cerson E, Thangaratnarajah C, King MS, Kunji ERS. Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers. J Biol Chem 2015; 290:8206-17. [PMID: 25653283 PMCID: PMC4375477 DOI: 10.1074/jbc.m114.616607] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial carriers, including uncoupling proteins, are unstable in detergents, which hampers structural and mechanistic studies. To investigate carrier stability, we have purified ligand-free carriers and assessed their stability with a fluorescence-based thermostability assay that monitors protein unfolding with a thiol-reactive dye. We find that mitochondrial carriers from both mesophilic and thermophilic organisms exhibit poor stability in mild detergents, indicating that instability is inherent to the protein family. Trends in the thermostability of yeast ADP/ATP carrier AAC2 and ovine uncoupling protein UCP1 allow optimal conditions for stability in detergents to be established but also provide mechanistic insights into the interactions of lipids, substrates, and inhibitors with these proteins. Both proteins exhibit similar stability profiles across various detergents, where stability increases with the size of the associated detergent micelle. Detailed analysis shows that lipids stabilize carriers indirectly by increasing the associated detergent micelle size, but cardiolipin stabilizes by direct interactions as well. Cardiolipin reverses destabilizing effects of ADP and bongkrekic acid on AAC2 and enhances large stabilizing effects of carboxyatractyloside, revealing that this lipid interacts in the m-state and possibly other states of the transport cycle, despite being in a dynamic interface. Fatty acid activators destabilize UCP1 in a similar way, which can also be prevented by cardiolipin, indicating that they interact like transport substrates. Our controls show that carriers can be soluble but unfolded in some commonly used detergents, such as the zwitterionic Fos-choline-12, which emphasizes the need for simple validation assays like the one used here.
Collapse
Affiliation(s)
- Paul G Crichton
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Yang Lee
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Jonathan J Ruprecht
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elizabeth Cerson
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Chancievan Thangaratnarajah
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Martin S King
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Edmund R S Kunji
- From the Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
12
|
Kai L, Orbán E, Henrich E, Proverbio D, Dötsch V, Bernhard F. Co-translational stabilization of insoluble proteins in cell-free expression systems. Methods Mol Biol 2015; 1258:125-143. [PMID: 25447862 DOI: 10.1007/978-1-4939-2205-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Precipitation, aggregation, and inclusion body (IB) formation are frequently observed problems upon overexpression of recombinant proteins. The open accessibility of cell-free reactions allows addressing such critical steps by the addition of protein stabilizers such as chemical chaperones or detergents directly into the expression reactions. This approach could therefore reduce or even prevent initial protein precipitation already in the translation environment. The strategy might be considered to generally improve protein sample quality and to rescue proteins that are difficult to refold from IBs or from aggregated precipitates. We describe a protocol for the co-translational stabilization of difficult proteins by their expression in the presence of supplements such as alcohols, poly-ions, or detergents. We compile potentially useful compounds together with their recommended stock and working concentrations. Examples of screening experiments in order to systematically identify compounds or compound mixtures that stabilize particular proteins of interest are given. The method can primarily be considered for the production of unstable soluble proteins or of membrane proteins containing larger soluble domains.
Collapse
Affiliation(s)
- Lei Kai
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Boland C, Li D, Shah STA, Haberstock S, Dötsch V, Bernhard F, Caffrey M. Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination. Cell Mol Life Sci 2014; 71:4895-4910. [PMID: 25012698 DOI: 10.1007/s00018-014-1655-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/17/2022]
Abstract
Membrane proteins are key elements in cell physiology and drug targeting, but getting a high-resolution structure by crystallographic means is still enormously challenging. Novel strategies are in big demand to facilitate the structure determination process that will ultimately hasten the day when sequence information alone can provide a three-dimensional model. Cell-free or in vitro expression enables rapid access to large quantities of high-quality membrane proteins suitable for an array of applications. Despite its impressive efficiency, to date only two membrane proteins produced by the in vitro approach have yielded crystal structures. Here, we have analysed synergies of cell-free expression and crystallisation in lipid mesophases for generating an X-ray structure of the integral membrane enzyme diacylglycerol kinase to 2.28-Å resolution. The quality of cellular and cell-free-expressed kinase samples has been evaluated systematically by comparing (1) spectroscopic properties, (2) purity and oligomer formation, (3) lipid content and (4) functionality. DgkA is the first membrane enzyme crystallised based on cell-free expression. The study provides a basic standard for the crystallisation of cell-free-expressed membrane proteins and the methods detailed here should prove generally useful and contribute to accelerating the pace at which membrane protein structures are solved.
Collapse
Affiliation(s)
- Coilín Boland
- Membrane Structural and Functional Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Dianfan Li
- Membrane Structural and Functional Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Syed Tasadaque Ali Shah
- Membrane Structural and Functional Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Stefan Haberstock
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University of Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University of Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University of Frankfurt, Germany
| | - Martin Caffrey
- Membrane Structural and Functional Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| |
Collapse
|
14
|
Sachse R, Dondapati SK, Fenz SF, Schmidt T, Kubick S. Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes. FEBS Lett 2014; 588:2774-81. [DOI: 10.1016/j.febslet.2014.06.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023]
|
15
|
Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. Biotechniques 2014; 56:186-93. [DOI: 10.2144/000114158] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/03/2014] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) is a versatile tool for rapid recombinant protein production and engineering. One drawback of cell-free technology is the necessity to store the major components—cell extracts and energy systems—below freezing in bulky aqueous solutions. Here we describe simple methods for lyophilizing extracts and preparing powdered energy systems for CFPS. These techniques allow for high-density storage of cell-free systems that are more robust against temperature and bacterial degradation. Our methods have the potential to decrease storage expenses, allow for longer shelf-life of cell extracts at room temperature, and enable durable portable protein production technologies.
Collapse
|
16
|
Hein C, Henrich E, Orbán E, Dötsch V, Bernhard F. Hydrophobic supplements in cell-free systems: Designing artificial environments for membrane proteins. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christopher Hein
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Erik Henrich
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Erika Orbán
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance; Institute for Biophysical Chemistry; Goethe-University of Frankfurt/Main; Frankfurt am Main Germany
| |
Collapse
|
17
|
Hoang T, Smith MD, Jelokhani-Niaraki M. Expression, folding, and proton transport activity of human uncoupling protein-1 (UCP1) in lipid membranes: evidence for associated functional forms. J Biol Chem 2013; 288:36244-58. [PMID: 24196960 DOI: 10.1074/jbc.m113.509935] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uncoupling protein-1 (UCP1) is abundantly expressed in the mitochondrial inner membrane of brown adipose tissues and has an important role in heat generation, mediated by its proton transport function. The structure and function of UCP1 are not fully understood, partially due to the difficulty in obtaining native-like folded proteins in vitro. In this study, using the auto-induction method, we have successfully expressed UCP1 in Escherichia coli membranes in high yield. Overexpressed UCP1 in bacterial membranes was extracted using mild detergents and reconstituted into phospholipid bilayers for biochemical studies. UCP1 was folded in octyl glucoside, as indicated by its high helical content and binding to ATP, a known UCP1 proton transport inhibitor. Reconstituted UCP1 in phospholipid vesicles also exhibited highly helical structures and proton transport that is activated by fatty acids and inhibited by purine nucleotides. Self-associated functional forms of UCP1 in lipid membranes were observed for the first time. The self-assembly of UCP1 into tetramers was unambiguously characterized by circular dichroism and fluorescence spectroscopy, analytical ultracentrifugation, and semi-native gel electrophoresis. In addition, the mitochondrial lipid cardiolipin stabilized the structure of associated UCP1 and enhanced the proton transport activity of the protein. The existence of the functional oligomeric states of UCP1 in the lipid membranes has important implications for understanding the structure and proton transport mechanism of this protein in brown adipose tissues as well as structure-function relationships of other mammalian UCPs in other tissues.
Collapse
|
18
|
Breyton C, Flayhan A, Gabel F, Lethier M, Durand G, Boulanger P, Chami M, Ebel C. Assessing the conformational changes of pb5, the receptor-binding protein of phage T5, upon binding to its Escherichia coli receptor FhuA. J Biol Chem 2013; 288:30763-30772. [PMID: 24014030 DOI: 10.1074/jbc.m113.501536] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Within tailed bacteriophages, interaction of the receptor-binding protein (RBP) with the target cell triggers viral DNA ejection into the host cytoplasm. In the case of phage T5, the RBP pb5 and the receptor FhuA, an outer membrane protein of Escherichia coli, have been identified. Here, we use small angle neutron scattering and electron microscopy to investigate the FhuA-pb5 complex. Specific deuteration of one of the partners allows the complete masking in small angle neutron scattering of the surfactant and unlabeled proteins when the complex is solubilized in the fluorinated surfactant F6-DigluM. Thus, individual structures within a membrane protein complex can be described. The solution structure of FhuA agrees with its crystal structure; that of pb5 shows an elongated shape. Neither displays significant conformational changes upon interaction. The mechanism of signal transduction within phage T5 thus appears different from that of phages binding cell wall saccharides, for which structural information is available.
Collapse
Affiliation(s)
- Cécile Breyton
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France,.
| | - Ali Flayhan
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| | - Frank Gabel
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| | - Mathilde Lethier
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| | - Grégory Durand
- the Université d'Avignon, Equipe Chimie Bioorganique et Systèmes Amphiphiles, F-84029 Avignon, France,; the Institut des Biomolécules Max Mousseron, UMR 5247, F-34093 Montpellier, France
| | - Pascale Boulanger
- the Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, UMR CNRS 8619, F-91405 Orsay, France, and
| | - Mohamed Chami
- the Center for Cellular Imaging and NanoAnalytics, Biozentrum, University Basel, CH-4058 Basel, Switzerland
| | - Christine Ebel
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France,; CNRS, UMR5075, IBS, F-38027 Grenoble, France,; the Commissariat à l'Energie Atomique, DSV, IBS, F-38027 Grenoble, France
| |
Collapse
|
19
|
Bernhard F, Tozawa Y. Cell-free expression--making a mark. Curr Opin Struct Biol 2013; 23:374-80. [PMID: 23628286 DOI: 10.1016/j.sbi.2013.03.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 11/27/2022]
Abstract
Cell-free protein production opens new perspectives for the direct manipulation of expression compartments in combination with reduced complexity of physiological requirements. The technology is therefore in particular suitable for the general synthesis of difficult proteins including toxins and membrane proteins as well as for the analysis of their functional folding in artificial environments. A further key application of cell-free expression is the fast and economic labeling of proteins for structural and functional applications. Two extract sources, wheat embryos and Escherichia coli cells, are currently employed for the preparative scale cell-free production of proteins. Recent achievements in structural characterization include cell-free synthesized membrane proteins and even larger protein assemblies may become feasible.
Collapse
Affiliation(s)
- Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
20
|
Divakaruni AS, Humphrey DM, Brand MD. Fatty acids change the conformation of uncoupling protein 1 (UCP1). J Biol Chem 2012; 287:36845-53. [PMID: 22952235 DOI: 10.1074/jbc.m112.381780] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UCP1 catalyzes proton leak across the mitochondrial inner membrane to disengage substrate oxidation from ATP production. It is well established that UCP1 is activated by fatty acids and inhibited by purine nucleotides, but precisely how this regulation occurs remains unsettled. Although fatty acids can competitively overcome nucleotide inhibition in functional assays, fatty acids have little effect on purine nucleotide binding. Here, we present the first demonstration that fatty acids induce a conformational change in UCP1. Palmitate dramatically changed the binding kinetics of 2'/3'-O-(N-methylanthraniloyl)-GDP, a fluorescently labeled nucleotide analog, for UCP1. Furthermore, palmitate accelerated the rate of enzymatic proteolysis of UCP1. The altered kinetics of both processes indicate that fatty acids change the conformation of UCP1, reconciling the apparent discrepancy between existing functional and ligand binding data. Our results provide a framework for how fatty acids and nucleotides compete to regulate the activity of UCP1.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom.
| | | | | |
Collapse
|