1
|
Heine N, Weber A, Pautsch A, Gottschling D, Uphues I, Bauer M, Ebenhoch R, Magarkar A, Nosse B, Kley JT. Discovery of BI-9787, a potent zwitterionic ketohexokinase inhibitor with oral bioavailability. Bioorg Med Chem Lett 2024; 112:129930. [PMID: 39179180 DOI: 10.1016/j.bmcl.2024.129930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Fructose metabolism by ketohexokinase (KHK) is implicated in a variety of metabolic disorders. KHK inhibition is a potential therapeutic strategy for the treatment of diseases including diabetes, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. The first small-molecule KHK-inhibitors have entered clinical trials, but it remains unclear if systemic inhibition of KHK by small-molecules will eventually benefit patients. Here we report the discovery of BI-9787, a potent, zwitterionic KHK inhibitor characterized by high permeability and favorable oral rat pharmacokinetics. BI-9787 was identified by optimizing chemical starting points generated via a ligand-based virtual screening of Boehringer's virtual library of synthetically accessible compounds (BICLAIM). It serves as a high-quality in vitro and in vivo tool compound for investigating the role of fructose metabolism in disease.
Collapse
Affiliation(s)
- Niklas Heine
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Alexander Weber
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Alexander Pautsch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Dirk Gottschling
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Ingo Uphues
- Boehringer Ingelheim Pharma GmbH & Co. KG, Cardiometabolic Diseases Research, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Margit Bauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Rebecca Ebenhoch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Aniket Magarkar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Bernd Nosse
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany; Boehringer Ingelheim International GmbH, Business Development & Licensing, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Jörg Thomas Kley
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Medicinal Chemistry, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany.
| |
Collapse
|
2
|
Heo HY, Zou G, Baek S, Kim J, Mylonakis E, Ausubel FM, Gao H, Kim W. A Methylazanediyl Bisacetamide Derivative Sensitizes Staphylococcus aureus Persisters to a Combination of Gentamicin And Daptomycin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306112. [PMID: 38126676 PMCID: PMC10916567 DOI: 10.1002/advs.202306112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Infections caused by Staphylococcus aureus, notably methicillin-resistant S. aureus (MRSA), pose treatment challenges due to its ability to tolerate antibiotics and develop antibiotic resistance. The former, a mechanism independent of genetic changes, allows bacteria to withstand antibiotics by altering metabolic processes. Here, a potent methylazanediyl bisacetamide derivative, MB6, is described, which selectively targets MRSA membranes over mammalian membranes without observable resistance development. Although MB6 is effective against growing MRSA cells, its antimicrobial activity against MRSA persisters is limited. Nevertheless, MB6 significantly potentiates the bactericidal activity of gentamicin against MRSA persisters by facilitating gentamicin uptake. In addition, MB6 in combination with daptomycin exhibits enhanced anti-persister activity through mutual reinforcement of their membrane-disrupting activities. Crucially, the "triple" combination of MB6, gentamicin, and daptomycin exhibits a marked enhancement in the killing of MRSA persisters compared to individual components or any double combinations. These findings underscore the potential of MB6 to function as a potent and selective membrane-active antimicrobial adjuvant to enhance the efficacy of existing antibiotics against persister cells. The molecular mechanisms of MB6 elucidated in this study provide valuable insights for designing anti-persister adjuvants and for developing new antimicrobial combination strategies to overcome the current limitations of antibiotic treatments.
Collapse
Affiliation(s)
- Hee Young Heo
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Guijin Zou
- Institute of High Performance Computing (IHPC)Agency for ScienceTechnology and Research (A*STAR)Singapore138632Republic of Singapore
| | - Seongeun Baek
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Jae‐Seok Kim
- Department of Laboratory MedicineKangdong Sacred Heart HospitalHallym University College of MedicineSeoul05355Republic of Korea
| | | | - Frederick M. Ausubel
- Department of Molecular BiologyMassachusetts General HospitalBostonMA02114USA
- Department of GeneticsHarvard Medical SchoolBostonMA02115USA
| | - Huajian Gao
- Institute of High Performance Computing (IHPC)Agency for ScienceTechnology and Research (A*STAR)Singapore138632Republic of Singapore
- School of Mechanical and Aerospace EngineeringCollege of EngineeringNanyang Technological UniversitySingapore639789Republic of Singapore
| | - Wooseong Kim
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| |
Collapse
|
3
|
Aboelenin AM, El-Mowafy M, Saleh NM, Shaaban MI, Barwa R. Ciprofloxacin- and levofloxacin-loaded nanoparticles efficiently suppressed fluoroquinolone resistance and biofilm formation in Acinetobacter baumannii. Sci Rep 2024; 14:3125. [PMID: 38326515 PMCID: PMC10850473 DOI: 10.1038/s41598-024-53441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
The spread of fluoroquinolone (FQ) resistance in Acinetobacter baumannii represents a critical health threat. This study aims to overcome FQ resistance in A. baumannii via the formulation of polymeric nanoFQs. Herein, 80 A. baumannii isolates were obtained from diverse clinical sources. All A. baumannii isolates showed high resistance to most of the investigated antimicrobials, including ciprofloxacin (CIP) and levofloxacin (LEV) (97.5%). FQ resistance-determining regions of the gyrA and parC genes were the most predominant resistant mechanism, harbored by 69 (86.3%) and 75 (93.8%) of the isolates, respectively. Additionally, plasmid-mediated quinolone resistance genes aac(6')-Ib and qnrS were detected in 61 (76.3%) and 2 (2.5%) of the 80 isolates, respectively. The CIP- and LEV-loaded poly ε-caprolactone (PCL) nanoparticles, FCIP and FLEV, respectively, showed a 1.5-6- and 6-12-fold decrease in the MIC, respectively, against the tested isolates. Interestingly, the time kill assay demonstrated that MICs of FCIP and FLEV completely killed A. baumannii isolates after 5-6 h of treatment. Furthermore, FCIP and FLEV were found to be efficient in overcoming the FQ resistance mediated by the efflux pumps in A. baumannii isolates as revealed by decreasing the MIC four-fold lower than that of free CIP and LEV, respectively. Moreover, FCIP and FLEV at 1/2 and 1/4 MIC significantly decreased biofilm formation by 47-93% and 69-91%, respectively. These findings suggest that polymeric nanoparticles can restore the effectiveness of FQs and represent a paradigm shift in the fight against A. baumannii isolates.
Collapse
Affiliation(s)
- Alaa M Aboelenin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Noha M Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| |
Collapse
|
4
|
Bösch A, Macha ME, Ren Q, Kohler P, Qi W, Babouee Flury B. Resistance development in Escherichia coli to delafloxacin at pHs 6.0 and 7.3 compared to ciprofloxacin. Antimicrob Agents Chemother 2023; 67:e0162522. [PMID: 37882542 PMCID: PMC10649057 DOI: 10.1128/aac.01625-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/08/2023] [Indexed: 10/27/2023] Open
Abstract
Understanding the resistance mechanisms of antibiotics in the micro-environment of the infection is important to assess their clinical applicability and potentially prevent resistance development. We compared the laboratory resistance evolution of Escherichia coli to delafloxacin (DLX) compared to ciprofloxacin (CIP), the co-resistance evolution, and underlying resistance mechanisms at different pHs. Three clones from each of the eight clinical E. coli isolates were subjected to subinhibitory concentrations of DLX or CIP in parallel at either pH 7.3 or 6.0. Minimum inhibitory concentrations (MICs) were regularly tested (at respective pHs), and the antibiotic concentration was adjusted accordingly. After 30 passages, MICs were determined in the presence of the efflux pump inhibitor phenylalanine-arginine-β-naphthylamide. Whole genome sequencing of the parental isolates and their resistant derivatives (n = 54) was performed. Complementation assays were carried out for selected mutations. Quantitative PCR and efflux experiments were carried out for selected derivatives. For DLX-challenged strains, resistance to DLX evolved much slower in acidic than in neutral pH, whereas for CIP-challenged strains, the opposite was the case. Mutations in the quinolone resistance-determining region were mainly seen in CIP-challenged E. coli, whereas a multifactorial mechanism including mutations in efflux-related genes played a role in DLX resistance evolution (predominantly at pH 6.0). This work provides novel insights into the resistance mechanisms of E. coli to delafloxacin and highlights the importance of understanding micro-environmental conditions at the infection site that might affect the true clinical efficacy of antibiotics and challenges our current antibiotic susceptibility-testing paradigm.
Collapse
Affiliation(s)
- Anja Bösch
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Magreth E. Macha
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
- St. Francis University College of Health and Allied Sciences, Morogoro, Tanzania
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Baharak Babouee Flury
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
5
|
Costa FMS, Granja A, Pérez RL, Warner IM, Reis S, Passos MLC, Saraiva MLMFS. Fluoroquinolone-Based Organic Salts (GUMBOS) with Antibacterial Potential. Int J Mol Sci 2023; 24:15714. [PMID: 37958698 PMCID: PMC10650486 DOI: 10.3390/ijms242115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Antimicrobial resistance is a silent pandemic considered a public health concern worldwide. Strategic therapies are needed to replace antibacterials that are now ineffective. One approach entails the use of well-known antibacterials along with adjuvants that possess non-antibiotic properties but can extend the lifespan and enhance the effectiveness of the treatment, while also improving the suppression of resistance. In this regard, a group of uniform materials based on organic salts (GUMBOS) presents an alternative to this problem allowing the combination of antibacterials with adjuvants. Fluoroquinolones are a family of antibacterials used to treat respiratory and urinary tract infections with broad-spectrum activity. Ciprofloxacin and moxifloxacin-based GUMBOS were synthesized via anion exchange reactions with lithium and sodium salts. Structural characterization, thermal stability and octanol/water partition ratios were evaluated. The antibacterial profiles of most GUMBOS were comparable to their cationic counterparts when tested against Gram-positive S. aureus and Gram-negative E. coli, except for deoxycholate anion, which demonstrated the least effective antibacterial activity. Additionally, some GUMBOS were less cytotoxic to L929 fibroblast cells and non-hemolytic to red blood cells. Therefore, these agents exhibit promise as an alternative approach to combining drugs for treating infections caused by resistant bacteria.
Collapse
Affiliation(s)
- Fábio M. S. Costa
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Andreia Granja
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Rocío L. Pérez
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (R.L.P.); (I.M.W.)
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30458, USA
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (R.L.P.); (I.M.W.)
- Department of Chemistry, Cincinnati University, Cincinnati, OH 45221, USA
| | - Salette Reis
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Marieta L. C. Passos
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| |
Collapse
|
6
|
Coba-Males MA, Lavecchia MJ, Alcívar-León CD, Santamaría-Aguirre J. Novel Fluoroquinolones with Possible Antibacterial Activity in Gram-Negative Resistant Pathogens: In Silico Drug Discovery. Molecules 2023; 28:6929. [PMID: 37836772 PMCID: PMC10574177 DOI: 10.3390/molecules28196929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 10/15/2023] Open
Abstract
Antibiotic resistance is a global threat to public health, and the search for new antibacterial therapies is a current research priority. The aim of this in silico study was to test nine new fluoroquinolones previously designed with potential leishmanicidal activity against Campylobacter jejuni, Escherichia coli, Neisseria gonorrhoeae, Pseudomonas aeruginosa, and Salmonella typhi, all of which are considered by the World Health Organization to resistant pathogens of global concern, through molecular docking and molecular dynamics (MD) simulations using wild-type (WT) and mutant-type (MT) DNA gyrases as biological targets. Our results showed that compound 9FQ had the best binding energy with the active site of E. coli in both molecular docking and molecular dynamics simulations. Compound 9FQ interacted with residues of quinolone resistance-determining region (QRDR) in GyrA and GyrB chains, which are important to enzyme activity and through which it could block DNA replication. In addition to compound 9FQ, compound 1FQ also showed a good affinity for DNA gyrase. Thus, these newly designed molecules could have antibacterial activity against Gram-negative microorganisms. These findings represent a promising starting point for further investigation through in vitro assays, which can validate the hypothesis and potentially facilitate the development of novel antibiotic drugs.
Collapse
Affiliation(s)
- Manuel Alejandro Coba-Males
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Salud Pública y Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Martin J. Lavecchia
- CEQUINOR (UNLP-CONICET, CCT-La Plata, Associated with CICBA), Universidad Nacional de La Plata, La Plata 1900, Argentina;
| | | | - Javier Santamaría-Aguirre
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Salud Pública y Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito 170521, Ecuador
| |
Collapse
|
7
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
8
|
Michałowska A, Kupczyk O, Czyrski A. The Chemometric Evaluation of the Factors Influencing Cloud Point Extraction for Fluoroquinolones. Pharmaceutics 2023; 15:1774. [PMID: 37376221 DOI: 10.3390/pharmaceutics15061774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to analyze the factors that impact the cloud point extraction of ciprofloxacin, levofloxacin, and moxifloxacin. The following independent variables were analyzed: Triton X-114 concentration, NaCl concentration, pH, and incubation temperature. The dependent variable studied was recovery. A central composite design model was used. The applied quantitation method was HPLC. The method was validated for linearity, precision, and accuracy. The results underwent ANOVA® analysis. The polynomial equations were generated for each analyte. The response surface methodology graphs visualized them. The analysis showed that the factor most affecting the recovery of levofloxacin is the concentration of Triton X-114, while the recovery of ciprofloxacin and moxifloxacin is most affected by pH value. However, the concentration of Triton X-114 also plays an important role. The optimization resulted in the following recoveries: for ciprofloxacin, 60%; for levofloxacin, 75%; and for moxifloxacin, 84%, which are identical to those estimated with regression equations-59%, 74% and 81% for ciprofloxacin, levofloxacin, and moxifloxacin, respectively. The research confirms the validity of using the model to analyze factors affecting the recovery of the analyzed compounds. The model allows for a thorough analysis of variables and their optimization.
Collapse
Affiliation(s)
- Aleksandra Michałowska
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznań, Poland
| | - Olga Kupczyk
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznań, Poland
| | - Andrzej Czyrski
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznań, Poland
| |
Collapse
|
9
|
Martin LW, Gray AR, Brockway B, Lamont IL. Pseudomonas aeruginosa is oxygen-deprived during infection in cystic fibrosis lungs, reducing the effectiveness of antibiotics. FEMS Microbiol Lett 2023; 370:fnad076. [PMID: 37516450 PMCID: PMC10408701 DOI: 10.1093/femsle/fnad076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
Pseudomonas aeruginosa infects the lungs of patients with cystic fibrosis. Sputum expectorated from the lungs of patients contains low levels of oxygen, indicating that P. aeruginosa may be oxygen-deprived during infection. During in vitro growth under oxygen-limiting conditions, a P. aeruginosa reference strain increases expression of a cytochrome oxidase with a high affinity for oxygen, and of nitrate and nitrite reductases that enable it to use nitrate instead of oxygen during respiration. Here, we quantified transcription of the genes encoding these three enzymes in sputum samples from 18 infected patients, and in bacteria isolated from the sputum samples and grown in aerobic and anaerobic culture. In culture, expression of all three genes was increased by averages of 20- to 500-fold in anaerobically grown bacteria compared with those grown aerobically, although expression levels varied greatly between isolates. Expression of the same genes in sputum was similar to that of the corresponding bacteria in anaerobic culture. The isolated bacteria were less susceptible to tobramycin and ciprofloxacin, two widely used anti-pseudomonal antibiotics, when grown anaerobically than when grown aerobically. Our findings show that P. aeruginosa experiences oxygen starvation during infection in cystic fibrosis, reducing the effectiveness of antibiotic treatment.
Collapse
Affiliation(s)
- Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Andrew R Gray
- Biostatistics Centre, University of Otago, Dunedin 9016, New Zealand
| | - Ben Brockway
- Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
10
|
The New Strategy for Studying Drug-Delivery Systems with Prolonged Release: Seven-Day In Vitro Antibacterial Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228026. [PMID: 36432127 PMCID: PMC9695913 DOI: 10.3390/molecules27228026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
The new method of antibacterial-drug-activity investigation in vitro is proposed as a powerful strategy for understanding how carriers affect drug action during long periods (7 days). In this paper, we observed fluoroquinolone moxifloxacin (MF) antibacterial-efficiency in non-covalent complexes, with the sulfobutyl ether derivative of β-cyclodextrin (SCD) and its polymer (SCDpol). We conducted in vitro studies on two Escherichia coli strains that differed in surface morphology. It was found that MF loses its antibacterial action after 3-4 days in liquid media, whereas the inclusion of the drug in SCD led to the increase of MF antibacterial activity by up to 1.4 times within 1-5 days of the experiment. In the case of MF-SCDpol, we observed a 12-fold increase in the MF action, and a tendency to prolonged antibacterial activity. We visualized this phenomenon (the state of bacteria, cell membrane, and surface morphology) during MF and MF-carrier exposure by TEM. SCD and SCDpol did not change the drug's mechanism of action. Particle adsorption on cells was the crucial factor for determining the observed effects. The proteinaceous fimbriae on the bacteria surface gave a 2-fold increase of the drug carrier adsorption, hence the strains with fimbriae are more preferable for the proposed treatment. Furthermore, the approach to visualize the CD polymer adsorption on bacteria via TEM is suggested. We hope that the proposed comprehensive method will be useful for the studies of drug-delivery systems to uncover long-term antibacterial action.
Collapse
|
11
|
A potent antibiotic-loaded bone-cement implant against staphylococcal bone infections. Nat Biomed Eng 2022; 6:1180-1195. [PMID: 36229662 PMCID: PMC10101771 DOI: 10.1038/s41551-022-00950-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/08/2022] [Indexed: 12/14/2022]
Abstract
New antibiotics should ideally exhibit activity against drug-resistant bacteria, delay the development of bacterial resistance to them and be suitable for local delivery at desired sites of infection. Here, we report the rational design, via molecular-docking simulations, of a library of 17 candidate antibiotics against bone infection by wild-type and mutated bacterial targets. We screened this library for activity against multidrug-resistant clinical isolates and identified an antibiotic that exhibits potent activity against resistant strains and the formation of biofilms, decreases the chances of bacterial resistance and is compatible with local delivery via a bone-cement matrix. The antibiotic-loaded bone cement exhibited greater efficacy than currently used antibiotic-loaded bone cements against staphylococcal bone infections in rats. Potent and locally delivered antibiotic-eluting polymers may help address antimicrobial resistance.
Collapse
|
12
|
Su YB, Tang XK, Zhu LP, Yang KX, Pan L, Li H, Chen ZG. Enhanced Biosynthesis of Fatty Acids Contributes to Ciprofloxacin Resistance in Pseudomonas aeruginosa. Front Microbiol 2022; 13:845173. [PMID: 35547113 PMCID: PMC9083408 DOI: 10.3389/fmicb.2022.845173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa is insensitive to antibiotics and difficult to deal with. An understanding of the resistance mechanisms is required for the control of the pathogen. In this study, gas chromatography-mass spectrometer (GC-MS)-based metabolomics was performed to identify differential metabolomes in ciprofloxacin (CIP)-resistant P. aeruginosa strains that originated from P. aeruginosa ATCC 27853 and had minimum inhibitory concentrations (MICs) that were 16-, 64-, and 128-fold (PA-R16CIP, PA-R64CIP, and PA-R128CIP, respectively) higher than the original value, compared to CIP-sensitive P. aeruginosa (PA-S). Upregulation of fatty acid biosynthesis forms a characteristic feature of the CIP-resistant metabolomes and fatty acid metabolome, which was supported by elevated gene expression and enzymatic activity in the metabolic pathway. The fatty acid synthase inhibitor triclosan potentiates CIP to kill PA-R128CIP and clinically multidrug-resistant P. aeruginosa strains. The potentiated killing was companied with reduced gene expression and enzymatic activity and the returned abundance of fatty acids in the metabolic pathway. Consistently, membrane permeability was reduced in the PA-R and clinically multidrug-resistant P. aeruginosa strains, which were reverted by triclosan. Triclosan also stimulated the uptake of CIP. These findings highlight the importance of the elevated biosynthesis of fatty acids in the CIP resistance of P. aeruginosa and provide a target pathway for combating CIP-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Yu-Bin Su
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Department of Cell Biology, Ministry of Education Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xi-Kang Tang
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ling-Ping Zhu
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ke-Xin Yang
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Li Pan
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zhuang-Gui Chen
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Tyulenev AV, Smirnova GV, Muzyka NG, Oktyabrsky ON. Study of the early response of Escherichia coli lpcA and ompF mutants to ciprofloxacin. Res Microbiol 2022; 173:103954. [PMID: 35568342 DOI: 10.1016/j.resmic.2022.103954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023]
Abstract
In most previous studies the sensitivity of Escherichia coli outer membrane mutants to ciprofloxacin (CF) was studied by MIC method. In the present work, the early response of these mutants to CF was studied using physiological and biochemical methods and electrochemical sensors. The use of sensors made it possible to monitor dissolved oxygen, potassium and extracellular sulfide continuously directly in growing cultures in real time. In the absence of CF, no significant differences were found between the mutants deficient in porin OmpF and lipopolysaccharide (LPS) and the parent. The only exception was 5-6 times higher extracellular glutathione and 1.5-3 times lower intracellular glutathione in the lpcA compared to the parent and the ompF. Ciprofloxacin inhibited growth, respiration, membrane potential and K+ consumption, which was less pronounced in both mutants compared to the parent. Changes in these parameters correlated with each other, but not with survival. A reversible increase in sulfide level was observed at 3 μg ml-1 CF in the parent, at 20 μg ml-1 CF in ompF and was absent in lpcA at all concentrations. The data obtained show that the use of electrochemical sensors can provide a more complete understanding of the early response of bacteria to CF.
Collapse
Affiliation(s)
- Alexey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| | - Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| |
Collapse
|
14
|
ZnO/γ-Fe 2O 3/Bentonite: An Efficient Solar-Light Active Magnetic Photocatalyst for the Degradation of Pharmaceutical Active Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103050. [PMID: 35630526 PMCID: PMC9147334 DOI: 10.3390/molecules27103050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
For applications related to the photocatalytic degradation of environmental contaminants, engineered nanomaterials (ENMs) must demonstrate not only a high photocatalytic potential, but also a low tendency to agglomeration, along with the ability to be easily collected after use. In this manuscript, a two-step process was implemented for the synthesis of ZnO, ZnO/Bentonite and the magnetic ZnO/γ-Fe2O3/Bentonite nanocomposite. The synthesized materials were characterized using various techniques, and their performance in the degradation of pharmaceutical active compounds (PhACs), including ciprofloxacin (CIP), sulfamethoxazole (SMX), and carbamazepine (CBZ) was evaluated under various operating conditions, namely the type and dosage of the applied materials, pH, concentration of pollutants, and their appearance form in the medium (i.e., as a single pollutant or as a mixture of PhACs). Among the materials studied, ZnO/Bentonite presented the best performance and resulted in the removal of ~95% of CIP (5 mg/L) in 30 min, at room temperature, near-neutral pH (6.5), ZnO/Bentonite dosage of 0.5 g/L, and under solar light irradiation. The composite also showed a high degree of efficiency for the simultaneous removal of CIP (~98%, 5 mg/L) and SMX (~97%, 5 mg/L) within 30 min, while a low degradation of ~5% was observed for CBZ (5 mg/L) in a mixture of the three PhACs. Furthermore, mechanistic studies using different types of scavengers revealed the formation of active oxidative species responsible for the degradation of CIP in the photocatalytic system studied with the contribution of h+ (67%), OH (18%), and ·O2− (10%), and in which holes (h+) were found to be the dominant oxidative species.
Collapse
|
15
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
16
|
Zhang X, Hu H, Huang X, Yin Y, Wang S, Jiao S, Liu Z, Zheng Y. Protective Mechanism of a Layer-by-Layer-Assembled Artificial Cell Wall on Probiotics. J Phys Chem B 2022; 126:1933-1940. [PMID: 35200022 DOI: 10.1021/acs.jpcb.1c09282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Constructing an artificial cell wall (AFCW) based on the layer-by-layer assembly of polymer films to protect probiotics in harsh conditions is highly desirable. Early findings showed that encapsulating yeast cells by an AFCW improved the cell viability by 50% in antibiotic solution. However, the detailed molecular interaction mechanism remains unclear by experiments. Herein, two ciprofloxacin (CPFX) permeation models, including models 1 and 2 that were, respectively, composed of just the yeast cell membrane and the AFCW coating cell membrane, were investigated by molecular dynamics simulations. The free energy profiles delineating the permeation process of CPFX reveal that the permeation of CPFX through the cell membrane of model 2 is more difficult than through that of model 1. The analysis results show that the AFCW leads to two sharp increases in free energy barriers, amounting to 8.9 and 6.2 kcal/mol, thereby reducing the penetrating rate of CPFX into the cell membrane. Moreover, decomposition of the potentials of mean force into free energy components suggested that the electrostatic interactions of CPFX with the AFCW predominantly contributed to the high free energy barriers. The current results provide a good understanding of the protective mechanism of the self-assembled cell walls against CPFX and help to design other AFCWs.
Collapse
Affiliation(s)
- Xia Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hanjiao Hu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanzhen Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.,Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Shuangshuang Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Shufei Jiao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Zijie Liu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Yunying Zheng
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
17
|
Prenylated (iso)flavonoids as antifungal agents against the food spoiler Zygosaccharomyces parabailii. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Van den Bergh B, Schramke H, Michiels JE, Kimkes TEP, Radzikowski JL, Schimpf J, Vedelaar SR, Burschel S, Dewachter L, Lončar N, Schmidt A, Meijer T, Fauvart M, Friedrich T, Michiels J, Heinemann M. Mutations in respiratory complex I promote antibiotic persistence through alterations in intracellular acidity and protein synthesis. Nat Commun 2022; 13:546. [PMID: 35087069 PMCID: PMC8795404 DOI: 10.1038/s41467-022-28141-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
Abstract
Antibiotic persistence describes the presence of phenotypic variants within an isogenic bacterial population that are transiently tolerant to antibiotic treatment. Perturbations of metabolic homeostasis can promote antibiotic persistence, but the precise mechanisms are not well understood. Here, we use laboratory evolution, population-wide sequencing and biochemical characterizations to identify mutations in respiratory complex I and discover how they promote persistence in Escherichia coli. We show that persistence-inducing perturbations of metabolic homeostasis are associated with cytoplasmic acidification. Such cytoplasmic acidification is further strengthened by compromised proton pumping in the complex I mutants. While RpoS regulon activation induces persistence in the wild type, the aggravated cytoplasmic acidification in the complex I mutants leads to increased persistence via global shutdown of protein synthesis. Thus, we propose that cytoplasmic acidification, amplified by a compromised complex I, can act as a signaling hub for perturbed metabolic homeostasis in antibiotic persisters.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Hannah Schramke
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Joran Elie Michiels
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
| | - Tom E P Kimkes
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Jakub Leszek Radzikowski
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Johannes Schimpf
- Molecular Bioenergetics, Institute of Biochemistry, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Silke R Vedelaar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Sabrina Burschel
- Molecular Bioenergetics, Institute of Biochemistry, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Liselot Dewachter
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
| | - Nikola Lončar
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Tim Meijer
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Thorsten Friedrich
- Molecular Bioenergetics, Institute of Biochemistry, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium.
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium.
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands.
| |
Collapse
|
19
|
Czyrski A. The spectrophotometric determination of lipophilicity and dissociation constants of ciprofloxacin and levofloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120343. [PMID: 34500409 DOI: 10.1016/j.saa.2021.120343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Lipophilicity plays a significant role in the permeability of the drugs through cell membranes and impacts the drug activity in the human body. In this paper, the spectrophotometric method was used to determine the apparent partition coefficients of two amphoteric drugs: ciprofloxacin and levofloxacin. The apparent partition coefficient was determined with the classic shake-flask method with n-octanol according to OECD guidelines. The lipophilicity profiles in a wide range of pH were determined and described quantitatively with the quadratic function. Basing on the macro- and microdissociation constants, the true partition coefficient for both drugs was calculated. Both levofloxacin and ciprofloxacin were lipophilic. The neutral forms, i.e., zwitterionic and uncharged, dominate in the pH relevant to the one in the intestines, the place from which they are absorbed.
Collapse
Affiliation(s)
- Andrzej Czyrski
- Chair and Department of Physical Pharmacy and Pharmacokinetics, Święcickiego 6 Street, 60-781 Poznań, Poland.
| |
Collapse
|
20
|
Coba‐Jiménez L, Maza J, Guerra M, Deluque‐Gómez J, Cubillán N. Interaction of Ciprofloxacin with Arabinose, Glucosamine, Glucuronic Acid and Rhamnose: Insights from Genetic Algorithm and Quantum Chemistry. ChemistrySelect 2022. [DOI: 10.1002/slct.202103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ludis Coba‐Jiménez
- Programa de Química Facultad de Ciencias Básicas Universidad del Atlántico Barranquilla Colombia
| | - Julio Maza
- Programa de Química Facultad de Ciencias Básicas Universidad del Atlántico Barranquilla Colombia
| | - Mayamarú Guerra
- Laboratorio de Óptica y Procesamiento de Imágenes Facultad de Ciencias Básicas Universidad Tecnológica de Bolívar Turbaco Colombia
| | - Julio Deluque‐Gómez
- Programa de Ingeniería Industrial Facultad de Ingenierías Universidad de la Guajira Riohacha Colombia
| | - Néstor Cubillán
- Programa de Química Facultad de Ciencias Básicas Universidad del Atlántico Barranquilla Colombia
| |
Collapse
|
21
|
Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021; 26:7153. [PMID: 34885734 PMCID: PMC8658791 DOI: 10.3390/molecules26237153] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.
Collapse
Affiliation(s)
- Ana R. Millanao
- Facultad de Ciencias, Instituto de Farmacia, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Aracely Y. Mora
- Programa de Doctorado en Bioquímica, Universidad de Chile, Santiago 8380544, Chile;
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Sergio A. Bucarey
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago 8370071, Chile
| |
Collapse
|
22
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
23
|
Adesanya T, Zvomuya F, Farenhorst A. Phytoextraction of ciprofloxacin and sulfamethoxaxole by cattail and switchgrass. CHEMOSPHERE 2021; 279:130534. [PMID: 33892459 DOI: 10.1016/j.chemosphere.2021.130534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Cattail (Typha latifolia L.) and switchgrass (Panicum virgatum L.) can effectively remove inorganic contaminants from soils and biosolids, but their role in the attenuation of organic contaminants, such as antimicrobials, is currently poorly understood. Uptake by plants is one of several mechanisms by which plant-assisted attenuation of antimicrobials can be achieved. The objectives of this growth room study were to evaluate the plant uptake of ciprofloxacin (CIP) and sulfamethoxazole (SMX) and examine their partitioning between plant roots and aboveground biomass (AGB). Plant uptake of the two 14C labeled antimicrobials was studied at two environmentally relevant concentrations (5 and 10 μg L-1). Plants were destructively sampled every 3-4 d during the 21-d growth period. Accumulation of CIP and SMX in both plant species was greater in the roots than in the AGB. The percentage uptake values of the two antimicrobials were significantly greater for cattail (34% for CIP, 20% for SMX) than for switchgrass (10% for both CIP and SMX). Translocation factors of the two antimicrobials were <1 for both plants, indicating slow movement of the antimicrobials from the roots to the shoots. For cattail roots, the BCF for CIP (1.58 L g-1) was significantly greater than that for SMX (0.8 L g-1). By comparison, BCFs for switchgrass roots did not differ significantly between CIP (0.88 L g-1) and SMX (1.13 L g-1). These results indicate greater potential for cattail to phytoextract CIP and SMX and significantly contribute to the attenuation of these antimicrobials in systems designed for the phytoremediation of contaminated wastewater.
Collapse
Affiliation(s)
- Theresa Adesanya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
24
|
Abioye A, Naqvi M, Pattni D, Adepoju-Bello AA. Non-intuitive Behavior of Polymer-Ciprofloxacin Nanoconjugate Suspensions: a Tool for Flexible Oral Drug Delivery. AAPS PharmSciTech 2021; 22:229. [PMID: 34467444 DOI: 10.1208/s12249-021-02105-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 12/20/2022] Open
Abstract
Ciprofloxacin (CPX) is prone to spontaneous self-aggregation and formation of supramolecular dimers (π - π stacking) due to its complicated surface chemistry which has been associated with its anomalous solubility and instability in aqueous systems particularly near neutral pH. The surface characteristic of ciprofloxacin was modified through non-intuitive counterion interaction between CPX and diethylaminoethyl dextran (DDEX) to form nanoconjugate assembly. The CPX-DDEX nanoconjugate was confirmed by FTIR, SEM, DSC, TGA, and 1H-NMR. The DSC thermograms showed a remarkable 20% reduction in the melting temperature (Tm) of CPX from 268.57±1.11°C to 214.36±1.0211°C and 78% reduction in enthalpy of fusion (ΔHf) from 59.84 kJ/mol (180.59 J/g) to 12.90 kJ/mol (38.92 J/g), indicating increased solubility and dissolution efficiency. DDEX polymer alone exhibited pseudoplastic characteristics however with more viscous rather than elastic response, while the CPX-DDEX nanoconjugate suspensions exhibited remarkable elastic behavior with significantly increased storage modulus (G') thus controlling and extending the release of CPX. The reconstituted freeze-dried CPX-DDEX nanoconjugate suspension was chemically stable throughout the 90-day study both in the refrigerator and at controlled room temperature, while the aqueous suspension of pure CPX without DDEX was only stable for 72 and 24 h, respectively. The dissolution efficiency of the CPX-DDEX nanoconjugate suspensions increased with increasing molar concentration of DDEX to a maximum of 100% at 50 μM of DDEX followed by a remarkable decrease within the 3-week study. It was apparent that the dissolution efficiency was governed by a critical balance between the CPX solubility and the viscoelastic characteristics of the polymeric nanoassembly. This study demonstrates the potential application of polymer-drug nanoconjugation formulation design to stabilization and flexible delivery of CPX from aqueous suspension systems. Graphical abstract.
Collapse
|
25
|
Ashwath P, Sannejal AD. The Action of Efflux Pump Genes in Conferring Drug Resistance to Klebsiella Species and Their Inhibition. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2021. [DOI: 10.1055/s-0041-1731914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractNosocomial infections caused by Klebsiella species are characterized by high rates of morbidity and mortality. The emergence of the multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative bacteria reduces the antibiotic efficacy in the treatment of infections caused by the microorganisms. Management of these infections is often difficult, due to the high frequency of strains resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. Efflux systems are significant in conferring intrinsic and acquired resistance to the bacteria. The emergence of increasing drug resistance among Klebsiella pneumoniae nosocomial isolates has limited the therapeutic options for treatment of these infections and hence there is a constant quest for an alternative. In this review, we discuss various resistance mechanisms, focusing on efflux pumps and related genes in conferring resistance to Klebsiella. The role of various efflux pump inhibitors (EPIs) in restoring the antibacterial activity has also been discussed. In specific, antisense oligonucleotides as alternative therapeutics in combatting efflux-mediated resistance in Klebsiella species have focused upon.
Collapse
Affiliation(s)
- Priyanka Ashwath
- Divison of Infectious Diseases, Nitte (deemed to be University), Nitte University Centre for Science Education and Research, Mangaluru, Karnakata, India
| | - Akhila Dharnappa Sannejal
- Divison of Infectious Diseases, Nitte (deemed to be University), Nitte University Centre for Science Education and Research, Mangaluru, Karnakata, India
| |
Collapse
|
26
|
Kalli S, Araya-Cloutier C, Hageman J, Vincken JP. Insights into the molecular properties underlying antibacterial activity of prenylated (iso)flavonoids against MRSA. Sci Rep 2021; 11:14180. [PMID: 34244528 PMCID: PMC8270993 DOI: 10.1038/s41598-021-92964-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
High resistance towards traditional antibiotics has urged the development of new, natural therapeutics against methicillin-resistant Staphylococcus aureus (MRSA). Prenylated (iso)flavonoids, present mainly in the Fabaceae, can serve as promising candidates. Herein, the anti-MRSA properties of 23 prenylated (iso)flavonoids were assessed in-vitro. The di-prenylated (iso)flavonoids, glabrol (flavanone) and 6,8-diprenyl genistein (isoflavone), together with the mono-prenylated, 4'-O-methyl glabridin (isoflavan), were the most active anti-MRSA compounds (Minimum Inhibitory Concentrations (MIC) ≤ 10 µg/mL, 30 µM). The in-house activity data was complemented with literature data to yield an extended, curated dataset of 67 molecules for the development of robust in-silico prediction models. A QSAR model having a good fit (R2adj 0.61), low average prediction errors and a good predictive power (Q2) for the training (4% and Q2LOO 0.57, respectively) and the test set (5% and Q2test 0.75, respectively) was obtained. Furthermore, the model predicted well the activity of an external validation set (on average 5% prediction errors), as well as the level of activity (low, moderate, high) of prenylated (iso)flavonoids against other Gram-positive bacteria. For the first time, the importance of formal charge, besides hydrophobic volume and hydrogen-bonding, in the anti-MRSA activity was highlighted, thereby suggesting potentially different modes of action of the different prenylated (iso)flavonoids.
Collapse
Affiliation(s)
- Sylvia Kalli
- grid.4818.50000 0001 0791 5666Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- grid.4818.50000 0001 0791 5666Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Hageman
- grid.4818.50000 0001 0791 5666Biometris, Applied Statistics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- grid.4818.50000 0001 0791 5666Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Megariotis G, Romanos N, Avramopoulos A, Mikaelian G, Theodorou DN. In silico study of levodopa in hydrated lipid bilayers at the atomistic level. J Mol Graph Model 2021; 107:107972. [PMID: 34174554 DOI: 10.1016/j.jmgm.2021.107972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
This article presents atomistic molecular dynamics and umbrella sampling simulations of levodopa at various concentrations in hydrated cholesterol-free 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Levodopa is the standard medication for Parkinson's disease and is marketed under various trade names; in the context of this article, the levodopa molecule is mostly studied in its zwitterionic form but some results concerning the neutral levodopa are presented as well for comparison purposes. The motivation is to study in detail how levodopa behaves in different hydrated lipid membranes, primarily from the thermodynamic point of view, and reveal aspects of mechanism of its permeation through them. Dependencies of properties on the levodopa concentration are also investigated. Special attention is paid to the calculation of mass density profiles, order parameters and self-diffusion coefficients. Levodopa zwitterions, which form a hydrogen bond network with water and phospholipid molecules, are found to be preferentially located at the water/lipid interface, as well as in the aqueous phase surrounding the cholesterol-free and cholesterol-containing bilayers. This is concluded from the potentials of mean force calculated by umbrella sampling simulations as levodopa is transferred from the lipid to the aqueous phase along an axis perpendicular to the two leaflets of the membranes.
Collapse
Affiliation(s)
- Grigorios Megariotis
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece.
| | - Nikolaos Romanos
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece
| | - Aggelos Avramopoulos
- Department of Physics, University of Thessaly, 3rd Km Old National Road Lamia Athens, Lamia, GR, 35100, Greece
| | - Georgios Mikaelian
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece
| |
Collapse
|
28
|
Vignoli Muniz GS, Souza MC, Duarte EL, Lamy MT. Comparing the interaction of the antibiotic levofloxacin with zwitterionic and anionic membranes: Calorimetry, fluorescence, and spin label studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183622. [PMID: 33865809 DOI: 10.1016/j.bbamem.2021.183622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
The present work compares the interaction of the antibiotic levofloxacin (LVX) with zwitterionic and anionic liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), respectively. By using differential scanning calorimetry (DSC), and with spin labels incorporated into liposomes at two different depths of the bilayers, we investigated the changes induced on the membrane by increasing concentrations of LVX. Further information was obtained using intrinsic LVX fluorescence. Under the conditions used here, all techniques evinced that LVX has little affinity for DPPC zwitterionic membrane. Opposite to that, LVX exhibits a considerable affinity for anionic bilayers, with membrane partition constants Kp = (3.3 ± 0.5) × 102 and (4.5 ± 0.3) × 102, for gel and fluid DPPG membranes, respectively. On binding to DPPG, LVX seems to give rise to the coexistence of LVX -rich and -poor domains on DPPG membranes, as detected by DSC. At the highest LVX concentration used (20 mol%), DSC trace shows an increase in the cooperativity of DPPG gel-fluid transition, also detected by spin labels as an increase in the bilayer packing. Moreover, LVX does not induce pore formation in either DPPG or POPG vesicles. Considering the possible relevance of LVX-membrane interaction for the biological and toxicological action of the antibiotic, the findings discussed here certainly contribute to a better understanding of its action, and the planning of new drugs.
Collapse
Affiliation(s)
| | - Mariana C Souza
- Instituto de Física, Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil.
| |
Collapse
|
29
|
Swami P, Sharma A, Anand S, Gupta S. DEPIS: A combined dielectrophoresis and impedance spectroscopy platform for rapid cell viability and antimicrobial susceptibility analysis. Biosens Bioelectron 2021; 182:113190. [PMID: 33866070 DOI: 10.1016/j.bios.2021.113190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Antimicrobial resistance (AMR) is caused by inappropriate or excessive antibiotic consumption. Early diagnosis of bacterial infections can greatly curb empirical treatment and thus AMR. Current diagnostic procedures are time-consuming as they rely on gene amplification and cell culture techniques that are inherently limited by the doubling rate of the involved species. Further, biochemical methods for species identification and antibiotic susceptibility testing for drug/dose effectiveness take several days and are non-scalable. We report a real-time, label-free approach called DEPIS that combines dielectrophoresis (DEP) for bacterial enrichment and impedance spectroscopy (IS) for cell viability analysis under 60 min. Target bacteria are captured on interdigitated electrodes using DEP (30 min) and their antibiotic-induced stress response is measured using IS (another 30 min). This principle is used to generate minimum bactericidal concentration (MBC) plots by measuring impedance change due to ionic release by dying bacteria in a low conductivity buffer. The results are rapid since they rely on cell death rather than cell growth which is an intrinsically slower process. The results are also highly specific and work across all bactericidal antibiotics studied, irrespective of their cellular target or drug action mechanism. More importantly, preliminary results with clinical isolates show that methicillin-susceptible Staphylococcus aureus (MSSA) can easily be differentiated from methicillin-resistant S. aureus (MRSA) under 1 h. This rapid cell analyses approach can aid in faster diagnosis of bacterial infections and benefit the clinical decision-making process for antibiotic treatment, addressing the critical issue of AMR.
Collapse
Affiliation(s)
- Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Ayush Sharma
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
30
|
Hörömpöli D, Ciglia C, Glüsenkamp KH, Haustedt LO, Falkenstein-Paul H, Bendas G, Berscheid A, Brötz-Oesterhelt H. The Antibiotic Negamycin Crosses the Bacterial Cytoplasmic Membrane by Multiple Routes. Antimicrob Agents Chemother 2021; 65:e00986-20. [PMID: 33468467 PMCID: PMC8097410 DOI: 10.1128/aac.00986-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/12/2021] [Indexed: 11/26/2022] Open
Abstract
Negamycin is a natural pseudodipeptide antibiotic with promising activity against Gram-negative and Gram-positive bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Staphylococcus aureus, and good efficacy in infection models. It binds to ribosomes with a novel binding mode, stimulating miscoding and inhibiting ribosome translocation. We were particularly interested in studying how the small, positively charged natural product reaches its cytoplasmic target in Escherichia coli Negamycin crosses the cytoplasmic membrane by multiple routes depending on environmental conditions. In a peptide-free medium, negamycin uses endogenous peptide transporters for active translocation, preferentially the dipeptide permease Dpp. However, in the absence of functional Dpp or in the presence of outcompeting nutrient peptides, negamycin can still enter the cytoplasm. We observed a contribution of the DppA homologs SapA and OppA, as well as of the proton-dependent oligopeptide transporter DtpD. Calcium strongly improves the activity of negamycin against both Gram-negative and Gram-positive bacteria, especially at concentrations around 2.5 mM, reflecting human blood levels. Calcium forms a complex with negamycin and facilitates its interaction with negatively charged phospholipids in bacterial membranes. Moreover, decreased activity at acidic pH and under anaerobic conditions points to a role of the membrane potential in negamycin uptake. Accordingly, improved activity at alkaline pH could be linked to increased uptake of [3H]negamycin. The diversity of options for membrane translocation is reflected by low resistance rates. The example of negamycin demonstrates that membrane passage of antibiotics can be multifaceted and that for cytoplasmic anti-Gram-negative drugs, understanding of permeation and target interaction are equally important.
Collapse
Affiliation(s)
- Daniel Hörömpöli
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
- German Center of Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Catherine Ciglia
- Institute of Pharmaceutical Biology, University of Duesseldorf, Duesseldorf, Germany
| | | | | | - Hildegard Falkenstein-Paul
- Pharmaceutical Institute, Department of Pharmaceutical & Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, Department of Pharmaceutical & Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Anne Berscheid
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
- German Center of Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
- Institute of Pharmaceutical Biology, University of Duesseldorf, Duesseldorf, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
- German Center of Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
- Institute of Pharmaceutical Biology, University of Duesseldorf, Duesseldorf, Germany
- Cluster of Excellence 2124: Controlling Microbes to Fight Infection, Tuebingen, Germany
| |
Collapse
|
31
|
Sousa CF, Coimbra JTS, Ferreira M, Pereira-Leite C, Reis S, Ramos MJ, Fernandes PA, Gameiro P. Passive Diffusion of Ciprofloxacin and its Metalloantibiotic: A Computational and Experimental study. J Mol Biol 2021; 433:166911. [PMID: 33676927 DOI: 10.1016/j.jmb.2021.166911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Fluoroquinolones (FQ) are antibiotics widely used in clinical practise, but the development of bacterial resistance to these drugs is currently a critical public health problem. In this context, ternary copper complexes of FQ (CuFQPhen) have been studied as a potential alternative. In this study, we compared the passive diffusion across the lipid bilayer of one of the most used FQ, ciprofloxacin (Cpx), and its ternary copper complex, CuCpxPhen, that has shown previous promising results regarding antibacterial activity and membrane partition. A combination of spectroscopic studies and molecular dynamics simulations were used and two different model membranes tested: one composed of anionic phospholipids, and the other composed of zwitterionic phospholipids. The obtained results showed a significantly higher membrane permeabilization activity, larger partition, and a more favourable free energy landscape for the permeation of CuCpxPhen across the membrane, when compared to Cpx. Furthermore, the computational results indicated a more favourable translocation of CuCpxPhen across the anionic membrane, when compared to the zwitterionic one, suggesting a higher specificity towards the former. These findings are important to decipher the influx mechanism of CuFQPhen in bacterial cells, which is crucial for the ultimate use of CuFQPhen complexes as an alternative to FQ to tackle multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Carla F Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - João T S Coimbra
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Mariana Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Catarina Pereira-Leite
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Paula Gameiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| |
Collapse
|
32
|
Cetuk H, Anishkin A, Scott AJ, Rempe SB, Ernst RK, Sukharev S. Partitioning of Seven Different Classes of Antibiotics into LPS Monolayers Supports Three Different Permeation Mechanisms through the Outer Bacterial Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1372-1385. [PMID: 33449700 DOI: 10.1021/acs.langmuir.0c02652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The outer membrane (OM) of Gram-negative (G-) bacteria presents a barrier for many classes of antibacterial agents. Lipopolysaccharide (LPS), present in the outer leaflet of the OM, is stabilized by divalent cations and is considered to be the major impediment for antibacterial agent permeation. However, the actual affinities of major antibiotic classes toward LPS have not yet been determined. In the present work, we use Langmuir monolayers formed from E. coli Re and Rd types of LPS to record pressure-area isotherms in the presence of antimicrobial agents. Our observations suggest three general types of interactions. First, some antimicrobials demonstrated no measurable interactions with LPS. This lack of interaction in the case of cefsulodin, a third-generation cephalosporin antibiotic, correlates with its low efficacy against G- bacteria. Ampicillin and ciprofloxacin also show no interactions with LPS, but in contrast to cefsulodin, both exhibit good efficacy against G- bacteria, indicating permeation through common porins. Second, we observe substantial intercalation of the more hydrophobic antibiotics, novobiocin, rifampicin, azithromycin, and telithromycin, into relaxed LPS monolayers. These largely repartition back to the subphase with monolayer compression. We find that the hydrophobic area, charge, and dipole all show correlations with both the mole fraction of antibiotic retained in the monolayer at the monolayer-bilayer equivalence pressure and the efficacies of these antibiotics against G- bacteria. Third, amine-rich gentamicin and the cationic antimicrobial peptides polymyxin B and colistin show no hydrophobic insertion but are instead strongly driven into the polar LPS layer by electrostatic interactions in a pressure-independent manner. Their intercalation stably increases the area per molecule (by up to 20%), which indicates massive formation of defects in the LPS layer. These defects support a self-promoted permeation mechanism of these antibiotics through the OM, which explains the high efficacy and specificity of these antimicrobials against G- bacteria.
Collapse
Affiliation(s)
- Hannah Cetuk
- Biology Department, University of Maryland, College Park, Maryland 20742, United States
| | - Andriy Anishkin
- Biology Department, University of Maryland, College Park, Maryland 20742, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore Maryland 21201, United States
| | - Susan B Rempe
- Center for Chemical, Biological, Radiation, and Nuclear Defense and Energy Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore Maryland 21201, United States
| | - Sergei Sukharev
- Biology Department, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
33
|
Charoo NA, Abdallah DB, Parveen T, Abrahamsson B, Cristofoletti R, Groot DW, Langguth P, Parr A, Polli JE, Mehta M, Shah VP, Tajiri T, Dressman J. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Moxifloxacin Hydrochloride. J Pharm Sci 2020; 109:2654-2675. [DOI: 10.1016/j.xphs.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023]
|
34
|
Khondker A, Bider RC, Passos-Gastaldo I, Wright GD, Rheinstädter MC. Membrane interactions of non-membrane targeting antibiotics: The case of aminoglycosides, macrolides, and fluoroquinolones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183448. [PMID: 32828850 DOI: 10.1016/j.bbamem.2020.183448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022]
Abstract
Numerous antibiotics are known to target intracellular pathways, such as protein translation or DNA replication. Membrane transporters typically regulate drug uptake; however, little is known about direct interactions between these antibiotics and the cell membranes. Here, we studied the interactions between different aminoglycosides (kanamycin, gentamicin, streptomycin, neomycin), macrolides (azithromycin, clarithromycin, erythromycin), and fluoroquinolones (ciprofloxacin, levofloxacin) with bacterial membrane mimics to determine drug partitioning and potential drug-induced membrane disruption. The antibiotics' exact location in the bilayers and their effect on membrane thickness and fluidity were determined from high-resolution X-ray diffraction. While the antibiotics did not change membrane thickness at low (1:100 drug/lipid) or high (1:10 drug/lipid) concentrations, they were found to increase membrane disorder in a dose-dependent manner. However, no membrane damage, such as membrane disruption or pore formation, was observed for any of the antibiotics. To note, all antibiotics partitioned into the lipid head groups, while macrolides and fluoroquinolones also partitioned into the bilayer core. The results suggest that the bacterial membrane is relatively inert in the direct mechanisms of actions of these antibiotics.
Collapse
Affiliation(s)
- Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Renée-Claude Bider
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada
| | - Isabella Passos-Gastaldo
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
35
|
Clarelli F, Palmer A, Singh B, Storflor M, Lauksund S, Cohen T, Abel S, Abel zur Wiesch P. Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones. PLoS Comput Biol 2020; 16:e1008106. [PMID: 32797079 PMCID: PMC7449454 DOI: 10.1371/journal.pcbi.1008106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/26/2020] [Accepted: 06/30/2020] [Indexed: 11/19/2022] Open
Abstract
Antibiotic resistance is rising and we urgently need to gain a better quantitative understanding of how antibiotics act, which in turn would also speed up the development of new antibiotics. Here, we describe a computational model (COMBAT-COmputational Model of Bacterial Antibiotic Target-binding) that can quantitatively predict antibiotic dose-response relationships. Our goal is dual: We address a fundamental biological question and investigate how drug-target binding shapes antibiotic action. We also create a tool that can predict antibiotic efficacy a priori. COMBAT requires measurable biochemical parameters of drug-target interaction and can be directly fitted to time-kill curves. As a proof-of-concept, we first investigate the utility of COMBAT with antibiotics belonging to the widely used quinolone class. COMBAT can predict antibiotic efficacy in clinical isolates for quinolones from drug affinity (R2>0.9). To further challenge our approach, we also do the reverse: estimate the magnitude of changes in drug-target binding based on antibiotic dose-response curves. We overexpress target molecules to infer changes in antibiotic-target binding from changes in antimicrobial efficacy of ciprofloxacin with 92-94% accuracy. To test the generality of our approach, we use the beta-lactam ampicillin to predict target molecule occupancy at MIC from antimicrobial action with 90% accuracy. Finally, we apply COMBAT to predict antibiotic concentrations that can select for resistance due to novel resistance mutations. Using ciprofloxacin and ampicillin as well defined test cases, our work demonstrates that drug-target binding is a major predictor of bacterial responses to antibiotics. This is surprising because antibiotic action involves many additional effects downstream of drug-target binding. In addition, COMBAT provides a framework to inform optimal antibiotic dose levels that maximize efficacy and minimize the rise of resistant mutants.
Collapse
Affiliation(s)
- Fabrizio Clarelli
- Department of Pharmacy, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States of America
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Adam Palmer
- Department of Pharmacology, Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Bhupender Singh
- Department of Pharmacy, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Merete Storflor
- Department of Pharmacy, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, PA, United States of America
| | - Silje Lauksund
- Department of Pharmacy, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Sören Abel
- Department of Pharmacy, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, PA, United States of America
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Oslo, Norway
| | - Pia Abel zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States of America
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Oslo, Norway
- * E-mail:
| |
Collapse
|
36
|
Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes. J Mol Model 2020; 26:135. [DOI: 10.1007/s00894-020-04410-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|
37
|
Svenningsen SW, Frederiksen RF, Counil C, Ficker M, Leisner JJ, Christensen JB. Synthesis and Antimicrobial Properties of a Ciprofloxacin and PAMAM-dendrimer Conjugate. Molecules 2020; 25:molecules25061389. [PMID: 32197523 PMCID: PMC7146445 DOI: 10.3390/molecules25061389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023] Open
Abstract
Infections caused by bacteria resistant to antibiotics are an increasing problem. Multivalent antibiotics could be a solution. In the present study, a covalent conjugate between Ciprofloxacin and a G0-PAMAM dendrimer has been synthesized and tested against clinically relevant Gram-positive and Gram-negative bacteria. The conjugate has antimicrobial activity and there is a positive dendritic effect compared to Ciprofloxacin itself.
Collapse
Affiliation(s)
- Søren Wedel Svenningsen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
| | - Rikki Franklin Frederiksen
- Department of Veterinary and Animal Sciences, Food Safety and Zoonoses, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark; (R.F.F.); (J.J.L.)
| | - Claire Counil
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
| | - Mario Ficker
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
| | - Jørgen J. Leisner
- Department of Veterinary and Animal Sciences, Food Safety and Zoonoses, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark; (R.F.F.); (J.J.L.)
| | - Jørn Bolstad Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
- Correspondence: ; Tel.: +45-3533-2452
| |
Collapse
|
38
|
Soldevila S, Bosca F. Assessing physical properties of amphoteric fluoroquinolones using phosphorescence spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117569. [PMID: 31670049 DOI: 10.1016/j.saa.2019.117569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The self-association of fluoroquinolones (FQ) in water would play a relevant role in their translocations across lipid membranes. Triplet excited states of these drugs have been shown as reporters of FQ self-association using laser flash photolysis technique. A study using low-temperature phosphorescence technique was performed with quinolone derivatives such as enoxacin (ENX), norfloxacin (NFX), pefloxacin (PFX), ciprofloxacin (CPX, ofloxacin (OFX), nalidixic acid (NLA), pipemidic acid (PPA) and piromidic acid (PRA) to explore emission changes associated with self-associations and to shed some light on the triplet excited state energy (ET) discrepancies described in the literature for most of these drugs. The emissions obtained at 77 K in buffered aqueous medium revealed that the amphoteric nature of the quinolones CPX, NFX, PFX, ENX, OFX and PPA must generate their self-associations because a redshift of their phosphorescence maxima is produced by FQ concentrations increases. Hence, this effect was not observed for NLA and PRA or when all quinolones were analysed using ethanol or ethylene glycol aqueous mixtures as glassed solvents. Interestingly, the presence of these organic mixtures produced a blue-shift in the phosphorescence emission maximum of each FQ. Additionally, laser flash photolysis experiments with PRA and the amphoteric quinolone PPA, compounds with the same skeleton but different peripheral substituent, confirm the expected correlations between the amphoteric nature of compounds and their self-associations in aqueous media because the excimer generation was only detected for PPA. Now, the discrepancies described in the literature for the ET of FQs can be understood considering that changes of medium polarity or proticity as well as the temperature can considerably modify their ET values. Thereby, low-temperature phosphorescence technique, is an effective way to detect molecular self-associations and surrounding changes in quinolones that opens the possibility to evaluate these effects in other drug families.
Collapse
Affiliation(s)
- Sonia Soldevila
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos, s/n, 46022, Valencia, Spain
| | - Francisco Bosca
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos, s/n, 46022, Valencia, Spain.
| |
Collapse
|
39
|
Residues of Fluoroquinolone Antibiotics Induce Carbonylation and Reduce In Vitro Digestion of Sarcoplasmic and Myofibrillar Beef Proteins. Foods 2020; 9:foods9020170. [PMID: 32053976 PMCID: PMC7074055 DOI: 10.3390/foods9020170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022] Open
Abstract
Although the impact of oxidation on human health has been of growing interest, the oxidation of proteins, major component of meat, has received little attention. This paper describes the in vitro effect of five fluoroquinolones (FQs) on carbonylation of sarcoplasmic and myofibrillar proteins of beef when found at concentrations close to the maximum residue limit (MRL). Samples were treated individually with the FQs, determining in each protein fraction the carbonyl index, protein content and oxidized proteins identification, using 2,4-dinitrophenyhydrazine (DNPH) alkaline assay, Western blot and Bradford methods, and mass spectrometry, respectively. Besides, the in vitro effect of these residues on gastric and duodenal digestion of proteins was evaluated. The carbonylation induced by FQs affected both protein fractions being significant with respect to the blank in 73.3% of cases. This damage was correlated with loss of solubility and digestibility, with sarcoplasmic proteins the most affected. Danofloxacin and enrofloxacin were the FQs with greatest oxidant effects, especially affecting glycolysis and glycogen proteins. Our results suggest that these residues induce irreversible oxidative damage on the main beef proteins and could affect their nutritional value.
Collapse
|
40
|
|
41
|
Stahl RS, Bisha B, Mahapatra S, Chandler JC. A model for the prediction of antimicrobial resistance in Escherichia coli based on a comparative evaluation of fatty acid profiles. Diagn Microbiol Infect Dis 2019; 96:114966. [PMID: 31948696 DOI: 10.1016/j.diagmicrobio.2019.114966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Antimicrobial resistance is a threat to agricultural production and public health. In this proof-of-concept study, we investigated predicting antimicrobial sensitive/resistant (S/R) phenotypes and host sources of Escherichia coli (n = 128) based on differential fatty acid abundance. Myristic (14:0), pentadecanoic acid (15:0), palmitic (16:0), elaidic (18:19) and steric acid (18:0) were significantly different (α = 0.05) using a two-way ANOVA for predicting nalidixic acid, ciprofloxacin, aztreonam, cefatoxime, and ceftazidime S/R phenotypes. Additionally, analyses of palmitoleic (16:1), palmitic acid (16:0), methyl palmitate (i-17:0), and cis-9,10-methyleneoctadecanoic acid (19:0Δ) showed these markers were significantly different (α = 0.05) between isolates obtained from cattle and raccoons. S/R phenotype prediction for the above antibiotics or host source, based on linear regression models of fatty acid abundance, were made using a replicated-randomized subsampling and modeling approach. This model predicted S/R phenotype with 79% and 81% accuracy for nalidixic acid and ciprofloxacin, respectively. The isolate host source was predicted with 63% accuracy.
Collapse
Affiliation(s)
- Randal S Stahl
- USDA/APHIS/WS, National Wildlife Research Center, Fort Collins, CO, USA.
| | - Bledar Bisha
- University of Wyoming, Department of Animal Science, Laramie, WY, USA
| | - Sebabrata Mahapatra
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | | |
Collapse
|
42
|
Penetration enhancement of menthol on quercetin through skin: insights from atomistic simulation. J Mol Model 2019; 25:235. [DOI: 10.1007/s00894-019-4135-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
43
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
44
|
Lamut A, Peterlin Mašič L, Kikelj D, Tomašič T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev 2019; 39:2460-2504. [PMID: 31004360 DOI: 10.1002/med.21591] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/29/2022]
Abstract
Bacterial infections are an increasingly serious issue worldwide. The inability of existing therapies to treat multidrug-resistant pathogens has been recognized as an important challenge of the 21st century. Efflux pumps are important in both intrinsic and acquired bacterial resistance and identification of small molecule efflux pump inhibitors (EPIs), capable of restoring the effectiveness of available antibiotics, is an active research field. In the last two decades, much effort has been made to identify novel EPIs. However, none of them has so far been approved for therapeutic use. In this article, we explore different structural families of currently known EPIs for multidrug resistance efflux systems in the most extensively studied pathogens (NorA in Staphylococcus aureus, AcrAB-TolC in Escherichia coli, and MexAB-OprM in Pseudomonas aeruginosa). Both synthetic and natural compounds are described, with structure-activity relationship studies and optimization processes presented systematically for each family individually. In vitro activities against selected test strains are presented in a unifying manner for all the EPIs described, together with the most important toxicity, pharmacokinetic and in vivo efficacy data. A critical evaluation of lead-likeness characteristics and the potential for clinical development of the most promising inhibitors of the three efflux systems is described. This overview of EPIs is a good starting point for the identification of novel effective antibacterial drugs.
Collapse
Affiliation(s)
- Andraž Lamut
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Danijel Kikelj
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
45
|
Xie S, Zhou J, Chen X, Kong N, Fan Y, Zhang Y, Hammer G, Castner DG, Ramström O, Yan M. A Versatile Catalyst-Free Perfluoroaryl Azide-Aldehyde-Amine Conjugation Reaction. MATERIALS CHEMISTRY FRONTIERS 2019; 3:251-256. [PMID: 31543961 PMCID: PMC6754110 DOI: 10.1039/c8qm00516h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A tri-component reaction, involving an electrophilically-activated perfluoroaryl azide, an enolizable aldehyde and an amine, reacts readily at room temperature without any catalysts in solvents including aqueous conditions to yield a stable amidine conjugate. The versatility of this reaction is demonstrated in the conjugation of an amino acid without prior protection of the carboxyl group, and in the synthesize antibiotic-nanoparticle conjugates.
Collapse
Affiliation(s)
- Sheng Xie
- Department of Chemistry, KTH-Royal Institute of Technology, Stockholm, Sweden
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Juan Zhou
- Department of Chemistry, KTH-Royal Institute of Technology, Stockholm, Sweden
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Xuan Chen
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA. E-mail: ,
| | - Na Kong
- Department of Chemistry, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Yanmiao Fan
- Department of Chemistry, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Yang Zhang
- Department of Chemistry, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Gerry Hammer
- Departments of Bioengineering and Chemical Engineering, National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, Washington, USA
| | - David G Castner
- Departments of Bioengineering and Chemical Engineering, National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, Washington, USA
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA. E-mail: ,
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Mingdi Yan
- Department of Chemistry, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA. E-mail: ,
| |
Collapse
|
46
|
Graef F, Richter R, Fetz V, Murgia X, De Rossi C, Schneider-Daum N, Allegretta G, Elgaher W, Haupenthal J, Empting M, Beckmann F, Brönstrup M, Hartmann R, Gordon S, Lehr CM. In Vitro Model of the Gram-Negative Bacterial Cell Envelope for Investigation of Anti-Infective Permeation Kinetics. ACS Infect Dis 2018; 4:1188-1196. [PMID: 29750862 DOI: 10.1021/acsinfecdis.7b00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell envelope of Gram-negative bacteria is a formidable biological barrier, inhibiting the action of antibiotics by impeding their permeation into the intracellular environment. In-depth understanding of permeation through this barrier remains a challenge, despite its critical role in antibiotic activity. We therefore designed a divisible in vitro permeation model of the Gram-negative bacterial cell envelope, mimicking its three essential structural elements, the inner membrane and the periplasmic space as well as the outer membrane, on a Transwell setup. The model was characterized by contemporary imaging techniques and employed to generate reproducible quantitative and time-resolved permeation data for various fluorescent probes and anti-infective molecules of different structure and physicochemical properties. For a set of three fluorescent probes, the permeation through the overall membrane model was found to correlate with in bacterio permeation. Even more interestingly, for a set of six Pseudomonas quorum sensing inhibitors, such permeability data were found to be predictive for their corresponding in bacterio activities. Further exploration of the capabilities of the overall model yielded a correlation between the permeability of porin-independent antibiotics and published in bacterio accumulation data; a promising ability to provide structure-permeability information was also demonstrated. Such a model may therefore constitute a valuable tool for the development of novel anti-infective drugs.
Collapse
Affiliation(s)
- Florian Graef
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Robert Richter
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Verena Fetz
- Department of Chemical Biology, HZI, German Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Xabier Murgia
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Chiara De Rossi
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Giuseppe Allegretta
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Walid Elgaher
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Felix Beckmann
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, HZI, German Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rolf Hartmann
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Sarah Gordon
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF Liverpool, United Kingdom
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| |
Collapse
|
47
|
Okoh OA, Klahn P. Trimethyl Lock: A Multifunctional Molecular Tool for Drug Delivery, Cellular Imaging, and Stimuli-Responsive Materials. Chembiochem 2018; 19:1668-1694. [PMID: 29888433 DOI: 10.1002/cbic.201800269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Trimethyl lock (TML) systems are based on ortho-hydroxydihydrocinnamic acid derivatives displaying increased lactonization reactivity owing to unfavorable steric interactions of three pendant methyl groups, and this leads to the formation of hydrocoumarins. Protection of the phenolic hydroxy function or masking of the reactivity as benzoquinone derivatives prevents lactonization and provides a trigger for controlled release of molecules attached to the carboxylic acid function through amides, esters, or thioesters. Their easy synthesis and possible chemical adaption to several different triggers make TML a highly versatile module for the development of drug-delivery systems, prodrug approaches, cell-imaging tools, molecular tools for supramolecular chemistry, as well as smart stimuliresponsive materials.
Collapse
Affiliation(s)
- Okoh Adeyi Okoh
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Philipp Klahn
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
48
|
Pacífico C, Fernandes P, de Carvalho CCCR. Mycobacterial Response to Organic Solvents and Possible Implications on Cross-Resistance With Antimicrobial Agents. Front Microbiol 2018; 9:961. [PMID: 29867865 PMCID: PMC5962743 DOI: 10.3389/fmicb.2018.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/24/2018] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium vaccae, a bacterium found in soil, has been receiving attention as adjuvant to antituberculosis treatment, vaccines and immunotherapies and even as antidepressant. This bacterium is also able to degrade several pollutants, including aromatic compounds. The increasing presence of organic solvents in the environment may lead to M. vaccae adapted populations. A possible relationship between solvent tolerance and decreased susceptibility to other types of chemicals, including antibiotics, may pose a problem during opportunistic infections. The present study thus aimed at assessing if solvent adapted cells presented higher tolerance to antibiotics and efflux pump inhibitors (EPIs). M. vaccae cells were able to thrive and grow in the presence of up 20% (v/v) glycerol, 5% (v/v) ethanol, 1% (v/v) methyl tert-butyl ether (MTBE) and 0.1% (v/v) toluene. During adaptation to increasing concentration of ethanol and MTBE, the cells changed their fatty acid profile, zeta potential and morphology. Adapted cells acquired an improved tolerance toward the EPIs thioridazine and omeprazole, but became more susceptible to the antibiotics levofloxacin and teicoplanin when compared with non-adapted cells.
Collapse
Affiliation(s)
- Cátia Pacífico
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Faculty of Engineering, Universidade Lusófona, Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Li J, Beuerman RW, Verma CS. Molecular Insights into the Membrane Affinities of Model Hydrophobes. ACS OMEGA 2018; 3:2498-2507. [PMID: 30023836 PMCID: PMC6044992 DOI: 10.1021/acsomega.7b01759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Membrane-active antibiotics are of great interest in fighting bacterial resistance. α-Mangostin is a membrane-active molecule, but there are no details of its mechanism of action at the atomistic level. We have employed free-energy simulations and microsecond-long conventional molecular dynamics simulations to study the mode of interaction of α-mangostin with a model bacterial membrane and compare it with the mechanisms of three hydrophobic molecules (ciprofloxacin, xanthone, and tetracycline). We find that α-mangostin is thermodynamically more favored to insert into the membrane compared to the other three molecules. Apart from tetracycline, which is largely hydrophilic, the other three molecules aggregate in water; however, only α-mangostin can penetrate into the lipid tail region of the membrane. When it reaches a high concentration in the lipid tail region, α-mangostin can form tubular clusters that span the two head group regions of the membrane, resulting in a large number of water translocations along the transmembrane aggregates. Structure-activity relationship analysis revealed two structural properties that characterize α-mangostin, namely, the two isoprenyl groups and the polar groups present in the aromatic rings, which result in "disruptive amphiphilicity" and hence its excellent membrane activity.
Collapse
Affiliation(s)
- Jianguo Li
- Singapore
Eye Research Institute, The Academia, 20 College Road, 169856, Singapore
- Bioinformatics
Institute (A*-STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore
| | - Roger W. Beuerman
- Singapore
Eye Research Institute, The Academia, 20 College Road, 169856, Singapore
- Department
of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, 119074 Singapore
- Duke-NUS,
SRP Neuroscience & Behavioural Disorders, 8 College Road, 169857, Singapore
| | - Chandra S. Verma
- Singapore
Eye Research Institute, The Academia, 20 College Road, 169856, Singapore
- Bioinformatics
Institute (A*-STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang
Drive, 637551 Singapore
- Department
of Biological Sciences, National University
of Singapore, 14 Science
Drive 4, 117543 Singapore
| |
Collapse
|
50
|
Li J, Beuerman R, Verma C. The effect of molecular shape on oligomerization of hydrophobic drugs: Molecular simulations of ciprofloxacin and nutlin. J Chem Phys 2018; 148:104902. [DOI: 10.1063/1.5013056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jianguo Li
- Singapore Eye Research Institute, 11 Third Hospital Avenue, #06-00, Singapore 168751
- Bioinformatics Institute (A*-STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- Duke-NUS Medical School, Ophthalmology Academic Clinical Program, Singapore
| | - Roger Beuerman
- Singapore Eye Research Institute, 11 Third Hospital Avenue, #06-00, Singapore 168751
- Duke-NUS Medical School, Ophthalmology Academic Clinical Program, Singapore
- Department of Ophthalmology, National University of Singapore, 1E Kent Ridge Road, Singapore 119074
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Chandra Verma
- Singapore Eye Research Institute, 11 Third Hospital Avenue, #06-00, Singapore 168751
- Bioinformatics Institute (A*-STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|